Advertisement

Aspects on the Integrative Capabilities of the Central Nervous System: Evidence for ‘Volume Transmission’ and its Possible Relevance for Receptor-Receptor Interactions

  • L. F. Agnati
  • K. Fuxe
  • E. Merlo Pich
  • M. Zoli
  • I. Zini
  • F. Benfenati
  • A. Härfstrand
  • M. Goldstein
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)

Abstract

The hypothesis is introduced that the central nervous system (CNS) is endowed with the capability of handling information, not only based on the topological organization of its elements and the patterns of impulse flow along the neural networks (wiring transmission), but also based on the electrotonic currents and the spread of humoral signals in the extracellular fluid (volume transmission), which, in turn, man affect the computing characteristics of the neural networks themselves (Agnati et al. 1986b). Thus, in the CNS we can also recognize interactions, and therefore integrative aspects, at various hierarchical levels and at different degrees of miniaturization, and between the two types of information handlings. One example, at a high hierarchical level and a low degree of miniaturization, may be represented by the above mentioned interactions between the volume transmission and the wiring transmission at the network level, while another example, at a low hierarchical level and a high degree of miniaturization, may be represented by the receptor-receptor interactions, i.e., by the integration at membrane level of the inputs arriving through different transmission lines.

Keywords

Tyrosine Hydrosylase Transmission Line Nucleus Accumbens Ventral Tegmental Area Recognition Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati, L.F., Fuxe, K., Zini, I., Lenzi, P., Hökfelt, T. (1980). Aspects on receptor regulation and isoreceptor identification. Med. Biol. 58, 182–187.Google Scholar
  2. Agnati, L.F., Fuxe, K., Benfenati, F., Battistini, N. (1983). Neurotensin in vitro markedly reduces the affinity in subcortical limbic 3H-N-propylnorapomorphine binding sites. Acta Physiol. Scand., 119, 459–461.CrossRefGoogle Scholar
  3. Agnati, L.F., Fuxe, K. (1984a). Computer assisted morphometry and microdensitometry of transmitter identified neurons with special reference to the mesostriatal dopamine pathway. I. Methodological aspects. Acta Physiol. Scand., Suppl. 532, 5–32.Google Scholar
  4. Agnati, L.F., Fuxe, K., Benfenati, F., Battistini, N., Zini, I., Camurri, M., Hökfelt, T. (1984b). Postsynaptic effects of neuropeptide comodulators at central monoamine synapses. In: Catecholamines: Neuropharmacology and Central Nervous System. Theoretical Aspects. (E. Usdin, A. Carlsson, A. Dahlström, J. Engel, eds.). Alan R. Liss Inc., New York, 191–198.Google Scholar
  5. Agnati, L.F., Fuxe, K., (1985). Quantitative Neuroanatomy in Transmitter Research. McMillan Press, London.Google Scholar
  6. Agnati, L.F., Fuxe, K., Zoli, M., Merlo Pich, E., Benfenati, F., Zini, I., Goldstein, M. (1986a). Aspects on the information handling by the central nervous system: focus on cotransmission in the aged rat brain. In: Coexistence of Neuronal Messengers. A new Principle in Chemical Transmission. (T. Hökfelt, K. Fuxe, B. Pernow, eds.). Prog. Brain Res. 68, Elsevier, Amsterdam, pp. 291–301.Google Scholar
  7. Agnati, L.F., Fuxe, K., Zoli, M., Zini, I., Toffano, G., Ferraguti, F. (1986b). A correlation analysis of the regional distribution of central enkephalin and P-endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol. Scand. 128, 201–207.CrossRefGoogle Scholar
  8. Agnati, L.F., Fux, K., Zini, I., Härfstrand, A., Toffano, G., Goldstein, M. (1986c). Morphometrical and microdensitometrical studies on phenylethanolamine-N-methyltransferase and neuropeptide Y immunoreactive neurons in the rostral medulla oblongata of the adult and old rats. Neuroscience, submitted.Google Scholar
  9. Benfenati, F., Agnati, L.F., Fuxe, K., Comino, M., Battistini, N., Merlo Pich, E., Farabegoli, C., Zini, I. (1985). Quantitative autoradiography as a tool to study receptors in neural tissue. Studies on 3H-ouabain binding sites and correlation with synaptic protein phosphorylation in different brain areas. In: Quantitative Neuroanatomy in Transmitter Research (L.F. Agnati, K. Fuxe eds.), McMillan Press, London, 381–396.CrossRefGoogle Scholar
  10. Benfenati, F., Cimino, M., Agnati, L.F., Fuxe, K. (1986). Quantitative autoradiography of central neurotransmitter receptors: methodological and statistical aspects with special reference to computer-assisted image analysis. Acta Physiol. Scand., 128, 129–146.CrossRefGoogle Scholar
  11. Dumbrill-Ross, A., Seeman, P. (1984). Dopamine receptor elevation by cholecystokinin. Peptides, 5, 1207–1212.CrossRefGoogle Scholar
  12. Erzin-Waters, C., Seeman, P. (1977). Tolerance to haloperidol catalepsy. Eur. J. Pharmacol., 41, 321–326.CrossRefGoogle Scholar
