Serotonin/Norepinephrine Receptor Interactions: Sensitivity Changes after Antidepressants and Lesions

  • Elaine Sanders-Bush
  • Fridolin Sulser
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)


The morphological organization of monoamine systems in brain and psychopharmacological studies have long suggested a functional linkage between noradrenergic and serotonergic neuronal systems. Recent studies of the molecular mechanism of action of antidepressants have added additional support for an aminergic interaction in the central nervous system (CNS). In the present manuscript, we will review this evidence and evaluate the possible molecular basis for the adrenergic/serotonergic link.


Adenylate Cyclase Choroid Plexus Serotonergic Neuron Guanine Nucleotide Binding Protein Adenylate Cyclase System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J.L. (1983). Serotonin receptor changes after chronic antidepressant treatments: Ligand binding, electrophysiological and behavioral studies. Life Sci. 32, 1791–1801.CrossRefGoogle Scholar
  2. Batty, I.R., Nahorski, S.R. and Irvine, R.F. (1985). Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices. Biochem. J. 232, 211–215.Google Scholar
  3. Berridge, M.J. (1985). The molecular basis of communication within cells. Scientific Amer. 253, 142–152.CrossRefGoogle Scholar
  4. Brunello, N., Volterra, A., Cagiano, R., Ianieri, G.C., Cuomo, V. and Racagni, G. (1985). Biochemical and behavioral changes in rats after prolonged treatment with desipramine: interaction with pchlorophenylalanine. Naunyn-Schmiedeberg’s Arch. Pharmacol. 331, 20–22.Google Scholar
  5. Conn, P.J. and Sanders-Bush, E. (1984). Selective 5HT-2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex. Neuropharmacology 23, 993–996.CrossRefGoogle Scholar
  6. Conn, P.J. and Sanders-Bush, E. (1985). Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J. Pharmacol. Exp. Ther. 234, 195–203.Google Scholar
  7. Conn, P.J. and Sanders-Bush, E. (1986a). Regulation of serotoninstimulated phosphoinositide hydrolysis: Relation to the serotonin 5HT-2 binding site. J. Neurosci. in press.Google Scholar
  8. Conn, P.J. and Sanders-Bush, E. (1986b). Agonist-induced phosphoinositide hydrolysis in choroid plexus. J. Neurochem. in press.Google Scholar
  9. Conn, P.J., Sanders-Bush, E., Hoffman, B.J. and Hartig, P.R. (1986a). A unique serotonin receptor in choroid plexus is linked to phosphoinositide hydrolysis. Proc. Nat. Acad. Sci. USA 83, 4086–4088.CrossRefGoogle Scholar
  10. Conn, P.J., Janowsky, A. and Sanders-Bush, E. (1986b). Denervation supersensitivity of 5-HT-le receptors in rat choroid plexus. Brain Res. in press.Google Scholar
  11. de Chaffoy de Courcelles, D., Leysen, J.E., De Clerck, F., Van Belle, H. and Janssen, P.A.J. (1985). Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites. J. Biol. Chem. 260, 7603–7608.Google Scholar
  12. Dixon, J.F. and Hokin, L.E. (1985). The formation of inositol-1,2cyclic phosphate on agonist stimulation of phosphoinositide breakdown in mouse pancreatic minilobules. J. Biol. Chem. 260, 16068–16071.Google Scholar
  13. Irvine, R.F., Letcher, A.J., Lander, D.J. and Downes, C.P. (1984). Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223, 237–243.Google Scholar
  14. Janowsky, A., Labarca, R. and Paul, S.M. (1984). Characterization of neurotransmitter receptor-mediated phosphatidylinositol hydrolysis in the rat hippocampus. Life Sci. 35, 1953–1961.CrossRefGoogle Scholar
  15. Janowsky, A.J., Steranka, L.R., Gillespie, D.D. and Sulser, F. (1982). Role of neuronal signal input in the down-regulation of central noradrenergic receptor function by antidepressant drugs. J. Neurochem. 39, 290–292.CrossRefGoogle Scholar
  16. Kendall, D.A. and Nahorski, S.R. (1985). 5-hydroxytryptaminestimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effects of antidepressants. J. Pharmacol. Exp. Therap. 233, 473–479.Google Scholar
  17. Kent, R.S., DeLean, A. and Lefkowitz, R.J. (1980). A quantitative analysis of beta-adrenergic receptor interactions: resolution of high and low affinity states of the receptor by ligand binding data. Mol. Pharmacol. 17, 14–23.Google Scholar
