Advertisement

Mechanisms of Receptor-coupled Signal Transduction

  • Richard A. Cerione
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)

Abstract

The mechanisms by which specific cell surface receptor proteins transmit signals to enzymes, transport proteins or other biological effectors has been the subject of extensive investigation. Among the most studied of these receptor-coupled signal transduction systems have been those involved in the adrenergic regulation of adenylate cyclase activity. Most of the primary components of the catecholamine-mediated stimulatory and inhibitory pathways of adenylate cyclase have now been purified. Both stimulation and inhibition of the enzyme activity is initiated by the binding of hormones to specific receptors; the β-adrenergic receptor being involved in stimulation while the α2-adrenergic receptor is responsible for triggering inhibition of the enzyme activity. Each of these receptors is known to be comprised of a single type of polypeptide with an apparent Mr ≅ 65,000 daltons (Benovic et al., 1984; Regan et al., 1986). Following their interaction with hormones, these receptors go on to interact with, and promote the activation of, distinct GTP binding proteins which are typically designated as Ns or Gs (the stimulatory GTP binding protein) and Ni or Gi (the innibitory GTP binding protein). Both Ns and Ni are heterotrimeric in structure.

Keywords

Insulin Receptor Adenylate Cyclase Adenylate Cyclase Activity GTPase Activity Phospholipid Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asano, T., Pedersen, S.E., Scott, C.W., and Ross, E.M. (1984). Biochemistry 23, 5460–5467.CrossRefGoogle Scholar
  2. 2.
    Benovic, J.L., Shorr, R.G.L., Caron, M.G., and Lefkowitz, R.J. (1984). Bicohemistry 23, 4510–4518.CrossRefGoogle Scholar
  3. 3.
    Bokoch, G.M., Katada, T., Northup, J.K., Ui, M., and Gilman, A.G. (1984). J. Biol. Chem. 259, 3560–3567.Google Scholar
  4. 4.
    Brandt, D.R., Asano, T., Pedersen, E.M., Ross, E. (1983). Biochemistry 22, 4357–4362.CrossRefGoogle Scholar
  5. 5.
    Cerione, R.A., Staniszewski, C., Benovic, J.L., Lefkowitz, R.J., Caron, M.G., Gierschik, P., Somers, R., Spiegel, A.M., Codina, J., and Birnbaumer, L. (1985). J. Biol. Chem. 260, 1483–1500.Google Scholar
  6. 6.
    Cerione, R.A., Staniszewski, C., Gierschik, P., Codina, J., Somers, R.L., Birnbaumer, L., Spiegel, A.M., Caron, M.G., and Lefkowitz, R.J. (1986a). J. Biol. Chem., 261, 9514–9520.Google Scholar
  7. 7.
    Cerione, R.A., Codina, J., Benovic, J.L., Lefkowitz, R.J., Birnbaumer, L., and Caron, M.G. (1984). Biochemistry 23, 4519–4525.CrossRefGoogle Scholar
  8. 8.
    Cerione, R.A., Regan, J.W., Nakata, H., Codina, J., Benovic, J.L., Gierschik, P., Somers, R.L., Spiegel, A.M., Birnbaumer, L., Lefkowitz, R.J., and Caron, M.G. (1986b). J. Biol. Chem., Vol, 3901–3909.Google Scholar
  9. 9.
    Cerione, R.A., Lakonishok, M., Somers, R.L., and Spiegel, A.M., (1986c). submitted.Google Scholar
  10. 10.
    Cerione, R.A., Codina, J., Kilpatrick, B.F., Staniszewski, C.F., Gierschik, P., Somers, R.L., Spiegel, A.M., Birnbaumer, L., Caron, M.G., Lefkowitz, R.J. (1985b). Biochemistry 24, 4499–4503.CrossRefGoogle Scholar
  11. 11.
    Codina, J., Hildebrandt, J.D., Sekura, R.D., Birnbaumer, M., Bryan, J., Manclark, C.R., Iyengar, R., and Birnbaumer, L. (1984). J. Biol. Chem. 259, 5871–5886.Google Scholar
  12. 12.
    Ferguson, K.M., Higashijima, T., Smigel, M.D., and Gilman, A.G. (1986). J. Biol. Chem. 261, 7393–7399.Google Scholar
  13. 13.
    Fung, B.-K. (1983). J. BioT Chem. 258, 10495–10502.Google Scholar
  14. 14.
    Gibbs, J.B., Sigel, I.S., Poe, M., and Scolnick, E.M. (1984). PNAS 81, 5704–5708.CrossRefGoogle Scholar
  15. 15.
    Hildebrandt, J.D., Codina, J., and Birnbaumer, L. (1984). J. Biol. Che. 259, 13178–13185.Google Scholar
  16. 16.
    Johnson, R.M., Connelly, P.A., Sisk, R.B., Pobiner, B.F., Hewlett, E.L., and Garrison, J.C. (1986). PNAS, 83, 2032–2036.CrossRefGoogle Scholar
  17. 17.
    Kamata, T., and Feramisco, J.R. (1984). Nature 310, 147–149.CrossRefGoogle Scholar
  18. 18.
    Katada, T., Bokoch, G.M., Smigel, M., Ui, M., and Gilman, A.G. (1984). J. Biol. Chem., 259; 3586–3595.Google Scholar
  19. 19.
    Krupinski, J., Lakonishok, M.78enovic, J.L., and Cerione, R.A. (1986). submitted.Google Scholar
  20. 20.
    Manning, D.R., and Gilman, A.G. (1983). J. Biol. Chem., 258, 7059–7063.Google Scholar
  21. 21.
    Northrup, J.K., Smigel, M.D., Sternweis, P.C., and Gilman, A.G. (1983). J. Biol. Chem., 258, 11369–11376.Google Scholar
  22. 22.
    Petruzzelli, L., Herrera, R., and Rosen, O.M. (1984). PNAS 81, 3327–3331.CrossRefGoogle Scholar
  23. 23.
    Pike, L.J., Eakes, A.T., and Krebs, E.G. (1986). J. Biol. Chem., 261, 3782–3789.Google Scholar
  24. 24.
    Regan, J.W., Nakata, H., DeMarinis, R.M., Caron, M.G., and Lefkowitz, R.J. (1986). J. Biol. Chem. (in press).Google Scholar
  25. 25.
    Sternweis, P C., and Robishaw, J.D. (1984). J. Biol. Chem. 259, 13806–13813.Google Scholar
  26. 26.
    Stryer, L., Hurley, J.B., and Fung, B.K.-K. (1981). Curr. Top. Membr. Transp. 15, 93–108.CrossRefGoogle Scholar
  27. 27.
    Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., and Ramanchandran, J. (1985). Nature 313, 756–761.CrossRefGoogle Scholar
  28. 28.
    Yu and Czech (1984). J. Biol. Chem., 259, 5277–5286.Google Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • Richard A. Cerione

There are no affiliations available

Personalised recommendations