  13. Fuxe, K., Agnati, L.F., Benfenati, F., Celani, M., Zoli, M., Mutt, V. (1983). Evidence for the existence of receptor-receptor interactions in the central nervous system. Studies on the regulation of monamine receptors by neuropeptides. J. Neural Transm., Suppl. 18, 165–179.Google Scholar
  14. Fuxe, K., Agnati, L.F., Andersson, K., Martire, M., Ogren, S-O., Giardino, L., Battistini, N., Grimaldi, R., Farabergoli, C., Härfstrand, A. and Toffano, G. (1984a). Receptor-receptor interactions in the central nervous system. Evidence for the existence of heterostatic synaptic mechanisms. In: Regulation of Transmitter Function: Basic and Clinical Aspects: Developments in Neuroscience Series (E.S. Vizi and K. Magyar, eds.) 17, Elsevier Science Publ., pp. 129–140.Google Scholar
  15. Fuxe, K., Agnati, L.F. (1985). Receptor-receptor interactions in the cental nervous system. A new integrative mechanism in synapses. Med. Res. Rev., 5, 441–482.CrossRefGoogle Scholar
  16. Fuxe, K., Meller, E., Goldstein, M., Benfenati, F., Agnati, L.F. (1986a). Analysis of 3H-spiperone binding sites in the rat striatum and frontoparietal cortex by means of quantitative receptor autoradiography after inactivation of dopamine receptors by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline in vivo: selective protection by sulpiride in the striatum. Neurosci. Lett., 64, 163–168.CrossRefGoogle Scholar
  17. Fuxe, K., Agnati, L.F., Härfstrand, A., Janson, A.M., Neumeyer, A., Andersson, K., Ruggeri, M., Zoli, M., Goldstein, M. (1986b). Morphofunctional studies on the neuropeptide Y adrenaline costoring terminal systems in the dorsal cardiovascular region of the medulla oblongata. Focus on receptor-receptor interactions in cotransmission. In: Coexistence of Neuronal Messengers. A new Principle in Chemical Transmission (T. Hökfelt, K. Fuxe, B. Pernow eds.). Prog. Brain Res. 68, Elsevier, Amsterdam, pp. 303–320.Google Scholar
  18. Hamblin, M.W., Creese, I. (1983). Behavioral and radioligand binding evidence for irreversible dopamine receptor blockade by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline. Life Sci., 32, 2247–2255.CrossRefGoogle Scholar
  19. Hökfelt, T., Skirboll, L., Rehfeld, J.F., Goldstein, M., Markey, K., Dann, O. (1980). A subpopulation of mesencephalic dopamine neurons projecting to limbic areas contains a cholecystokinin-like peptide: evidence from immunohistochemistry combined with retrograde tracing. Neuroscience, 5, 2093–2124.CrossRefGoogle Scholar
  20. Markey, L., Kondo, S., Shenkmann, L., Goldstein, M. (1980). Purification and characterization of tyrosine hydroxylase from a clonal chromocytoma cell line. Mol. Pharmacol., 17, 79–85.Google Scholar
  21. Meiler, E., Bohmaker, K., Goldstein, M., Friedhoff, A.J. (1985). Inactivation of D1 and D2 dopamine receptors by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline in vivo: selective protection by neuroleptics. J. Pharmacol. Exp. Ther., 233, 656–662.Google Scholar
  22. Paxinos, G., Watson, C. (1982). The rat brain in stereotaxic coordinates. Academic Press, New York.Google Scholar
  23. Rostene, W.H., Fischette, C.H., Mc Ewen, B.S. (1983). Modulation by vasoactive intestinal peptide (VIP) of serotonin 1 receptors in membranes from rat hippocampus, J. Neurosci., 3, 2414–2419.Google Scholar
  24. Ruggeri, M., Ungerstedt, U., Agnati, L.F., Mutt, V., Härfstrand, A. and Fuxe, K. (198 7). Effects of cholecystokinin peptides and neurotensin on dopamine release and metabolism in the rostral and caudal part of the nucleus accumbens using intra-cerebral dialysis in the anaesthetized rat. Neurochem. Int.. in press.Google Scholar
  25. Sternberger, L.A. (1979). Immunocytochemistry, 2nd ed., John Wiley, New York.Google Scholar
  26. Vanderhaeghen, J.-J., Lotstra, F., De Mey, J., Gilles, C. (1980). Immunohistochemical localization of cholecystokinin and gastrin-like peptides in the brain and hypophysis of the rat. Proc. Natl. Acad. Sci., USA, 77, 1190–1194.CrossRefGoogle Scholar
  27. Vizi, E.S. (1984). Non-Synaptic Transmission between Neurons: Modulation of Chemical Transmission, John Wiley, New York.Google Scholar
  28. Zoli, M., Fuxe, K., Agnati, L.F., Härfstrand, A., Terenius, L., Toni, R., Goldstein, M. (1986). Computer-assisted morphometry of transmitter-identified neurons: new openings for the understanding of peptide-monoamine interactions in the medio-basal hypothalamus. In: Neurohistochemistry: Modern Methods and Applications (P. Panula, Paivarainta, Soinila, eds.,), Alan R. Liss Inc., New York, pp. 137–172.Google Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • L. F. Agnati
  • K. Fuxe
  • E. Merlo Pich
  • M. Zoli
  • I. Zini
  • F. Benfenati
  • A. Härfstrand
  • M. Goldstein

There are no affiliations available

Personalised recommendations