Advertisement

Long-term Receptor Regulation Induced by Denervation of Heterologous Afferent Fibers: Functional Significance

  • J. P. Tassin
  • D. Hervé
  • H. Simon
  • K. Taghzouti
  • M. Le Moal
  • J. Glowinski
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)

Abstract

It is a classical feature that the denervation of the neuromuscular junction induces a supersensitivity of the cholinergic post-synaptic receptors (Cannon & Rosenblueth, 1949). In the central nervous system, the development of this “denervation supersensitivity” is more complex. In fact, in some cases, even the total destruction of an homogeneous population of afferent presynaptic fibers may not produce an hypersensitivity of the corresponding post-synaptic receptors (Von Voigtlander et al., 1973; Tassin et al., 1982). This suggests that the affinity or the number of postsynaptic receptor sites is not only regulated by chemical signals from presynaptic fibers but also by those delivered by some other neuronal inputs to the target cells.

Keywords

Prefrontal Cortex Nucleus Accumbens Subcortical Structure Spontaneous Alternation Electrolytic Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beckstead, R.M. (1979) An autoradiography examination of cortico-cortical and subcortical projections of the medio-dorsal projection (prefrontal) cortex in the rat. J. Comp. Neurol., 18, 43–62.CrossRefGoogle Scholar
  2. Björklund, A. & Lindvall, 0. (1978) The mesotelencephalic dopamine neuron system: a review of its anatomy. In Limbic Systems (eds K.E. Livingston & O. Hornykiewicz) Plenum Press, New-York, pp.297–331.Google Scholar
  3. Bockaert, J., Prémont, J., Glowinski, J., Thierry, A.M. & Tassin, J.P.(1976) Topographical distribution of DA innervation and of DA receptors in the rat striatum. II. Distribution and characteristics of DA adenylate cyclase. Interaction of D-LSD with DA receptors. Brain Res., 107, 303–315.CrossRefGoogle Scholar
  4. Brown, J.R. & Arbuthnott, G.W.(1983) The electrophysiology of dopamine (D2) receptors: a study of the actions of DA on corticostriatal transmission. Neuroscience, 10, 349–355.CrossRefGoogle Scholar
  5. Brunello, N., Barbaccia, M.L., Chuang, D.M. & Costa, E. (1982) Down-regulation of 3-adrenergic receptors following repeated injections of desmethylimipramine: permissive role of serotonergic axons. Neuropharmacol., 21, 1145–1149.CrossRefGoogle Scholar
  6. Bunny, B.S. & Aghajanian, G.K. (1976) Dopamine and norepinephrine innervated cells in the rat prefrontal cortex. Pharmacological differentiation using microiontophoretic techniques. Life Sci., 19, 1783–1792.CrossRefGoogle Scholar
  7. Cannon, W.B. & Rosenblueth, A. (1949) The supersensitivity of denervated structures, McMillan, New York.Google Scholar
  8. Carter, C.J. & Pycock, C.J. (1980) Behavioural and biochemical effects of DA and NA depletion within the medial prefrontal cortex of the rat. Brain Res., 192, 163–176.CrossRefGoogle Scholar
  9. Costall, B., Fortune, D., Naylor, R.J., Marsden, C.D. & Pycock, C.J. (1975) Serotonergic involvement with neuroleptic catalepsy. Neuropharmacology, 14, 859–868.CrossRefGoogle Scholar
  10. Ferron, A., Thierry, A.M., Le Douarin, C. & Glowinski, J. (1984) Inhibitory influence of the mesocortical dopaminergic system on spontaneous activity or excitatory response induced from the thalamic medio-dorsal nucleus in the rat medial prefrontal cortex. Brain Res., 302, 257–265.CrossRefGoogle Scholar
  11. Fonnum, F., Storm-Mathisen, J. & Divac, I. (1981) Biochemical evidence for glutamate as neurotransmitter in cortico-striatal and cortico-thalamic fibres in rat brain, Neuroscience, 6, 863–873.CrossRefGoogle Scholar
  12. Freund, T.F., Powell, J.F. & Smith, A.D. (1984) Tyrosine hydroxylase-im unoreactive boutons in synaptic contact with identified striato-nigral neurons with particular reference to dendritic spines. Neuroscience, 13, 1189–1215.CrossRefGoogle Scholar
