Interactions between Vasoactive Intestinal Peptide and Norepinephrine, Ergot Alkaloids and Prostanoids in Mouse Cerebral Cortex

  • Pierre J. Magistretti
  • Michel Schorderet
  • Patrick R. Hof
  • Nicolas Schaad
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)


There is growing evidence that two, or possibly more, neurotransmitters can coexist within the same neuron (Hökfelt et al., 1980). In particular, the presence of a peptide and a biogenic amine has been demonstrated in the same terminals of central and peripheral neurons (Hökfelt et al., 1980). These findings have led to the hypothesis that neurotransmitters, coexisting within the same neurons, can interact at pre- or postsynaptic sites in a functionally coordinated manner. Interactions between neurotransmitters contained in distinct neuronal systems terminating within the same region of the central nervous system (CNS) can also be envisaged. We have examined this last possibility in the cerebral cortex, an area of the CNS where the two neurotransmitters vasoactive intestinal polypeptide (VIP) and norepinephrine (NE) are contained in separate neuronal systems and where they both stimulate the formation of cAMP (Morrison and Magistretti, 1983; Magistretti, 1986a,b).


Vasoactive Intestinal Peptide cAMP Level Vasoactive Intestinal Polypeptide Ergot Alkaloid Locus Coeruleus Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aston-Jones, G. and Bloom, F.E. (1981a). Activity of norepinephrinecontaining locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-walking cycle. J. Neurosci., 1, 876–886.Google Scholar
  2. Aston-Jones, G. and Bloom, F.E. (1981b). Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci., 1, 887–900.Google Scholar
  3. Dahlström, A. and Fuxe, K. (1964). Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62, 1–55.Google Scholar
  4. Daly, J. (1975). Role of cyclic nucleotides in the nervous system. In Handbook of Psvchooharmacoloay. (eds. L.L. Iversen, D.S. Iversen and S.H. Snyder). pp. 47–130. Plenum Press, New York.Google Scholar
  5. Duman, R.S., Karbon, E.W., Harrington,C. and Enna, S.J. (1986). An examination of the involvement of phospholipases Az and C in the a -adrenergic and y-aminobutyric acid receptor modulation of cyclic AMP accumulation in rat brain slices. J. Neurochem., 47, 800–810.CrossRefGoogle Scholar
  6. Ferron, A., Siggins, G.R. and Bloom, F.E. (1985). Vasoactive intestinal polypeptide acts synergistically with norepinephrine to depress spontaneous discharge rate in cerebral cortical neurons. Proc. Natl. Acad. Sci. USA, 82, 8810–8812.CrossRefGoogle Scholar
  7. Fuxe, K., Fredholm, B.B., Ogren, S.V., Agnati, L.F., Hökfelt, T. and Gustafsson, J.A. (1978). Ergots drugs and central monoaminergic mechanisms: a histochemical, biochemical and behavioral analysis. Fed. Proc., 37, 2181–2191.Google Scholar
  8. Garbarg, M., Barbin G., Feger, J. and Schwartz, J.C. (1974). Histaminergic pathway in rat brain evidenced by lesions of the medial forebrain bundle. Science, 186, 833–835.CrossRefGoogle Scholar
  9. Hökfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J.M. and Schultzberg, M. (1980). Peptidergic neurones. Nature, 284, 515–521.CrossRefGoogle Scholar
  10. Hollingsworth, E.B. and Daly, J.W. (1985). Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Effects of norepinephrine, histamine, carbamylcholine and 2-chloroadenosine. Biochim. Biophys. Acta, 847, 207–216.CrossRefGoogle Scholar
  11. Klein, D.C., Sugden, D. and Weller, J.L. (1983). Postsynaptic a-adrenergic receptors potentiate the ß-adrenergic stimulation of pineal serotonin Nacetyltransferase. Proc. Natl. Acad. Sci. USA, 80, 599–603.CrossRefGoogle Scholar
  12. Leblanc, G. and Ciaranello, R.D. (1984). α -Noradrenergic potentiation of neurotransmitter-stimulated cAMP production in rat striatal slices. Brain Res. 293, 57–65.CrossRefGoogle Scholar
  13. Lidov, H.G.M., Grzanna, R. and Molliver, M.E. (1980). The serotonin innervation of the cerebral cortex in the rat: An immunohistochemical analysis. Neuroscience, 5, 207–227.CrossRefGoogle Scholar
  14. Loew, D.M. and Müller-Schweinitzer, E. (1979). Alcaloïdes de l’ergot de seigle, récepteurs adrénergiques, sérotoninergiques et dopaminergiques. J. Pharmac., Paris, 10, 383–399.Google Scholar
