Radioautographic Approaches to the Study of Receptor-Receptor Interactions in the Central Nervous System

  • William Rostene
  • Jacqueline Besson
  • Emmanuel Moyse
  • Monique Dussaillant
  • Micheline Vial
  • Patrick Kitabgi
  • Alain Beaudet
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)


Communication between nerve cells involves far more than the direct excitation and inhibition of neuronal firing by chemical transmitters. Messengers liberated by neurons or glial cells, along with blood-born hormones, modulate the response properties of nerve cells. Such regulation involves changes in intracellular messengers and also, in some cases, modulation of genomic activity and expression of gene products implicated in nerve cell function. Chemically mediated regulations usually involve intracellular mechanisms but may also depend to a large degree on the responsiveness of membrane receptors. In this chapter we illustrate how monoamines, neuropeptides, and steroid hormones may interact in the central nervous system (CNS) both directly, and indirectly through receptor-receptor modulation. These studies were made possible by the recent development of receptor binding assay methodologies, which have provided us with new interpretations for the interactive mechanisms underlying neuronal communication.


Vasoactive Intestine Peptide Adrenal Steroid Vasoactive Intestine Peptide Receptor Neurotensin Receptor Vasoactive Intestine Peptide Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnati, L.F., Celani, M., and Fuxe K. (1983a). Cholecystokinin peptides in vitro modulate the characteristics of the striatal H-N-propylnorapomorphine sites. Acta Physiol. Scand., 118, 79–81.Google Scholar
  2. Agnati, L.F., and Fuxe, K. (1983). Subcortical limbic H-Npropylnorapomorphine binding sites are markedly modulated by cholecystokinin-8 in vitro. Bioscience Reports 3, 1101–1105.CrossRefGoogle Scholar
  3. Agnati, L.F., Fuxe, K., Battistini, N., Giardino, L., Benfenati, F., Martire, M., and Ruggeri, M. (1985). Further evidence for the existence of interactions between receptors for dopamine and neu3rotensin. Dopamine reduces the affinity and increases the number of H-neurotensin binding sites in the subcortical limbic forebrain of the rat. Acta Physiol. Scand., 124, 125–128.Google Scholar
  4. Agnati, L.F., Fuxe, K., Benfena i F., and Battistini, N. (1983b). Neurotensin in vitro markedly reduces the affinity in subcortical limbic H-N-propylnorapomorphine binding sites. Acta Physiol. Scand., 119, 459–461.Google Scholar
  5. Agnati, L.F., Fuxe, K., Benfenati, F., Zini, I., and Hökfelt, T. (1982). On the functional role of coexistence of 5-HT and substance P in bulbospinal 5-HT Tj neurons. Substance P reduces affinity and increases density of H-5-HT binding sites. Acta Physiol. Scand., 117, 299–301.Google Scholar
  6. Besson, J., Sarrieau, A., Vial, M., Marie, J.C., Rosselin, G., and Rostène, W. (1986). Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Res., in press.Google Scholar
  7. Biegon, A., Fischette, C.T., Rainbow, T.C. and Mc Ewen, B.S. (1982) Serotonin receptor modulation by estrogen in discrete brain nuclei. Neuroendocrinology 35, 287–291CrossRefGoogle Scholar
  8. De Kloet, E.R., Sybesma, H., and Reul H.M.H.M. (1986). Selective control by corticosterone of serotonin receptor capacity in raphe-hippocampal system. Neuroendocrinology 42, 513–521.CrossRefGoogle Scholar
  9. De Kloet, E.R., Voorhuis, T.A.M., and Elands, J. (1985). Estradiol induces oxytocin binding sites in rat hypothalamic ventromedial nucleus. Eur. J. Pharmacol., 118, 185–186.CrossRefGoogle Scholar