  18. Manier, D.H., Gillespie, D.D., Steranka, L.R. and Sulser, F. (1984). A pivotal role for serotonin in the down-regulation of beta-adrenoceptors by antidepressants: Reversibility of the action of p-chlorophenylalanine by 5-hydroxytryptophan. Experientia 40, 1223–1226.CrossRefGoogle Scholar
  19. Manier, D.H., Gillespie, D.D., Sanders-Bush, E. and Sulser, F. (1986). The serotonin/noradrenaline-link in brain: I. The role of noradrenaline and serotonin in the regulation of density and function of beta adrenoceptors and its alteration by desipramine. Naunyn-Schmiedeberg’s Arch. Pharmacol. The submitted.Google Scholar
  20. Moskowitz, M.A., Liebman, J.F., Reinhard, Jr., J.F. and Schlosberg, A. (1979). Raphe origin of serotonin-containing neurons within choroid plexus of the rat. Brain Res. 169, 590–594.CrossRefGoogle Scholar
  21. Nakamura, S. and Mariyasu, N. (1978). Nerve fibers and nerve endings in the choroid plexus: electron microscopic study. Brain and Nerve 30, 259–266.Google Scholar
  22. Napoleone, P., Sancesario, B. and Amenta, F. (1982). Indoleaminergic innervation of rat choroid plexus: a fluorescence histochemical study. Neurosci. Lett. 34, 143–147.Google Scholar
  23. Nathanson, J.A. (1979). Beta-adrenergic-sensitive adenylate cyclase in secretory cells of choroid plexus. Science 204, 843–844.CrossRefGoogle Scholar
  24. Nimgaonkar, V.L., Goodwin, G.M., Davies, C.L. and Green, A.R. (1985). Down-regulation of beta-adrenoceptors in rat cortex by repeated administration of desipramine electronconvulsine shock and clenbuterol requires 5HT neurons but not 5HT. Neuropharmacology 24, 279–283.CrossRefGoogle Scholar
  25. Hirasawa, K. and Nishizuka, Y. (1985). Phosphatidylinositol turnover in receptor mechanism and signal transduction. Ann. Rev. Pharmacol. Toxicol. 25, 147–170.CrossRefGoogle Scholar
  26. Pazos, A., Hayer, D. and Palacios, J.M. (1984). The binding of serotonergic ligands to the porcine choroid plexus: Characterization of a new type of serotonin recognition site. Europ. J. Pharmacol. 106, 539–546.Google Scholar
  27. Roth, B.L., Nakaki, T., Chuang, D. and Costa, ET (1986). 5Hydroxytryptamine-2 receptors coupled to phospholipase C in rat aorta: Modulation of phosphoinositide turnover by phorbol ester. J. Pharmacol. Exp. Ther. 238, 480.Google Scholar
  28. Sanders-Bush, E. and Conn, P.J. Neurochemistry of serotonin neuronal systems: Consequences of serotonin receptor activation. In Psychopharmacology, The Third Generation of Progress, in press, 1986.Google Scholar
  29. Sibley, D.R., Nambi, P., Peters, J.R. and Lefkowitz, R.J. (1984). Phorbol diesters promote beta-adrenergic receptor phosphorylation and adenylate cyclase densitization in duck erythrocytes. Biochem. Biophys. Res. Comm. 121, 973–979.Google Scholar
  30. Stockmeier, C.A., Martino, A.. and Kellar, K.J. (1985). A strong influence of serotonin axons on beta-adrenergic receptors in rat brain. Science 230, 323–325.CrossRefGoogle Scholar
  31. Sulser, F., Janowsky, A.J., Okada, F., Manier, D.H. and Mobley, P.L. (1983). Regulation of recognition and action function of the norepinephrine receptor-coupled adenylate cyclase system in brain: Implications for the therapy of depression. Neuropharmacology 22, 425–431.CrossRefGoogle Scholar
  32. Sulser, F. (1985). The serotonin-noradrenaline link hypothesis of affective disorders. In Psychiatry, Vol. 2, (eds. P. Pichot, P. Berner, R. Wolf, and K. Thau ). Plenum Publishing Corp., New York, N.Y., 411–416.Google Scholar
  33. Wilson, D.B., Connolly, T.M., Bross, T.E., Majerus, P.W., Serman, W.R., Tyler, A.N., Rubin, L.J. and Brown, J.E. (1985). Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C: physiological effects in limulus photoreceptors. J. Biol. Chem. 260, 13496–13501.Google Scholar
  34. Yagaloff, K.A. and Hartig, P.R. (1985). 15I-Lysergic acid diethylamide binds to a novel sertonergic site on rat choroid plexus epithelial cells. J. Neurosci. 5, 3178–3183.Google Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • Elaine Sanders-Bush
  • Fridolin Sulser

There are no affiliations available

Personalised recommendations