Advertisement

Allosteric Sites and Conformational Transitions of the Acetylcholine Receptor: Models for Short-term Regulation of Receptor Response

  • J. P. Changeux
  • J. Giraudat
  • M. Dennis
  • M. Goeldner
  • C. Hirth
  • C. Mulle
  • F. Révah
  • A. Devillers-Thiéry
  • T. Heidmann
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)

Abstract

The word “receptor” is commonly used with two separate significations: for the site complementary to the structure of the chemical messenger and for the protein which carries the site. From a functional point of view, receptor-receptor interactions (Fuxe et al., 1981, 1983, 1986, Agnati et al., 1983a,b, 1984) may be considered as representing interactions between distinct sites for specific ligands without any preconception about the protein components involved. One may thus legitimately distinguish at the cell, or synaptic, level : 1) intramolecular allosteric interactions between topologically distinct sites mediated by a unique protein assembly via conformational transitions (see Monod et al., 1963, 1965, Changeux 1981, Changeux et al., 1976, 1983, 1984) and 2) indirect intermolecular coupling between distinct protein entities transmitted by close contact within the membrane, by electric fields and/or intracellular second messengers. However, even in these last instances at least one allosteric protein integrates the interaction between one primary messenger and the coupling signals produced by another. receptor (see Changeux 1986).

Keywords

Acetylcholine Receptor Nicotinic Acetylcholine Receptor Cholinergic Receptor Allosteric Transition Electric Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, P.R. (1981). Acetylcholine receptor kinetics. J. Membrane Biol., 58, 161–174.CrossRefGoogle Scholar
  2. Adams, P.R. and Galvan, M. (1986). Voltage-dependent currents of vertebrate neurons and their role in membrane excitability. Advances in Neurology, 44, 137–170.Google Scholar
  3. Agnati, L., Fuxe, K., Benfenati, F., Calza, L., Battistini, N. and Ogren, S. O. (1983a). Receptor-receptor interactions: possible new mechanisms for the reaction of some antidepressant drugs. In: Frontiers in Neuropsychiatrie research (E. Usdin, M. Goldstein, A.T. Friedhoff and Gergotas, A., eds), p.p 301–318, Mcmillan Press London.Google Scholar
  4. Agnati, L.F., Fuxe, K., Benfenati, F., Battistini, N., Härfstrand, A., Hökfelt, T., Tatemoto, K. and Mutt, V. (1983b). Neuropeptide Y in vitro selectively increases the number of a2-adrenergic binding sites in membranes of the medulla oblongata of the rat. Acta Physiol. Scand., 118, 293–295.Google Scholar
  5. Agnati, L.F., Fuxe, K., Benfenati, F., Battistini, N., Zini, I., Camurri, M. and Hökfelt, T. (1984). Postsynaptic effects of neuropeptide comodulators at central monoamine synapses. Neurology and Neurobiology, 8B, 191–198.Google Scholar
  6. Alburquerque, E.X., Deshpande, S.S., Aracava, Y., Alkondon, M. and Daly, J.W. (1986). A possible involvement of cyclic AMP in the expression of desensitization of the nicotinic acetylcholine receptor. FEBS Lett. 199, 113–120.CrossRefGoogle Scholar
  7. Arnone, A. (1972). X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature 231: 146–149.CrossRefGoogle Scholar
  8. Audhya, T., Schlesinger, D.H. and Goldstein, G. (1981). Complete amino acid sequences of bovine thymopoietins I, II, and II: closely homologous polypeptides. Biochemistry 20, 6195–6200.CrossRefGoogle Scholar
  9. Ballivet, M., Patrick, J., Lee, J. and Heinemann, S. (1982). Molecular cloning of cDNA coding for the gamma-Subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 79, 4466–4470.CrossRefGoogle Scholar
  10. Bon, F., Lebrun, E., Gomel, J., Van Rappenbusch, R., Cartaud, J., Popot, J. L. and Changeux, J. P. (1984). Image analysis of the heavy form of the acetylcholine receptor from Torpedo marmorata. J. Mol. Biol., 176, 205–237.Google Scholar
  11. Boulter J., Evans, K.L., Martin, G., Gardner, P.D., Connolly, J., Heinemann, S. and Patrick, J. (1986). Mouse muscle acetylcholine receptor molecular cloning of a, 8, y and b-subunit cDNA’s and expression in Xenopus Laevis oocytes. Abstr. Soc. for Neurosci. 12, 40. 2, 146.Google Scholar
  12. Boyd, N. D. and Cohen, J. B. (1980). Kinetics of binding of [3H] acetylcholine and [3H] carbamoylcholine to Torpedopostsynaptic membranes: slow conformational transitions of the cholinergie receptor. Biochemistry 19, 5344–5358.CrossRefGoogle Scholar
  13. Braestrup, C., Schmiechen, R., Neff, G., Nielsen, M., Petersen„ E.N. (1982). Interaction of convulsive ligands with benzodiazepine receptors. Science 216, 1241–1243.CrossRefGoogle Scholar