  10. Fuxe, K., and Agnati, L.F. (1985). Receptor-receptor interactions in the central nervous system. A new integrative mechanism in synapses. Med. Res. Rev. 5, 441–482.CrossRefGoogle Scholar
  11. Fuxe, K., Agnati, L.F., Benfenati, F., Cimmino, M., Algeri, S. tokfelt, T., and Mutt, V. (1981). Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol. Scand., 113, 567–569.CrossRefGoogle Scholar
  12. Harrelson, A.L., Mc Ewen, B.S., and Rostène, W. (1983). Adrenalectomy modifies neurotransmitter-stimulated cyclic AMP accumulation in hippocampal slices. Abstr. Soc. Neurosc., 9, 26.13, p. 87.Google Scholar
  13. Hervé, D., Tassin, J.P., Studier, J.M., Dana, C., Kitabgi, P., Vincent, J.P, Glowinski, J., and Rosténe, W. (1986). Dopaminergic control of I -neurotensin binding site density in cortico-limbic structures of the rat brain. Proc. Natl. Acad. Sci. USA, 83, 6203–6207.Google Scholar
  14. Héry, M., Faudon, M., and Héry, F. (1984). Effect of VIP on serotonin release in the suprachiasmatic area of the rat: modulation by estradiol. Peptides 5, 313–318.CrossRefGoogle Scholar
  15. Hökfelt, T., Lundberg, J.M., Schützberg, M., Johansson, O., Ljungdahl, A., and Rehfeld, J. (1980). Coexistence of peptides and putative transmitters in neurons. In Neural Peptides and Neuronal Communication (eds. E. Costa and M. Trabucchi ), Raven Press, New York, pp. 1–23.Google Scholar
  16. Kimura, H., Mc Geer, P.L., and Peng, J.H. (1986). Choline-acetyltransferase-containing neurons in the rat brain. In Handbook of Chemical Neuroanatomy (eds. A. Björklund and T. Hökfelt), vol. 3, Elsevier, Amsterdam, pp. 51–67.Google Scholar
  17. Kitabgi, P., Checler, F., Mazella, J., and Vincent, J.P. (1986). Pharmacology and biochemistry of neurotensin receptors. Rev. Clin. Basic Pharmacol., in pressGoogle Scholar
  18. Luine, V.N., Rostène, W.H., Rhodes, J., and McEwen, B.S. (1984). Activation of choline acetyltransferase by vasoactive intestinal peptide (VIP). J. Neurochem. 42, 1131–1134.CrossRefGoogle Scholar
  19. Mc Ewen, B.S. (1982). Glucocorticoids and hippocampus: Receptors in search of a function. In Current Topics in Neuroendocrinology, (eds. D. Ganten and D.W. Pfaff ), Springer-Verlag, Berlin, pp. 1–22.Google Scholar
  20. Moyse, E., Miller, M.M., Kitabgi, P., Rostène, W., and Beaudet, I (1986). Effects of gonadal steroids on the binding of neurotensin in rat suprachiasmatic nucleus. Abstr. Soc. Neurosc., in press.Google Scholar
  21. Moyse, E., Rostène, W., Vial, M., Léonard, K., Mazella, J., Kitabgi, P., Vincent, J.P., and Beaudet, A. (1987). Regional distribution of neurotensin binding sites in rat brain: A film and microscopic radioautographic study using monoiodo I-Tyra neurotensin. Neuroscience, in press.Google Scholar
  22. Nobou, F., Besson, J., Rostène, W., and Rosselin, G. (1985). Ontogeny of vasoactive intestinal peptide and somatostatin in different structures of the rat brain: effects of hypo-and hypercorticism. Develop. Brain Res., 20, 296–301.CrossRefGoogle Scholar
  23. Palacios, J.M., and Kuhar, M.J. (1975). Neurotensin receptors are located on dopamine-containing neurones in rat midbrain. Nature, 294, 587–589.CrossRefGoogle Scholar
  24. Pfaff, D.W., and Keiner, M. (1973). Atlas of estradiol-containing cells in the central nervous system of the female rat. J. Comp. Neurol., 151, 121–158.CrossRefGoogle Scholar
  25. Quirion, R. (1983). Interactions between neurotensin and dopamine in the brain: an overview. Peptides, 4, 609–615.CrossRefGoogle Scholar
  26. Quirion, R., Chiueh, C.C., Everist, H.D., and Pert, A. (1985). Comparative localization of neurotensin receptors on nigrostriatal and mesolimbic dopaminergic terminals. Brain Res., 372, 385–389.CrossRefGoogle Scholar
