The Molecular Logic of Presynaptic Facilitation and Inhibition

  • Francesco Belardetti
  • Eric R. Kandel
  • Steven A. Siegelbaum
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)


A striking feature of the organization of the brain is that some synaptic potentials -- the signals whereby one cell communicates with another -- are fast, lasting only milliseconds, whereas others are slow, lasting many seconds or even many minutes. One of the insights of the last several years is the realization, based on studies of the heart and of molluscan neurons, that the two types of synaptic interactions involve two different molecular mechanisms and serve two different behavioral consequences (fig. 1).


Motor Neuron Transmitter Release Presynaptic Inhibition Channel Closure Abdominal Ganglion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abrams, T.W., Castellucci, V.F., Camardo, J.S., Kandel, E.R., and Lloyd, P.E. (1984). Two endogenous neuropeptides modulate the gill and siphon withdrawal reflex in Aplysia by means of presynaptic facilitation involving cyclic AMP-dependent closure of a serotonin-sensitive potassium channel. Proc. Natl. Acad. Sci. USA, 81, 7956–7960.CrossRefGoogle Scholar
  2. Baxter, D.A. and Bittner, G.D. (1981). Intracellular recordings from crustacean motor axons during presynaptic inhibition. Brain Res., 223, 422–428.CrossRefGoogle Scholar
  3. Belardetti, F., Kandel, E.R., and Siegelbaum, S. Presynaptic inhibition produced by the peptide FMRFamide involves opening of S K channels closed by presynaptic facilitation. Nature, in press.Google Scholar
  4. Brezina, V., Eckert, R., and Erxleben, C. Modulation of potassium conductances by an endogenous neuropeptide in neurones of Aplysiacalifornica. J. Physiol., in press.Google Scholar
  5. Boyle, M.B., Klein, K., Smith, S.J., And Kandel, E.R. (1984). Serotonin increases intracellular Ca transients in voltageclamped sensory neurons of Aplysia californica. Proc. Natl. Acad. Sci. USA, 81, 7642–7646.CrossRefGoogle Scholar
  6. Burke, R.E. and Rudomin, P. (1977). Spinal neurons and synapes. In: Handbook of Physiology, Vol. 1: The Nervous System, Part 2. ( E. R. Kandel, ed.). American Physiological Society, Bethesda, MD, pp. 877–944.Google Scholar
  7. Castellucci, V. and Kandel, E.R. (1976). Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science, 194, 1176–1178.CrossRefGoogle Scholar
  8. Castellucci, V.F., Kandel, E.R., Schwartz, J.H., Wilson, F.D., Nairn, A.C. and Greengard, P. (1980). Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase simulates facilitation of transmitter release underlying behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. USA, 77, 7492–7496.CrossRefGoogle Scholar
  9. Castellucci, V., Pinsker, H., Kupfermann, I., and Kandel, E.R. (1970). Neuronal mechanisms of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science, 167, 1745–1748.CrossRefGoogle Scholar
  10. Castellucci, V.F., Schacher, S., Montarolo, P.G., Mackey, S., Glanzman, D.L., Hawkins, R.D., Abrams, T.W., Goelet, P., and Kandel, E,R. (1986). Convergence of small molecule and peptide transmitters on a common molecular cascade. In: Coexistence of Neuronal Messengers: A New Principle in Chemical Transmission, Progress in Brain Research, Vol. 68. ( T. Hokfelt, K. Fuxe and P. Pernow, eds.). Elsevier, Amsterdam, pp. 83–102.Google Scholar
  11. Dudel, J. and Kuffler, S.W. (1961a). The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J. Physiol. ( London ), 155, 514–529.Google Scholar
  12. Dudel, J. and Kuffler, S.W. (1961b). Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. ( London ), 155, 543–562.Google Scholar
  13. Eccles, J.C. (1964). The Physiology of Synapses. Springer, Berlin.CrossRefGoogle Scholar
  14. Frank, K. and Fuortes, M.G.F. (1957). Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc., 16, 39–40.Google Scholar
  15. Hille, B. (1984). Ionic Channels of Excitable Membranes. Sunderland, Mass.: Sinauer.Google Scholar
  16. Hochner, B., Klein, M., Schacher, S., and Kandel, E.R. (1986a). Action potential duration and the modulation of transmitter release from the sensory neurons of Aplysia in presynaptic facilitation and behavioral sensitization. Proc. Natl. Acad. Sci. USA, 83, 8410–8414.CrossRefGoogle Scholar
  17. Hochner, B., Klein, M., Schacher, S., and Kandel, E.R. (1986b). Additional component in the cellular mechanism of presynaptic facilitation contributes to behavioral dishabituation in Aplysia. Proc. Natl. Acad. Sci. USA, 83, 8794–8798.CrossRefGoogle Scholar