  13. Galey, D., Simon, H. & LeMoal, M. (1977) Behavioural effects of lesion in the A10 dopaminergic area of the rat. Brain Res., 124, 83–97.CrossRefGoogle Scholar
  14. Galey, D., Jaffard, R. & LeMoal, M. (1979) Alternation behaviour spatial discrimination and reversal after electrocoagulation of the ventral mesencephalic tegmentum in the rat. Behay. Neural. Biol., 26, 81–88.Google Scholar
  15. Giorguieff, M.F., Kernel, M.L. & Glawinski, J. (1977) Presynaptic effect of L-glutamic acid on the release of dopamine in rat striatal slices. Neuroscience Letters, 6, 73–77.CrossRefGoogle Scholar
  16. Glowinski, J., Tassin, J.P. & Thierry, A.M. (1984) The mesocortico-prefrontal DA neurons, TINS, 7, 11, 415–418.Google Scholar
  17. Hervé, D., Tassin, J.P., Studler, J.M., Dana, C., Kitabgi, P., Vincent, J.P., Glowinski, J. & Rostène, W. (1986) Dopaminergic control of I-labeled neurotensin binding site density in corticolimbic structures of the rat brain. Proc. Natl. Acad. Sci., 83, 6203–6207.CrossRefGoogle Scholar
  18. Kebabian, J.W., Petzold, G.L. & Greengard, P. (1982) Dopamine sensitive adenylate cyclase in caudate nucleus of rat brain and its similarity to the dopamine receptor. Proc. Nat. Acad. Sci. USA, 69, 2145–2149.CrossRefGoogle Scholar
  19. Kelley, A..E, Domesick, V.B. & Nauta, W.J.H. (1982) The amygdalostriatal projection in the rat: an anatanical study by anterograde and retrograde tracing methods. Neuroscience, 7, 615–630.CrossRefGoogle Scholar
  20. Krettek, J.E. & Price, J.L. (1978) Amygdaloïd projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J. Comp. Neural., 178, 225–280.CrossRefGoogle Scholar
  21. Krueger, B.K., Forn, J., Walters, J.R., Roth, R.H. & Greengard, P. (1976) Stimulation by dopamine of adenosine cyclic 3’-5’-monophosphate formation in rat caudate nucleus: effect of lesions of the nigro-neostriatal pathway. Mol. Pharmacol., 12, 639–648.Google Scholar
  22. Léíoal, M., Cardo, B. & Stinus, L. (1969) Influence of ventral mesencephalic lesions on various spontaneous and conditioned behaviours in the rat. Physiol. Behay., 60, 567–573.Google Scholar
  23. LeMoal, M., Stinus, L. & Galey, D. (1976) Radiofrequency lesion of the ventral mesencephalic tegmentum: neurological and behavioural considerations. Exp. Neurol., 50, 521–535.Google Scholar
  24. Nieoullon, A., Kerkerian, L. & Dusticier, N. (1982) Inhibitory effects of dopamine on high affinity glutamate uptake from rat striatum. Life Sciences, 30, 1165–1172.CrossRefGoogle Scholar
  25. Reibaud, M., Blanc, G., Studier, J.M., Glowinski, J. & Tassin, J.P. (1984) Non-DA prefronto-cortical efferents modulate D1 receptors in the nucleus accumbens. Brain Res., 305, 43–50.CrossRefGoogle Scholar
  26. Sakanaka, M., Shiosaka, S., Takatsuki, K. & Tokyama, M. (1983) Evidence for the existence of a substance P-containing pathway from the nucleus laterodorsalis tegmenti (castaldi) to the medial frontal cortex of the rat. Brain Res., 259, 123–126.CrossRefGoogle Scholar
  27. Simon, H. & LeMoal, M. (1984) In Catecholamines Neuropharmacology and central nervous system. Theoretical aspects (eds. E. Usdin, A. Carlsson, A. Dahlström & J. Engel) Alan R. Liss, Inc. New York, pp. 293–307.Google Scholar
  28. Stockmeier, C.A., Martino, A.M. & Keller K.J. (1985) A strong influence of serotonin axons on 3-adrenergic receptors in rat brain. Science 230, 323–325.CrossRefGoogle Scholar
  29. Studler, J.M., Simon, H., Cesselin, F., Legrand, J.C., Glowinski, J. & Tassin, J.P. (1981) Biochemical investigation on the localization of the cholecystokinin octapeptide in DA neurons originating from the ventral tegmental area of the rat. Neuropeptides, 2, 131–139.CrossRefGoogle Scholar