  15. Loren, I., Emson, P.C., Fahrenkrug, J., Björklund, A., Alumets, J., Hakanson, R. and Sundler, F. (1979). Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience, 4, 1953–1976.CrossRefGoogle Scholar
  16. Magistretti, P.J. and Schorderet, M. (1984). VIP and noradrenaline act synergistically to increase cyclic AMP in cerebral cortex. Nature, 308, 280–282.CrossRefGoogle Scholar
  17. Magistretti, P.J., Hof, P. and Schorderet, M. (1984) The increase in cyclic-AMP levels elicited by vasoactive intestinal peptide (VIP) in mouse cerebral cortical slices is potentiated by ergot alkaloids. Neurochem. Int., 6, 751–753.CrossRefGoogle Scholar
  18. Magistretti, P.J. and Morrison, J.H. (1985). VIP neurons in the neocortex. TINS, 8, 7–8.Google Scholar
  19. Magistretti, P.J. and Schorderet, M. (1985). Norepinephrine and histamine potentiate the increases in cAMP elicited by Vasoactive Intestinal Polypeptide in mouse cerebral cortical slices: mediation by al-adrenergic and Ht-histaminergic receptors. J. Neuroscience, 5, 362–368.Google Scholar
  20. Magistretti, P.J. (1986a). VIP-containing neurons in the cerebral cortex: Cellular actions and interactions with the noradrenergic system. In Channels in Neural Membranes. (eds. J.M. Ritchie, C.L. Bolis and R.D. Keynes). pp. 323–331. Alan R. Liss, Inc.Google Scholar
  21. Magistretti, P.J. (1986b). Intercellular communication mediated by VIP in the cerebral cortex. Peptides, 7, 169–173.CrossRefGoogle Scholar
  22. Markstein, R. (1983). Dopamine receptor profile of co-dergocrine HygergineR and its components. Eur. J. Pharmac., 86, 145–155.CrossRefGoogle Scholar
  23. Markstein, R., Closse, A. and Frick, W. (1983). Interaction of ergot alkaloids and their combination (co-dergocrine) with α-adrenoceptors in the CNS. Eur. J. Pharmac., 93, 159–168.CrossRefGoogle Scholar
  24. Morrison, J.H., Molliver, M.E., Grzanna, R. and Coyle, J.T. (1981). The intra-cortical trajectory of the coeruleo-cortical projection in the rat: A tangentially organized cortical afferent. Neuroscience, 6, 139–158.CrossRefGoogle Scholar
  25. Morrison, J.H. and Magistretti, P.J. (1983). Monoamines and peptides in cerebral cortex. TINS, 6, 146–151.Google Scholar
  26. Morrison, J.H., Magistretti, P.J., Benoit, R. and Bloom, F.E. (1984). The distribution and morphological characteristics of the intracortical VIP-positive cell: an immunohistochemical analysis. Brain Res., 292, 269–282.CrossRefGoogle Scholar
  27. Peters, A. and Kimerer, L.M. (1981). Bipolar neurons in rat visual cortex: A combined Golgi-electron microscpe study. J. Neurocytol., 10, 921–946.CrossRefGoogle Scholar
  28. Quik, M., Iversen, L.L. and Bloom, S.R. (1978). Effect of vasoactive intestinal peptide (VIP) and other peptides on cAMP accumulation in rat brain. Biochem. Pharmacol., 27, 2209–2213.CrossRefGoogle Scholar
  29. Redgate, E.S., Deupree, J.D. and Axelrod, J. (1986). Interaction of neuropeptides and biogenic amines on cyclic adenosine monophosphate accumulation in hypothalamic nuclei. Brain Res., 365, 61–69.CrossRefGoogle Scholar
  30. Rogawski, M.A. and Aghajanian, G.K. (1980a). Modulation of lateral geniculate neurone excitability by noradrenaline microiontophoresis or locus coeruleus stimulation. Nature, 287, 731–734.CrossRefGoogle Scholar
  31. Rogawski, M.A. and Aghajanian, G.K. (1980b). Activation of lateral geniculate neurone by norepinephrine: Mediation by an alpha-adrenergic receptor. Brain Res., 182, 345–359.CrossRefGoogle Scholar
  32. Sattin, A., Rall, T.W. and Zanella, J. (1975). Regulation of cyclic 3’,5’-monophosphate levels in guinea-pig cerebral cortex by interaction of alphaadrenergic and adenosine receptor activity. J. Pharmacol. Exp. Ther., 192, 22–32.Google Scholar
  33. Waterhouse, B.D., Moises, H.C. and Woodward, D.J. (1981). Alpha-receptormediated facilitation of somatosensory cortical neuronal responses to excitatory synaptic inputs and iontophoretically applied acetylcholine. Neuropharmacology, 20, 907–920.CrossRefGoogle Scholar
  34. White, E.L. (1981). Thalamocortical synaptic relations. In The Organization of the Cerebral Cortex. (eds. F.O. Schmitt, F.G. Worden, G. Adelman and S.G. Dennis). pp 153–161. MIT Press, Cambridge.Google Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • Pierre J. Magistretti
  • Michel Schorderet
  • Patrick R. Hof
  • Nicolas Schaad

There are no affiliations available

Personalised recommendations