  14. Brisson, A. and Unwin, P.N.T (1985). Quaternary structure of the acetylcholine receptor. Nature 315, 474–477CrossRefGoogle Scholar
  15. Cartaud, J., Benedetti, L., Cohen, J. B., Meunier, J. C. and Changeux, J. P. (1973). Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett., 33, 109–113.CrossRefGoogle Scholar
  16. Cash, D., Aoshima, H., Pasquale, E. and Hess, G. (1985). Acetylcholine receptor-mediated ion fluxes in Electrophorus electricus and Torpedo californica membrane vesicles. Rev. Physiol. Biochem. Pharmacol., 102, 74–117.Google Scholar
  17. Changeux, J.P. (1969). Remarks on the symmetry and cooperative properties of biological membranes. In “Symmetry and function in biological systems at the macromolecular level”. A Engström and B. Strandberg edit. 235–256, Wiley, New-York.Google Scholar
  18. Changeux, J.P. (1981). The acetylcholine receptor: An “allosteric” membrane protein. Harvey Lectures, 75, 85–254.Google Scholar
  19. Changeux, J.P. (1986). Coexistence of neuronal messengers and molecular selection. Progr. Brain Res. 68, 373–403.CrossRefGoogle Scholar
  20. Changeux, J. P. and Thiéry, J.P. (1968). On the excitability and cooperativity of biological membranes. In “Regulatory Functions of Biological Membranes”. Ed. J. Jarnefelt, 116–138, Elsevier Amsterdam.Google Scholar
  21. Changeux, J.P. and Heidmann, T. (1987). Allosteric receptors and molecular models of learning. “New Insights into Synaptic Function”, Salk Institute G. Edelman, W.E. Gall and W.M. Cowan Wiley, New York (in press).Google Scholar
  22. Changeux, J.P, Podleski, T. and Wofsy, L. (1967a). Affinity labeling of the acetylcholine receptor. Proc. Natl. Acad. Sci. Wash. 58, 2063–2070.CrossRefGoogle Scholar
  23. Changeux, J.P., Thiéry, J.P., Tung, Y. and Kiettel, C. (1967b). On the cooperativity of biological membranes. Proc. Natl. Acad. Sci. USA 57, 335–341.CrossRefGoogle Scholar
  24. Changeux, J. P., Benedetti, L., Bourgeois, J. P., Brisson, A., Cartaud, J., Devaux, P. F., Grünhagen, H. H., Moreau, M., Popot, J. L., Sobel, A. and Weber, M. (1976). Some structural properties of the cholinergic protein in its membrane environment relevant to its function as a pharmacological receptor. Cold Spring Harb. Symp. Quant. Biol. 40, 203–210Google Scholar
  25. Changeux, J. P., Bon, F., Cartaud, J., Devillers-Thiery, A., Giraudat, J., Heidmann, T., Holton, B., Nghiem, H. O., Popot, J. L, Van Rapenbusch, R. and Tzartos, S. (1983). Allosteric properties of the acetylcholine receptor protein from Torpedo marmorata. Cold Spring Harbor Symp. Quant. Biol. 48, 35–52Google Scholar
  26. Changeux, J.P., Devillers-Thiéry, A. and Chemouilli, P. (1984). Acetylcholine receptor: an allosteric protein. Science 225, 1335–1345.CrossRefGoogle Scholar
  27. Changeux, J.P., Pinset, C. and Ribera, A.B. (1986a). Single channel analysis of the effects of low concentrations of chlorpromazine and phencyclidine on the acetylcholine receptor in C2 mouse myotubes. J. Physiol. (London) 378, 495–513.Google Scholar
  28. Changeux, J.P., Klarsfeld, A. and Heidmann, T. (1986b). The acetylcholine receptor and molecular models for short and long term learning. Dahlem Konferenzen. In “The cellular and molecular bases of learning”. J.P. Changeux and M. Konishi, ed. Springer-Verlag, Berlin (in press).Google Scholar
  29. Claudio, T., Ballivet, M., Patrick, J. and Heinemann, S. (1983). Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma-subunit. Proc. Natl. Acad. Sci., USA 80, 1111–1115.CrossRefGoogle Scholar
  30. Cohen, J.B. and Boyd, N.D. (1979). Conformational transitions of the membrane bound cholinergic receptor. In “Catalysis in Chemistry and Biochemistry”, B. Pulman and 0. Ginsburg, Eds (D. Reidel, Publ.).Google Scholar
  31. Cohen, J.B. (1978). Ligand binding properties of membrane-bound cholinergic receptor of Torpedo marmorata. In “Membrane Function”. Solomon, A. K., Karnovsky, M., ed. Harvard Univ. Press. (Cambridge), 99–127.Google Scholar
  32. Cohen, J. B., Weber, M. and Changeux, J.P. (1974). Effects of local anesthetics and calcium on the interaction of cholinergic ligands with the nicotinic receptor protein from Torpedo marmorata. Mol. Pharmacol., 10, 904–932.Google Scholar
  33. Criado, M., Hochschwender, S., Sarin, V., Fox, J. L. and Lindstrom, J. (1985). Evidence for unpredicted transmembrane domains in acetylcholine receptor subunits. Proc. Natl. Acad. Sci., USA 82, 2004–2008.CrossRefGoogle Scholar
  34. Criado, M., Sarin, V., Fox, J.L. and Lindstrom, J. (1986). Evidence that the acetylcholine binding site is not formed by the sequence a 127–143 of the acetylcholine receptor. Biochemistry 25, 2839–2846.CrossRefGoogle Scholar