  27. Quirion, R., Gaudreau, P., St Pierre, S., Rioux, F., and Pert, C.B. (1982). Autoradiographic distribution of H-neurotensin receptors in rat brain: visualization by tritium-sensitive film. Peptides, 3, 757–763.Google Scholar
  28. Rostène, W.H. (1984). Neurobiological and neuroendocrine functions of the vasoactive intestinal peptide (VIP). Prog. Neurobiology, 22, 103–129.CrossRefGoogle Scholar
  29. Rostène, W.H., Fischette, C.T., Dussaillant, M., Mc Ewen, B.S. (1985). Adrenal steroid modulation of vasoactive intestinal peptide effect on serotonin binding sites in the rat brain shown by in vitro quantitativ autoradiography. Neuroendocrinology, 40, 129–134.CrossRefGoogle Scholar
  30. Rostène, W.H., Fischette, C.T., Rainbow, T.C., and Mc Ewen, B.S. (1983a). Modulation by vasoactive intestinal peptide of serotonin receptors in the dorsal hippocampus of the rat brain: AA autoradiographic study. Neuroscience Lett. 37, 143–148.CrossRefGoogle Scholar
  31. Rostène, W.H., Fischette, C.T., and Mc Ewen, B.S. (1983b). Modulation by VIP of serotonin receptors in membranes from rat hippocampus. J. Neuroscience 3, 2414–2419.Google Scholar
  32. Rostène, W.H., Sarrieau, A., Moyse, E., Hervé, D., Kitabgi, P., Mc Ewen, B.S., Vial, M., Tassin, J.P., Vincent, J.P., and Beaudet, A. (1986). Imaging of neuropeptide-neurotransmitter interactions. In Progress Brain Research, (eds. E.R. De Kloet and D. De Wied), Elsevier, Amsterdam, in press.Google Scholar
  33. Rotsztejn, W.H., Besson, J., Briaud, B., Gagnant, L., Rosselin, G., and Kordon, C. (1980). Effect of steroids on vasoactive intestinal peptide in discrete brain regions and peripheral tissues. Neuroendocrinology, 31, 287–291.CrossRefGoogle Scholar
  34. Sadoul, J.L., Checler, F., Kitabgi, P., Rostène, W., Javoy-Agid, F., and Vincent, J.P. (1984). Loss of high affinity neurotensin receptors in substantia nigra from Parkinsonian subjects. Biochem. Biophys. Res. Commun., 125, 395–404.CrossRefGoogle Scholar
  35. Sarrieau, A., Javoy-Aqi, F., Kitabgi, P., Dussaillant, M., Vial, M., Vincent, J.P., Agid, Y., and Rostène, W.H. (1985). Characterization and autoradiographic distribution of neurotensin binding sites in the human brain. Brain Res., 348, 375–380.CrossRefGoogle Scholar
  36. Sarrieau, A., Rostène, W.H., Moguilewsky, M., Philibert, D., and Mc Ewen, B.S. (1986). New routine methodology to study steroid hormone binding sites in heterogeneous tissues. In Receptor Binding in Drug Research, (ed. R.A. O’Brien), vol. 5, Marcel Dekker, New York, pp. 261–282.Google Scholar
  37. Simasko, S.M., and Weiland, G.A. (1985). Effect of neurotensin, substance P and TRH on the regulation of dopamine receptors in rat brain. Eur. J. Pharmacol., 106, 653–656.CrossRefGoogle Scholar
  38. Uhl, G.R., and Kuhar, M.J (1984). Chronic neuroleptic treatment ernhances neurotensin receptor binding in human and rat substantia nigra. Nature, 309, 350–352.CrossRefGoogle Scholar
  39. Uhl, G.R., Whitehouse, P.J., Price, D.L., Tourtelotte, W.W., and Kuhar, M.J. (1984). Parkinson’s disease: depletion of substantia nigra neurotensin receptors. Brain Res., 308, 186–190.CrossRefGoogle Scholar
  40. Young, W.S., III, and Kuhar, M.J. ( 1983. Neurotensin receptor: localization by light microscopic autoradiography in rat brain. Brain Res., 206, 273–285.CrossRefGoogle Scholar
  41. Yuwiler, A. (1983). Light and agonists alter pineal N-acetyltransferase induction by vasoactive intestinal polypeptide. Science 220, 1082–1083.CrossRefGoogle Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • William Rostene
  • Jacqueline Besson
  • Emmanuel Moyse
  • Monique Dussaillant
  • Micheline Vial
  • Patrick Kitabgi
  • Alain Beaudet

There are no affiliations available

Personalised recommendations