  18. Hochner, B., Schacher, S., Klein, M., and Kandel, E. R. (1985). Presynaptic faciitation in Aplysia sensory neurons: A process independent of K current modulation becomes important when transmitter release is depressed. Soc. Neurosci. Abstr., 11, 29.Google Scholar
  19. Kandel E.R. and Schwartz, J.H. (1982). Molecular biology of an elementary form of learning: Modulation of transmitter release by cyclic AMP. Science, 218, 433–443.CrossRefGoogle Scholar
  20. Kandel, E.R. and Tauc, L. (1965a). Heterosynaptic facilitation in neurones of the abdominal ganglion of Aplysia depilans. J. Physiol. ( London ), 181, 1–27.Google Scholar
  21. Kandel, E. R. and Tauc, L. (1965b). Mechanisms of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans. J. Physiol. ( London ), 181, 28–47.Google Scholar
  22. Kennedy, D., Calabrese, R.L., and Wine, J.J. (1974). Presynaptic inhibition: primary afferent depolarization in crayfish neurons. Science, 186, 451–454CrossRefGoogle Scholar
  23. Klein, M. and Kandel, E.R. (1980). Mechanisms of calciumcurrent modulation underlying presynaptic facilitation and behavioral sensitization in Aplysia. Proc. Natl. Acad. Sci. USA, 77, 6912–6916.CrossRefGoogle Scholar
  24. Klein, M. and Kandel. E.R. (1978). Presynaptic modulation of voltage-dependent Ca current: Mechanism for behavioral sensitization in Aplysia californica. Proc. Natl. Acad. Sci. USA, 75, 3512–3516.CrossRefGoogle Scholar
  25. Klein, M., Camardo, J.S. and Kandel, E.R. (1982). Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia. Proc. Natl. Acad. Sci. USA, 79, 5713–5717.CrossRefGoogle Scholar
  26. Klein, M., Hochner, B., and Kandel, E.R. (1986). Facilitatory transmitters and CAMP can modulate accommodation as well as transmitter release in Aplysia sensory neurons: Evidence for parallel processing in a single cell. Proc. Natl. Acad. Sci. USA, 83, 7994–7998.CrossRefGoogle Scholar
  27. Ocorr, R.A. and Byrne, J.H. (1985). Membrane responses and changes in cAMP levels in Aplysia sensory neurons produced by serotonin, tryptamine, FMRFamide, and small cardioactive peptide B (SCPB). Neurosci. Letts., 55, 113–118.CrossRefGoogle Scholar
  28. Schacher, S. and Proshansky, E. (1983). Neurite regeneration by Aplysia neurons in dissociated cell culture: Modulation by Aplysia hemolymph and the presence of the initial axon segment. J. Neurosci., 3, 2403–2413.Google Scholar
  29. Schmidt, R.F. (1971). Presynaptic inhibition in the vertebrate central nervous system. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol., 63, 20–101.Google Scholar
  30. Shuster, M.J., Camardo, J.S., Siegelbaum, S.A., and Kandel, E.R. (1985). Cyclic AMP-dependent protein kinase closes the serotoninsensitive K+ channels of Aplysia sensory neurones in cell-free membrane patches. Nature, 313, 392–395.CrossRefGoogle Scholar
  31. Siegelbaum, S.A. and Tsien, R.W. (1983). Modulation of gated ion channels as a mode of transmitter action. Trends Neurosci., 6, 307–313.CrossRefGoogle Scholar
  32. Siegelbaum, S.A., Camardo, J.S. and Kandel, E.R. (1982). Serotonin and cyclic AMP close single R+ channels in Aplysia sensory neurones. Nature 299, 413–417.CrossRefGoogle Scholar
  33. Takeuchi, A. and Takeuchi, N. (1966a). A study of the inhibitory action of X-aminobutyric acid on neuromuscular transmission in the crayfish. J. Physiol. ( London ), 183, 418–432.Google Scholar
  34. Takeuchi, A. and Takeuchi, N. (1966b). One the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of A-aminobutyric acid. J. Physiol. ( London ), 183, 433–449.Google Scholar
  35. Takeuchi, A. and Takeuchi, N. (1962). Electrical changes in pre-and postsynaptic axons of the giant synapse of Loligo. J. Gen. Physiol., 45, 1181–1193.CrossRefGoogle Scholar
  36. Tauc, L. (1965). Presynaptic inhibition in the abdominal ganglion of Aplysia. J. Physiol. ( London ), 181, 282–307.Google Scholar
  37. Waziri, R., Kandel, E.R., and Frazier, W.T. (1969). Organization of inhibition in abdominal ganglion of Aplysia. II. Posttetanic potentiation, heterosynaptic depression, and increments in frequency of inhibitory postsynaptic potentials. J. Neurophysiol., 32, 509–519.Google Scholar
  38. Zengel, J.E., Reid, S.A., Sypert, G.W., and Munson, J.B. (1983). Presynaptic inhibition, EPSP amplitude, and motor-unit type in triceps surae motoneurons in the cat. J. Neurophysiol., 49, 922–931.Google Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • Francesco Belardetti
  • Eric R. Kandel
  • Steven A. Siegelbaum

There are no affiliations available

Personalised recommendations