  35. Dennis, M., Giraudat, J., Kotzyba-Hibert, F., Goeldner, M., Hirth, C., Chang, J.Y. and Changeux, J.P. (1986). A photo-affinity ligand of the acetylcholine binding site predominantly labels the region 179–207 of the alpha subunit on native acetylcholine receptor from Torpedo marmorata. FEBS Lett., 207, 243–247.CrossRefGoogle Scholar
  36. Devillers-Thiéry, A., Giraudat, J., Bentaboulet, M. and Changeux, J.P. (1983). Complete mRNA coding sequence of the acetylcholine binding alpha subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci., USA 80, 2067–2071.CrossRefGoogle Scholar
  37. Dixon, R.A.F., Kobilka, B.K., Strader, D.J., Benovic, J.L., Dohlman, H.G., Frielle, T., Bolanowski, M.A., Bennett, C.D., Rands, E., Diehl, R.E., Mumford, R.A., Slater, E.E., Sigal, I.S., Caron, M.G., Lefkowitz, R.J. and Strader, C.D. (1986). Cloning of the gene and cDNA for mammalian ß-adrenergic receptor and homology with rhodopsin. Nature 321, 75–79.CrossRefGoogle Scholar
  38. Dunn, S. M. J., Blanchard, S. G. and Raftery, M.A. (1980). Kinetics of carbamylcholine binding to membrane-bound acetylcholine receptor monitored by fluorescence changes of a covalently-bound probe. Biochemistry 19Google Scholar
  39. Eldefrawi, A. T., Eldefrawi, M. E., Albuquerque, E. X., Oliveira, A.C.,. Mansour, N., Adler, M., Daly, J. W., Brown, G. B., Burgermeister, W. and Witkop, B. (1977). Perhydrohistrionicotoxin: a potential ligand for the ion conductance modulator of the acetylcholine receptor. Proc. Natl. Acad.Sci., USA 74, 2172–2176.Google Scholar
  40. Feltz, A. and Trautmann, A. (1980). Interaction between nerve-released acetylcholine and bath applied agonists at the frog end plate. J. Physiol., (London) 299, 533–552.Google Scholar
  41. Finer-Moore, J. and Stroud, R.M. (1984). Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci., USA 81, 155–159.CrossRefGoogle Scholar
  42. Fischer, J.B and Olsen, R.W. (1986). Biochemical aspects of GABA/Benzodiazepine receptor function. Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional properties, p.p 241–259, Alan R. Liss, Inc.Google Scholar
  43. Furois-Corbin, S. and Pullman, A. (1986). Theoretical studies of the packing of a-helices of poly (L-alanine) into transmembrane bundles. Possible significance for ion transfer. Biochim. Biophys. Acta. 860, 165–177.Google Scholar
  44. Fuxe, K., Agnati, L.F, Benfenati, F., Cimmino, M., Algeri, S., Hökfelt, T, and Mutt V. (1981). Modulation by cholecystokinins of 3 H-spiroperidol binding in rat striatum: evidence for increased affinity and reduction in the number of binding sites. Acta Physiol. Scand. 113, 567–569.Google Scholar
  45. Fuxe, K., Aganti, L., Härfstrand, A., Janson, A., Anderson, K., Ruggeri, M., Zoli, M. and Goldstein, M. (1986). Morphofunctional studies on the neuropeptide Y/adrenaline costoring nerve terminal systems in the dorsal cardiovascular region of the medulla oblongata. Focus on receptor-receptor interactions in co-transmission. Progr. Brain Res. 68, 303–320.CrossRefGoogle Scholar
  46. Fuxe, K., Agnati, L., Benfenati, F., Celani, M., Zini, I., Zoli, M. and Mutt., V. (1983). Evidence for the existence of receptor-receptor interaction in the central nervous system. Studies on the regulation of monoamine receptors by neuroleptics. J. Neuronal Trans. 18, 165–179Google Scholar
  47. Giraudat, J., Dennis, M., Heidmann, T., Chang, J.Y. and Changeux, J.P. (1986). Structure of the high affinity binding site for noncompetitive blockers of the acetylcholine receptor: Serine-262 of the b subunit is labeled by 3H chlorpromazine. Proc. Natl. Acad. Sci., U.S.A. 83, 2719–2723.CrossRefGoogle Scholar
  48. Giraudat, J., Dennis, M., Heidmann, T., Haumont, P.T, Lederer, F. and Changeux, J.P. (1987). Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: 3H chlorpromazine labels homologous residues in the beta and delta chains. (submitted).Google Scholar
  49. Giraudat, J., Devillers-Thiéry, A., Auffray, C., Rougeon, F. and Changeux, J.P. (1982). Identification of a cDNA clone coding for the acetylcholine binding subunit of Torpedo marmorata acetylcholine receptor. EMBO J. 1, 713–717.Google Scholar
  50. Goeldner, M.P. and Hirth, C.G. (1980). Specific photoaffinity labeling induced by energy transfer: application to irreversible inhibition of acetylcholinesterase. Proc. Natl. Acad. Sci. USA 77, 6439–6442.CrossRefGoogle Scholar
  51. Goldstein, G. (1974). Isolation of bovine thymin: a polypeptide hormone of the thymus. Nature 247, 11–14.CrossRefGoogle Scholar
  52. Grünhagen, H. H. and Changeux, J.P. (1976). Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. Quinacrine: a fluorescent probe for the conformational transitions of the cholinergic receptor protein in its membrane bound state. J. Mol. Biol., 106, 497–516.CrossRefGoogle Scholar
