Membrane Phospholipid Metabolism and Transmitters

  • M. J. Berridge
Part of the Wenner-Gren Center International Symposium Series book series (WGCISS)


Many neurotransmitters are now known to act by using a ubiquitous signal transduction mechanism based on the hydrolysis of a unique lipid (Downes, 1983; Nahorski et al, 1986). The lipid in question is phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) located within the inner leaflet of the plasma membrane where it is stored as a precursor to be used by the receptor mechanism to generate second messengers (Downes & Michell, 1985; Berridge, 1984; Berridge & Irvine, 1984). The transmitters known to operate through this inositol lipid mechanism include acetylcholine (muscarinic), norepinephrine (α1), histamine (H1), 5-hydroxytryptamine (5-HT2) vasopressin (V1), substance P, bradykinin, neurotensin and glutamate. Upon binding its appropriate transmitter, the receptor operates through a GTP-binding protein (Gp) which activates a phosphoinositidase to cleave Ptdlns4,5P2 at its phosphodiester bond to release inositol 1,4,5-trisphosphate (Ins1,4,5P3) which diffuses into the cytosol leaving diacylglycerol (DG) behind in the membrane. This hydrolysis of PtdIns4,5P2 is a key event in signal transduction because both products give rise to second messengers and thus represents a bifurcation in the signal pathway. The DG functions by stimulating protein kinase C (C-kinase) (Nishizuka, 1986) whereas Ins1,4,5P3 mobilizes calcium (Berridge, 1984; Berridge & Irvine, 1984).


Phorbol Ester Human Platelet Inositol Trisphosphate Inositol Lipid Frog Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aghajanian, G.K. (1985). Modulation of a transient outward current in serotonergic neurons by α1-adrenoreceptors. Nature (Lond.) 315, 501–503.CrossRefGoogle Scholar
  2. Aloyo, V.J., Zwiers, H. & Gispen, W.H. (1983). Phosphorylation of calcium-activated, phospholipid-dependent B-50 protein kinase. J. Neurochem. 41 649–653.CrossRefGoogle Scholar
  3. Authi, K.S., Evenden, B.J., & Crawford, N. (1986). Metabolic and functional consequences of introducing inositol 1,4,5-trisphosphate into saponin-permeabilized human platelets. Biochem. J. 233, 709–718.Google Scholar
  4. Baraban, J.M., Snyder, S.H. & Alger, B.E. (1985). Protein kinase C regulates ionic conductance in hippocampal pyramidal neurones: Electrophysiological effects of phorbol esters. Proc. Natl. Acad, Sci. U.S.A. 82, 2538–2542.CrossRefGoogle Scholar
  5. Batty, I.R., Nahorski, S.R. & Irvine, R.F. (1985). Rapid formation of inositol (1,3,4,5) tetrakisphosphate following muscarinic stimulation of rat cerebral cortical slices. Bioch. J. 232, 211–215.Google Scholar
  6. Bell, J.D., Buxton, I.L.O. & Brunton, L.L. (1985). Enhancement of adenylate cyclase activity in S49 lymphoma cells by phorbol esters. J. Biol. Chem. 260, 2625–2628.Google Scholar
  7. Berridge, M.J. (1986). An alternative hypothesis of Li+ mode of action based on intervention of the inositol lipid signal pathway. In “Drug Receptors and Dynamic Processes in Cells”, Alfred Benzon Symposium 22, 334–337. (Eds. J.S. Skou, A. Giesler & S. Norn), Munksgaard, Copenhagen.Google Scholar
  8. Berridge, M.J. & Irvine, R.F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature (Lond.) 312, 315–321.CrossRefGoogle Scholar
  9. Brass, L.F. & Joseph, S.K.(1985). A role for inositol trisphosphate in intracellular Ca mobilization and granule secretion in platelets. J. Biol. Chem. 260, 15172–15179.Google Scholar
  10. Brock, T.A., Rittenhouse, S.E.,Powers, C.W., Ekstein, L.S., Gimbrone, M.A. & Alexander, R.W. (). Phorbol ester and 1-oleoyl-2-acetylycerol inhibit angiotensin activation of phospholipase C in cultured vascular smooth muscle cells. J. Biol. Chem. 260, 14158–14162.Google Scholar
  11. Brocklehurst, Y.W., Morita, K. & Pollard, H.B. (1985). Characterization of protein kinase C and its role in catecholamine secretion from bovine adrenal-medullary cells. Biochem. J. 228, 35–42.Google Scholar