  30. Taghzouti, K., Simon, H., Hervé, D., Blanc, G., Studler J.M., Glowinski, J., LeMoal, M. & Tassin, J.P. (1987) Disturbances of motor and cognitive functions following lesions of the mesencephalic dopaminergic cell bodies are corrected by lesions of the dorsal noradrenergic ascending system (submitted).Google Scholar
  31. Taghzouti, K., Simon, H. & LeMoal, M. (1986) Disturbances in exploratory behaviour and functional recovery in the Y and radial mazes following DA depletion of the lateral septum, Behay. Neural Biol., 45, 48–56.CrossRefGoogle Scholar
  32. Tassin, J.P., Chéramy, A., Blanc, G., Thierry, A.M. & Glowinski, J. (1976) Topographical distribution of DA innervation and of DA receptors in the rat striatum. I. Microestimation of (3H)DA uptake and DA content in microdiscs. Brain Res., 107, 291–301.CrossRefGoogle Scholar
  33. Tassin, J.P., Bockaert, J., Blanc, G., Stinus, L., Thierry, A.M., Lavielle, S., Prémont, J. & Glowinski, J. (1978) Topographical distribution of DA innervation and DA receptors of the anterior cerebral cortex of the rat. Brain Res., 154, 241–251.CrossRefGoogle Scholar
  34. Tassin, J.P., Stinus, L., Simon, H., Blanc, G., Thierry, A.M., LeMoal, M., Cardo, B. & Glowinski, J. (1978b) Relationships between the locomotor hyperactivity induced by A10 lesions and the destruction of the fronto-cortical dopaminergic innervation in the rat. Brain Res. 141, 267–281.CrossRefGoogle Scholar
  35. Tassin, J.P., Simon, H., Hervé, D., Blanc, G., LeMoal, M., Glowinski, J. & Bockaert, J. (1982) Non-dopaminergic fibers may regulate dopamine-sensitive adenylate cyclase in the prefrontal cortex and the nucleus accumbens. Nature, 295, 696–698.CrossRefGoogle Scholar
  36. Tassin, J.P., Simon, H., Glowinski, J. & Bockaert, J. (1982) Modulations of the sensitivity of dopaminergic receptors in the prefrontal cortex and nucleus accumbens: relationships with locomotor activity. In Brain Peptides and Hormones (eds. R. Collu et al.) Raven Press, New York, pp.17–30.Google Scholar
  37. Tassin, J.P., Reibaud, M., Blanc, G., Studler, J.M. & Glowinski, J. (1984) Regulation of the sensitivity of D1 receptors in the prefrontal cortex and the nucleus accumbens by non dopaminergic pathways. In Catecholamines: Neuropharmacology and Central Nervous System. Theoretical Aspects (eds. Usdin, A., Carlsson, A., Dahlsträn & J., Engel) Alan R. Liss, Inc, New York, pp.103–111.Google Scholar
  38. Tassin, J.P., Studler, J.M., Hervé, D., Blanc, G. & Glowinski, J. (1986) Contribution of noradrenergic neurons to the regulation of dopaminergic (D1) receptor denervation supersensitivity in rat prefrontal cortex. J. Neurochem. 46, 243–248.CrossRefGoogle Scholar
  39. Von Voigtlander, P.F., Boukma, S.J. & Johnson, S. (1973) Dopaminergic denervation supersensitivity and dopamine stimulated adenylcyclase activity. Neuropharmacol., 12, 1081–1086.CrossRefGoogle Scholar
  40. Wang, R.Y., de Montigny, C., Gold, B.I., Roth, R.H. & Aghajanian, G.K. (1979) Denervation supersensitivity to serotonin in rat forebrain: single cell studies. Brain Res., 178, 479–497.CrossRefGoogle Scholar
  41. Waszczak, B.L. & Walters, J.R. (1983) DA modulation of the effects of GABA on substantia nigra pars reticulata neurons. Science, 220, 218–221.CrossRefGoogle Scholar
  42. Waterhouse, B.D., Moises, H.C., Yoh, H.H. & Woodword, D.J. (1982) NE enhancement of inhibitory synaptic mechanisms in cerebellum and cerebral cortex: mediation by 3-adrenergic receptors, J.P.E.T., 221, 495–506.Google Scholar
  43. Woodward, D.J., Moises, H.C., Waterhouse, B.D., Hoffer, B.J. & Freedman, R. (1979) Modulatory actions of norepinephrine in the central nervous system. Fed. Proc. 38, 2109–2116.Google Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • J. P. Tassin
  • D. Hervé
  • H. Simon
  • K. Taghzouti
  • M. Le Moal
  • J. Glowinski

There are no affiliations available

Personalised recommendations