  53. Grünhagen, H.H., Iwatsubo, M. and Changeux, J.P. (1977). Fast kinetic studies on the interaction of cholinergic agonists with the membrane-bound acetylcholine receptor from Torpedo marmorata as revealed by quinacrine fluorescence. Eur. J. Biochem. 80, 225–242.CrossRefGoogle Scholar
  54. Guidotti, A., Toffano, G. and Costa, E. (1978). An endogenous protein modulates the affinity of GABA and benzodiazepine receptors in rat brain. Nature 275: 553–555.CrossRefGoogle Scholar
  55. Guy, H.R. (1984). Structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. Biophys. J., 45, 249–261.CrossRefGoogle Scholar
  56. Hamill, O.P., Marty, A., Neher, E., Sakmann, B. and Sigworth, F.J. (1981). Improved patch clamp techniques for high resolution current recording from cells and cell-free patches. Pfugers Archiv. 391, 85–100.CrossRefGoogle Scholar
  57. Haring, R., Kloog, Y. and Sokolovsky, M. (1984). Localization of phencyclidine binding sites on a and B subunits of the nicotinic acetylcholine receptor from Torpedo ocellata electric organ using azido phencyclidine. J. Neuroscience 4, 627–637.Google Scholar
  58. Hazelbauer, G. and Changeux, J.P. (1974). Reconstitution of a chemically excitable membrane. Proc. Natl. Acad. Sci., USA 71, 1479–1483.CrossRefGoogle Scholar
  59. Hebb, D.O. (1949). The organization of behavior: a neuro-psychological theory. Wiley, New York.Google Scholar
  60. Heidmann, T. and Changeux, J.P. (1979). Fast kinetics studies on the interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata. Eur. J. Biochem., 94, 281–296.CrossRefGoogle Scholar
  61. Heidmann, T. and Changeux, J. P. (1980). Interaction of a fluorescent agonist with the membrane-bound acetylcholine receptor from Torpedo marmorata in the millisecond time range: resolution of an “intermediate” conformational transition and evidence for positive cooperative effects. Biochem. Biophys. Res. Comm., 97, 889–896.Google Scholar
  62. Heidmann, T. and Changeux, J.P. (1982). Un modèle moléculaire de régulation d’efficacité d’un synapse chimique au niveau postsynaptique. C. R. Acad. Sci., 295, 665–670.Google Scholar
  63. Heidmann, T. and Changeux, J. P. (1984). Time-resolved photolabeling by the noncompetitive blocker chlorpromazine of the acetylcholine receptor in its transiently open and closes ion channel conformations. Proc. Natl. Acad. Sci., USA 81, 1897–1901.CrossRefGoogle Scholar
  64. Heidmann, T. and Changeux, J.P. (1986). Characterization of the transient agonist-triggered state of the acetylcholine receptor rapidly labeled by the non-competitive blocker [3H] chlorpromazine: additional evidence for the open channel conformation. Biochemistry 25, 6109–6113.CrossRefGoogle Scholar
  65. Heidmann, T., Sobel, A. and Changeux, J.P. (1978). Recovery of allosteric interactions between a fluorescent cholinergic agonist and local anesthetics after removal of the detergent from cholate-solubilized membrane fragments rich in acetylcholine receptor. FEBS. Lett. 94, 397–404.Google Scholar
  66. Heidmann, T., Bernhardt, J., Neumann, E. and Changeux, J.P. (1983a). Rapid kinetics of agonist binding and permeability response analysed in parallel on acetylcholine receptor-rich membranes from Torpedo marmorata. Biochemistry 22, 5452–5459.CrossRefGoogle Scholar
  67. Heidmann, T., Oswald, R.E. and Changeux, J.P. (1983b). Multiple sites of action for non competitive blockers on acetylcholine receptor-rich membrane fragments from Torpedo marmorata. Biochemistry 22, 3112–3127.CrossRefGoogle Scholar
  68. Hucho, F.L, Oberthür, W. and Lottspeich, F. (1986). The ion channel of the nicotinic acetylcholine receptor is formed by the homologous helices M II of the receptor subunits. FEBS Lett. 205, 137–142.CrossRefGoogle Scholar
  69. Hucho, F. (1986). The nicotinic acetyclholine receptor and its ion channel. Eur. J. Biochem., 158, 211–226.CrossRefGoogle Scholar
  70. Huganir, R.L., Delcour, A.H., Greengard, P. and Hess, G.P. (1986). Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321, 744–776.CrossRefGoogle Scholar
  71. Hunkeler, W., Möhler, H., Pieri, L., Polc, P., Bonetti, E.P., Cumin, R., Schaffner, R. and Haefely, W. (1981). Selective antagonists of benzodiazepines. Nature 290, 514–516.CrossRefGoogle Scholar
  72. Jackson, M.B. (1984). Spontaneous openings of the acetylcholine receptor channel. Proc. Natl. Acad. Sci. USA, 81, 3901–3904.CrossRefGoogle Scholar
  73. Kaldany, R.R.J. and Karlin, A. (1983). Reaction of quinacrine mustard with the acetylcholine receptor from Torpedo californica: Functional consequences and sites of labeling. J. Biol. Chem., 258, 6232–6242.Google Scholar