  12. Brown, J.E., Rubin, L.J., Ghalayini, A.J., Tarver, A.P., Irvine, R.F., Berridge, M.J. & Anderson, R.E. (1984). Myo-inositol polyphosphate may be a messenger for visual excitation in Limulus photoreceptors. Nature (Lond.) 311, 160–163.CrossRefGoogle Scholar
  13. Brown, K.D., Dicker, P. & Rozengurt, E. (1979). Inhibition of epidermal growth factors binding to surface receptors by tumor promotors. Biochem. Biophys. Res. Commun. 86, 1037–1043.CrossRefGoogle Scholar
  14. Burgess, G.M., McKinney, J.S., Irvine, R.F. & Putney, J.W. (1985). Inositol (1,3,4) trisphosphate and inositol (1,4,5) trisphosphc e formation in Ca-mobilizing hormone activated cells. Bloehem. J. 232, 237–248.Google Scholar
  15. Busa, W.B., Ferguson, J.E., Joseph, S.K., Williamson, J.R. & Nuccitelli, R. (1985). Activation of frog (Xenopus lagis) eggs by inositol trisphosphate. I. Characterization of Ca release from intracellular stores. J. Cell Biol. 101, 677–682.CrossRefGoogle Scholar
  16. Connolly, T.M., Lawing, W.J. & Majerus, P.W. (1986). Protein kinase C phosphorylates human platelet inositol trisphosphate 5 -phosphomonoesterase, increasing phosphatase activity Cell 46, 951–958.CrossRefGoogle Scholar
  17. Cooper, R.H., Coll, K.E. & Williamson, J.R. (1985). Differential effects of phorbo1+ ester on phenylephrine and vasopressin-induced Ca mobilization in isolated hepatocytes J. Biol. Chem. 260, 3281–3288.Google Scholar
  18. Davis, R.J. & Czech, M.P. (1985). Platelet-derived growth factor mimics phorbol diester action on epidermal growth factor receptor phosphorylation at threonine-654. Proc. Natl. Acad. Sci. U.S.A. 82, 4080–4084.CrossRefGoogle Scholar
  19. De Chaffoy de Courcelles, D., Roevens, P. & Van Belle, H. (1984). 12–0-Tetradecanoylphorbol 13-acetate stimulates inositol lipid phosphorylation in intact human platelets. FEBS 173, 389–393.CrossRefGoogle Scholar
  20. De Chaffoy de Courcelles, D., Roevens, P. & Van Belle, H. (1986). Agents that elevate platelet cAMP stimulate the formation of phosphatidylinositol 4-phosphate in intact human platelets. FEBS Letters 195, 115–118.CrossRefGoogle Scholar
  21. De Riemer, S.A., Strong, J.A., Albert, K.A., Greengard, P. & Kaczmarek, L.K. (1985). Enhancement of calcium current in Aplysia neurones by phorbol ester and protein kinase C. Nature (Lond.) 313, 313–316.CrossRefGoogle Scholar
  22. Di Virgilio, F., Pozzan, T., Wollheim, C.B., Vicentini, L.M. & Meldolesi, H (1986). Tumor promotor phorbol 2 +yristate acetate inhibits Ca influx through voltage-gated Ca channels in two secretory cell lines, PC12 and RINmSF. J. Biol. Chem. 261, 32–35.Google Scholar
  23. Dougherty, R.W. & Niedel, J.E. (1986). Cytosolic calcium regulates phorbol diester binding affinity in intact phagocytes J. Biol. Chem. 261, 4097–4100.Google Scholar
  24. Downes, C.P. (1985) Receptor-dependent generation of intracellular signals from inositol phospholipids in parotid gland and brain. Biochem. Soc. Trans. 13, 1107–1110Google Scholar
  25. Downes, C.P. & Michell, R.H. (1985). Inositol phospholipid breakdown as a receptor-controlled generator of second messengers. In Molecular Mechanisms of Transmembrane Signalling P. Cohen & M. Houslay eds pp3–56, Elsevier Science Publishers.Google Scholar
  26. Drummond, A.H. (1985). Bidirectional control of cytosolic free calcium by thyrotropin-releasing hormone in pituitary cells. Nature (Lond.) 315, 752–755.CrossRefGoogle Scholar
  27. Europe-Finner, G.N. & Newell, P.C. (1985). Inositol 1,4,5-trisphosphate induces cyclic GMP formation in Dictyostelium discoideum. Biochem. Biophys. Res. Commun. 130, 1115–1122.CrossRefGoogle Scholar
  28. Europe-Finner, G.N. & Newell, P.C. (1986). Inositol 1,4,5-trisphosphate and calcium stimulate actin polymerization in Dictyostelium discoidium. J. Cell Sci. 82, 41–51.Google Scholar
  29. Evans, M.G. & Marty, A. (1986). Potentiation of muscarinic and n-adrenergic responses by an analogue of guanosine 5’-trisphosphate. Proc. Natl. Acad. Sci. U.S.A. 83, 4099–4103.CrossRefGoogle Scholar
  30. Fein, A., Payne, R., Corson, D.W., Berridge, M.J. & Irvine, R.F. (1984). Photoreceptor excitation and adaptation by inositol 1,4,5-trisphosphate. Nature (Lond.) 311, 157–160.CrossRefGoogle Scholar