  74. Kao, P., Dwork, A., Kaldany, R., Silver, M., Wideman, J., Stein, S., and Karlin A. (1984). Identification of the a-subunit half-cystine specifically labeled by an affinity reagent for the acetylcholine receptor binding site. J. Biol. Chem., 259, 11662–11665.Google Scholar
  75. Karlin, A. (1980). Molecular properties of nicotinic acetylcholine receptors. In “Cell Surface reviews” (Poste G., Nicolson, G. L., Cotman, C. W., Eds) 6, 191–260. New YorkGoogle Scholar
  76. Karlin, A. (1983). Anatomy of a receptor. Neuroscience Comment., 1, 111–123.Google Scholar
  77. Karlin, A. (1969). Chemical modification of the active site of the acetylcholine receptor. J. Gen. Physiol., 54, 245–264.CrossRefGoogle Scholar
  78. Karpen, J. W., Aoshima, H., Abood, L. G. and Hess G.P. (1982). Cocaine and phencyclidine inhibition of the acetylcholine receptor: Analysis of the mechanisms of action based on measurements of ion flux in the millisecond-to-minute time region. Proc. Natl. Acad. Sci., USA 79, 2509–2513.CrossRefGoogle Scholar
  79. Kasai, M. and Changeux, J.P. (1971). In vitro excitation of purified membrane fragments by cholinergic agonists. I. Pharmacological properties of the excitable membrane fragments. II. The permeability change caused by cholinergic agonists. III. Comparison of the dose response curves to decamethonium with the corresponding binding curves of decamethonium to the cholinergic receptor. J. Memb. Biology., 6, 1–80.Google Scholar
  80. Katz, B. and Miledi, R. (1977). Transmitter leakage from motor nerve endings. Proc. R. Soc. Lond. B., 196, 59–72.CrossRefGoogle Scholar
  81. Katz, B. and Thesleff, S. (1957). A study of the “desensitization” produced by acetylcholine at the motor end-plate. J. Physiol., (London) 138, 63–80.Google Scholar
  82. Kistler, J. and Stroud, R.M. (1981). Crystalline arrays of membrane-bound acetylcholine receptor. Proc. Natl. Acad. Sci., USA 78, 3678–3682.CrossRefGoogle Scholar
  83. Klarsfeld, A., Devillers-Thiéry, A., Giraudat, J. and Changeux, J.P. (1984). A single gene codes for the nicotinic acetylcholine receptor alpha-subunit in Torpedo marmorata: Structural and developmental implications. EMBO J., 3, 35–41.Google Scholar
  84. Kloog, Y., Flynn, D., Hoffman, A. R. and Axelrod, J. (1980). Enzymatic carboxymethylation of the acetylcholine receptor. Biochem. Biophys. Res. Comm., 97, 1426–1480.Google Scholar
  85. Krebs, G. and Beavo, J. (1979). Phosphorylation, dephosphorylation of enzymes. Annu. Rev. Biochem. 48, 923.CrossRefGoogle Scholar
  86. Krodel, E.K., Beckman, R.A. and Cohen, J.B. (1979). Identification of a local anesthetic binding site in nicotinic post-synaptic membranes isolated from Torpedo marmorata electric tissue. Mol. Pharmacol., 15, 294–312.Google Scholar
  87. Kubo, T., Noda, M., Takai, T., Tanabe, T., Kayano, T., Shimizu, S., Tanaka, K., Takahashi, H., Hirose, T., Inayama, S., Kikuno, R., Miyata, T. and Numa, S. (1985). Primary structure of delta subunit precursor of calf muscle acetylcholine receptor deduced from cDNA sequence. Eur. J. Biochem., 149, 5–13.CrossRefGoogle Scholar
  88. Kubo, T., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mishina, M., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. and Numa, S. (1986). Cloning sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411–416.CrossRefGoogle Scholar
  89. Kumar, N.M. and Gilula N.B. (1986). Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J. Cell Biol. 103, 767–776.CrossRefGoogle Scholar
  90. Lagenbuch-Cachat, J., Bon, C., Goeldner, M., Hirth, C. and Changeux, J.P. (1987). Photoaffinity labelling by aryldiazonium derivatives of Torpedo marmorata acetylcholine receptor. Submitted.Google Scholar
  91. Lindstrom, J. (1986). Probing nicotinic acetylcholine receptors with monoclonal antibodies. Trends in Neurosci. 9, 401.MathSciNetCrossRefGoogle Scholar
  92. Lindstrom, J., Merlie, J. P., Yogeeswaran, G. (1979). Biochemical properties of acetylcholine receptor subunits from Torpedo californica. Biochemistry 18, 4465–4470.CrossRefGoogle Scholar
  93. McCarthy, M.P., Earnest, J.P., Young, E.F., Choe, S. and Stroud, R.M. (1986). The molecular neurobiology of the acetylcholine receptor. Ann. Rev. Neurosci., 383–413.Google Scholar
  94. McCormick, D.J. and Atassi, Z. (1984). Localization and synthesis of the acetylcholine-binding site in the alpha-chain of the Torpedo californica acetylcholine receptor. Biochem. J., 224, 995–1000.Google Scholar
  95. Magazanik, L.G., and F. Vyskocil (1970). Dependence of acetylcholine desensitization on the membrane potential of frog muscle fibre and on the ionic changes in the medium. J. Physiol., (Lond.) 210, 507–518.Google Scholar
  96. Magazanik, L.G. and Vyskocil (1975). The effect of temperature on desensitization kinetics at the post-synaptic membrane of the frog muscle fibre. J. Physiol., (London), 249, 285–300.Google Scholar
  97. Magleby, K.L. and Pallotta, B.S. (1981). A study of desensitization of acetylcholine receptors using nerve-released transmitter in the frog. J. Physiol., (London) 316, 225–250.Google Scholar
  98. Maleque, M. A., Souccar, C., Cohen, J. B. and Albuquerque, E.X. (1982). Meproadifen reaction with the ionic channel of the acetylcholine receptor: potentiation of agonist-induced desensitization at the frog neuromuscular junction. Mol. Pharmacol., 22, 636–647.Google Scholar
  99. Mazet, J.L., Schindler, H. and Changeux, J.P. (1987). Aggregation and coperativity induced by long range lipid effects on the acetylcholine receptor protein reconstituted in planar lipid bilayers. In preparation.Google Scholar
  100. Merlie, J. P. (1984). Biogenesis of the acetylcholine receptor, a multisubunit integral membrane protein. Cell 36, 573–575.CrossRefGoogle Scholar
  101. Middleton, P., Jaramillo, F. and Schuetze, M. (1986). Forskolin increases the rate of acetylcholine receptor desensitization at rat soleus endplates. Proc. Natl. Acad. Sci. U.S.A, 83, 4967–4971.CrossRefGoogle Scholar
  102. Miledi, R. (1980). Intracellular calcium and desensitization of acetylcholine receptors. Proc. R. Soc., London (Biol.) 209, 447–452.CrossRefGoogle Scholar
  103. Mishina, M., Kurosaki, T., Tobimatsu, T., Morimoto, Y., Noda, M., Yamamoto, T., Terao, M., Lindstrom, J., Takahashi, T., Kuno, M. and Numa, S. (1984). Expression of functional acetylcholine receptor from cloned cDNAs. Nature 307, 604–608.CrossRefGoogle Scholar
  104. Mishina, M., Tobimatsu, T., Imoto, K., Tanaka, K., Fujita, Y., Fukuda, K., Kurasaki, M., Takahashi, H., Morimoto, Y., Hirose, T., Inayama, S., Takahashi, T., Kuno, M. and Numa, S. (1985). Location of functional regions of acetylcholine receptor alpha-subunit by site-directed mutagenesis. Nature 313, 364–368.CrossRefGoogle Scholar
  105. Mishina, M., Takai, T., Imoto, K., Noda, M., Takahashi, T., Numa, S., Methfessel, C. and Sakmann, B. (1986). Molecular distinction between fetal and adult forms of muscle acetylcholine receptor. Nature 321, 406.CrossRefGoogle Scholar
  106. Monod, J., J.P. Changeux, and F. Jacob (1963). Allosteric proteins and cellular control systems. J. Mol. biol., 6, 306–328.Google Scholar
  107. Monod, J., Wyman, J. and Changeux, J. P. (1965). On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118.CrossRefGoogle Scholar
  108. Montal, M., Anholt, R. and Labarca, P. (1986). The reconstituted receptor. In “Ion channel reconstitution”. C. Miller, ed., Plenum, 157–204.Google Scholar
  109. Muhn, P. and Hucho, F. (1983). Covalent labeling of the acetylcholine receptor from Torpedo electric tissue with the channel blocker [3H] triphenylmethylphophonium by ultraviolet irradiation. Biochemistry 22, 421–425.CrossRefGoogle Scholar
  110. Mulac-Jericevic, B. and Atassi, M.Z. (1986). Segment a-182–198 of Torpedo californica acetylcholine receptor contains a second toxin-binding region and binds anti-receptor antibodies. FEBS Lett. 199, 68–74.CrossRefGoogle Scholar
  111. Neher, E. and Sakmann, B. (1976). Single channel currents recorded from membrane of denervated frog muscle fibers. Nature 260, 799–802.CrossRefGoogle Scholar
  112. Neher, E. and Steinbach, J.H. (1978). Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J. Physiol., (London) 277, 153–176.Google Scholar
  113. Nestler, E. and Greengard, P. (1984). Protein phosphorylation in the nervous system. Wiley New York.Google Scholar
  114. Neubig, R. R. and Cohen, J. B. (1980). Permeability control by cholinergie receptors in Torpedo post synasptic membranes: Agonist dose response relations measured at second and millisecond times. Biochemistry 19, 2770–2779.CrossRefGoogle Scholar
  115. Neubig, R.R., Boyd, N.D. and Cohen J.B. (1982). Conformations of Torpedo acetylcholine receptor associated with ion transport and desensitization. Biochemistry 21, 3460–3467.CrossRefGoogle Scholar
  116. Neumann, D., Barchan, D., Safran, A., Gershoni, J.M. and Fuchs, S. (1986). Mapping of the a-bungarotoxin binding site within the a-subunit of the acetylcholine receptor. Proc. Natl. Acad. Sci. USA 83, 3008–3011.CrossRefGoogle Scholar
  117. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Furutani, Y., Hirose, T., Asai, M., Inayama, S., Miyata, T. and Numa, S. (1982). Primary structure of alpha-subunit precursor of Torpedo californica acetylcholine receptor deduced from cDNA sequence. Nature 299, 793–797.CrossRefGoogle Scholar
  118. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Hirose, T., Asai, M., Takashima, H., Inayama, S., Miyata, T. and Numa, S. (1983a). Primary structures of beta and delta-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature 301, 251–255CrossRefGoogle Scholar
  119. Noda, M., Takahashi, H., Tanabe, T., Toyosato, M., Kikyotani, S., Furutani, Y., Hirose, T., Takashima, H., Inayama, S., Miyata, T. and Numa, S. (1983b). Structural homology of Torpedo californica acetylcholine receptor subunits. Nature 302, 528–532.CrossRefGoogle Scholar
  120. Noda, M., Furutani, Y., Takahashi, H., Toyosato, M., Tanabe, T., Shimizu, S., Kikyotani, S., Kayano, T., Hirose, T., Inayama, S. and Numa, S. (1983c). Cloning and sequence analysis of calf cDNA and human genomic DNA encoding a-subunit precursor of muscle acetylcholine receptor. Nature 305, 818–823.CrossRefGoogle Scholar
  121. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T. and Numa, S. (1984). Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312, 121–127CrossRefGoogle Scholar
  122. Oberthür, W., Muhn, P., Baumann, H., Lottspeich, F., Wittmann-Liebold, B. and Hucho, F. (1986). The reaction site of a noncompetitive antagonist in the delta-subunit of the nicotinic acetylcholine receptor. EMBO J. 5, 1815–1819.Google Scholar
  123. Oswald, R.E. (1983). Effects of calcium on the binding of phencyclidine to acetylcholine receptor-rich membrane fragments from Torpedo californica electroplaque. J. Neurochem. 41, 1077.CrossRefGoogle Scholar
  124. Oswald, R., Sobel, A., Waksman, G., Roques, B. and Changeux, J. P. (1980). Selective labeling by [3H-]trimethisoquin azide of polypeptide chains present in acetylcholine receptor rich membranes from Torpedo marmorata. FEBS Lett., 111, 29–34.CrossRefGoogle Scholar
  125. Oswald, R.E. and Changeux, J.P. (1981a). Selective labeling of the delta-subunit of the acetylcholine receptor by a covalent local anesthetic. Biochemistry 20, 7166–7174.CrossRefGoogle Scholar
  126. Oswald, R. and Changeux, J.P. (1981b). Ultraviolet light-induced labeling by noncompetitive blockers of the acetylcholine receptor from Torpedo marmorata. Proc. Natl. Acad. Sci., USA 78, 3925–3929.CrossRefGoogle Scholar
  127. Perutz, M.F., Fermi, G., Abraham, D.J., Poyart, C. and Bursaux, E. (1986). Hemoglobin as a receptor of drugs and peptides: X-ray studies of the stereochemistry of binding. J. Am. Chem. Soc. 108, 1064–1078.CrossRefGoogle Scholar
  128. Popot, J.L. and Changeux, J.P. (1984). The nicotinic acetylcholine receptor: structure of an oligomeric integral membrane protein. Physiol. Rev. 64, 1162–1184.Google Scholar
  129. Popot, J. L., Cartaud, J. and Changeux, J. P. (1981). Reconstitution of a functional acetylcholine receptor: incorporation into artificial lipid vesicles and pharmacology of the agonist-controlled permeability changes. Eur. J. Biochem. 118, 203–214.CrossRefGoogle Scholar
  130. Prinz, H. and Maelicke, A. (1983). Interaction of cholinergic ligands with the purified acetylcholine receptor protein: Equilibrium binding studies. J. Biol. Chem. 258, 10263–10271.Google Scholar
  131. Raftery, M. A., Hunkapiller, M., Strader, C. D. and Hood, L. E. (1980). Acetylcholine receptor: complex of homologous subunits. Science 208, 1454–1457.CrossRefGoogle Scholar
  132. Ratnam, M., Le Nguyen, D., Rivier, J., Sargent, P.B. and Lindstrom, J. (1986). Transmembrane topography of nicotinic acetylcholine receptor: Immunochemical tests contradict theoretical predictions based on hydrophobicity profiles. Biochemistry 25, 2633–2643.CrossRefGoogle Scholar
  133. Reynolds, J. A. and Karlin, A. (1978). Molecular weight in detergent solution of acetylcholine receptor from Torpedo californica. Biochemistry 17, 2035–2038.CrossRefGoogle Scholar
  134. Revah, F., Mulle, C., Tapan, A., Goldstein, G. and Changeux, J.P. (in preparation).Google Scholar
  135. Rubin, M.M. and Changeux, J.P. (1966). On the nature of allosteric transitions; implications of non exclusive ligand binding. J. Mol. Biol. 21, 265–274.CrossRefGoogle Scholar
  136. Saitoh, T., Oswald, R., Wennogle, L.P. and Changeux, J.P. (1980). Conditions for the selective labelling of the 66000 dalton chain of the acetylcholine receptor by the covalent non-competitive blocker 5-azido-3H- trimethisoquin. FEBS Lett., 116, 30–36.CrossRefGoogle Scholar
  137. Sakmann, B., Patlak, J. and Neher, E. (1980). Single acetylcholine activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature 286, 71–73.CrossRefGoogle Scholar
  138. Sakmann, B., Methfessel, C., Mishina, M., Takahashi, T., Takai, T., Kurasaki, M., Fukuda, K. and Numa, S. (1985). Role of acetylcholine receptor subunits in gating of the channel. Nature, 318, 538–543.CrossRefGoogle Scholar
  139. Schoffeniels, E. and Nachmansohn, D. (1957). An isolated single electroplax preparation. I. New data on the effect of acetylcholine and related compounds. Biochim. Biophys. Acta. 26, 1–15.Google Scholar
  140. Sine, S.M. and Taylor, P. (1982). Local anesthetics and histrionicotoxin are allosteric inhibitors of the acetylcholine receptor. Studies of clonal muscle cells. J. Biol. Chem. 257, 8106–8114.Google Scholar
  141. Skerritt, J.H., Willow, M., Johnston, G.A.R. (1982). Diazepam enhancement of low affinity GABA binding to rat brain membrane. Neurosci. Lett. 29, 63–66.Google Scholar
  142. Stallcup, W. B. and Patrick, J. (1980). Substance P enhances cholinergic receptor desensitization in a clonal nerve cell line. Proc. Natl. Acad. Sci., USA 77, 634–638.CrossRefGoogle Scholar
  143. Steinbach, A.B. (1968). Alteration by xylocaine (lidocaine) and its derivatives of the time course of the end-plate potential. J. Gen. Physiol. 52, 144–161.CrossRefGoogle Scholar
  144. Strader, C.D. and Raftery, M.A. (1980). Topographic studies of Torpedo acetylcholine receptor subunits as a transmembrane complex. Proc. Natl. Acad. Sci., USA 77, 5807–5811.CrossRefGoogle Scholar
  145. Stroud, R.M. and Moore, J.F. (1985). Acetylcholine receptor structure, function, and evolution. Ann. Rev. Cell Biol. 1, 317–51.CrossRefGoogle Scholar
  146. Sumikawa, K., Houghton, M., Smith, J. C., Bell, L., Richards, B. M. and Barnard, E.A. (1982). The molecular cloning and characterization of cDNA coding for the alpha subunit of the acetylcholine receptor. Nucleic Acid. Res., 10, 5809–5822.Google Scholar
  147. Supavilai, P. and Karobath, M. (1980). The effect gf temperature and chloride ions on the stimulation of [-)H] flunitrazepam binding by the muscimol analogues THIP and piperidine-4 sulfonic acid. Neurosci. Lett. 19, 337–341.Google Scholar
  148. Takeyasu, K., Udgaonkar, J. B. and Hess, G.P. (1983). Acetylcholine receptor: Evidence for a voltage-dependent regulatory site for acetylcholine. Chemical kinetic measurements in membrane vesicles using a voltage clamp. Biochemistry 22, 5973–5978.CrossRefGoogle Scholar
  149. Tallman, J.F., Thomas, J.W. and Gallager, D.W. (1978). GABAergic modulation of benzodiazepine binding site sensitivity. Nature 274, 383–385.CrossRefGoogle Scholar
  150. Venkatasubramanian, K., Audhya, T. and Goldstein, G. (1986). Binding of thymopoietin to acetylcholine receptor. Proc. Natl. Acad. Sci., USA,83, 3171–3174.CrossRefGoogle Scholar
  151. Weber, M. and Changeux, J.P. (1974). Binding of Naja nigricollis 3H-alpha-toxin to membrane fragments from Electrophorus and Torpedo electric organs. 1. Binding of the tritiated alpha-neurotoxin in the absence of effector. Mol. Pharmacol. 10, 1–14.Google Scholar
  152. Weber, M. and Changeux, J.P. (1974). id. 2. Effect of the cholinergic agonists and antagonists on the binding of the tritiated a-neurotoxin. Mol. Pharmacol. 10, 15–34.Google Scholar
  153. Weber, M. and Changeux, J.P. (1974). id. 3. Effects of local anaesthetics on the binding of the tritiated a-neurotoxin. Mol. Pharmacol. 10, 35–40.Google Scholar
  154. Weiland, G., Frisman, D. and Taylor, P. (1979). Affinity labeling of the subunits of the membrane associated cholinergic receptor. Mol. Pharmacol. 15, 213–226.Google Scholar
  155. Weiland, G., Georgia, B, Lappi, S., Chignell, C.F. and Taylor, P. (1977). Kinetics of agonist-mediated transitions in state of the cholinergic receptor. J. Biol. Chem. 252, 7648–7656.Google Scholar
  156. Wilson, P.T., Lentz, T.L., Hawrot, E. (1985). Determination of the primary amino acid sequence specifying the alpha-bungarotoxin binding site on the alpha subunit of the acetylcholine receptor from Torpedo californica. Proc. Natl. Acad. Sci. USA, 82, 8790–8794.CrossRefGoogle Scholar
  157. Wise, D.S., Schoenborn, B.P. and Karlin, A. (1981). Structure of acetylcholine receptor dimer determined by neutron scattering and electron microscopy. J. Biol. Chem. 256, 4124–4126.Google Scholar
  158. Young, A. P. and Sigman, D. S. (1981). Allosteric effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein. I. stabilization of the high-affinity state. Mol. Pharmacol. 20, 498–505.Google Scholar
  159. Young, A.P. and Sigman, D.S. (1983). Conformational effects of volatile anesthetics on the membrane-bound acetylcholine receptor protein: facilitation of the agonist-induced affinity conversion. Biochemistry 22, 2154–2161.CrossRefGoogle Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • J. P. Changeux
  • J. Giraudat
  • M. Dennis
  • M. Goeldner
  • C. Hirth
  • C. Mulle
  • F. Révah
  • A. Devillers-Thiéry
  • T. Heidmann

There are no affiliations available

Personalised recommendations