  31. Fleischman, L.F., Chahwala, S.B. & Cantley, L. (1986). Ras-transformed cells: altered levels of phosphatidylinositol-4,5-bisphosphate and catabolites. Science 231, 407–410.CrossRefGoogle Scholar
  32. Forsberg, E.J., Rojas, E. & Pollard, H.B. (1986). Muscarinic receptor enhancement of nicotinic-induced catecholamine secretion may be mediated by phosphoinositide metabolism in bovine adrenal chromaffin cells. J. Biol. Chem. 261, 4915–4920.Google Scholar
  33. Halenda, S.P. & Feinstein, M.B. (1984). Phorbol myristate acetate stimulates formation of phophatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in human platelets. Biochem. Biophys, Res. Commun. 124, 507–513.CrossRefGoogle Scholar
  34. Hallcher, L.M. & Sherman, W.R. (1980). The effects of lithium ion and other agents on the activity of myo-Inositol-l-phosphatase from bovine brain J. Biol. Chem. 255, 1089–1090.Google Scholar
  35. Hansen, C.A., Mah, S. & Williamson, J.R. (1986). Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver. J. Biol. Chem. 261, 8100–8103.Google Scholar
  36. Harris, K.M., Konggamut, S. & Miller, R.J. (1986). Protein kinase C mediated regulation of calcium channels in PC-12 pheochromocytoma cells. Biochem. Biophys. Res. Commun. 134, 1298–1305.CrossRefGoogle Scholar
  37. Hesketh, T.R., Moore, J.P., Morris, J.D.H., Taylor, M.V., Rogers, J., Smith, G.A. & Metcalfe, J.C. (1985). A common sequence of calcium and pH signals in the nitogenic stimulation of eukaryotic cells. Nature (Lond) 313, 481–484.CrossRefGoogle Scholar
  38. Higashida, H. & Brown, D.A. (1986). Two polyphosphoinositide metabolites control two K -currents in a neuronal cell. Nature (Lond.) 323, 333–335.CrossRefGoogle Scholar
  39. Higashida, H., Streaty, R.A., Klee, W. & Nirenberg, M. (1986). Bradykinin-activated transmembrane signals are coupled via N or Ni to production of inositol 1,4,5-trisphosphate, a second messenger in N105–15 neuroblastoma-glioma hybrid cells. Proc. Natl. Acad. Sci. U.S.A. 83, 942–946.CrossRefGoogle Scholar
  40. Hollingsworth, E.B., Sears, E.B. & Daly, J.W. (1985). FEBS Letters 184, 339–342.CrossRefGoogle Scholar
  41. Hollingworth, E.B. & Daly, J.W. (1985). Accumulation of inositol phosphates and cyclic AMP in guinea-pig cerebral cortical preparations. Biochim. Biophys. Acta. 847, 207–216.CrossRefGoogle Scholar
  42. Imai, A., Hattori, H., Takahashi, M. & Nozaw, Y. (1983). Evidence that cyclic AMP may regulate Ca mobilization and phospholipases in thrombin-stimulated human platelets. Biochem. Biophys. Res. Commun. 112, 693–700.CrossRefGoogle Scholar
  43. Inoue, T. & Takeda, K. (1984). Prostaglandin-induced inhibition of acetylcholine release from neuronal elements of dog tracheal tissue. J. Physiol 349, 553–570.Google Scholar
  44. Irvine, R.F., Anggard, E.A., Letcher, A.J. & Downes, C.P. (1985). Metabolism of inositol (1,4,5) trisphosphate and inositol (1,3,4) trisphosphate in rat parotid glands. Biochem. J. 229, 505–511.Google Scholar
  45. Irvine, R.F., Letcher, A.J., Heslop, J.P. & Berridge, M.J. (1986). The inositol tris/tetrakisphosphate pathway-demonstration of Ins(1,4,5)P -3-kinase activity in animal. tissue. Nature (Loud.) 320, 631–634.CrossRefGoogle Scholar
  46. Irvine, R.F., Letcher, A.J., Lander, D.J. & Downes, C.P. (1984). Inositol trisphosphates in carbachol-stimulated rat parotid glands. Biochem. J. 223, 237–243.Google Scholar
  47. Israels, S.J., Robinson, P., Docherty, J.C. & Gerrard, J.M. (1985). Activation of permeabilized platelets by inositol-1,4,5-trisphosphate. Thromb. Res. 40, 499–509.CrossRefGoogle Scholar
  48. Jolles, J., Zwiers, H., Dekker, A., Wirtz, K.W.A. & Gispen, W.H. (1981). Corticotropin-(1–24)-tetracosapeptide affects protein phosphorylation and polyphosphoinositide metabolism in rat brain. Bioch. J. 194, 283–291.Google Scholar
  49. Kaibuchi, K., Takai, Y., Sawamura, M., Hoshijima, M., Fujikura, T. & Nishizuka, Y. (1983). Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J. Biol. Chem. 258, 6701–6704.Google Scholar
  50. Katada, T., Gilman, A., Watanabe, Y., Bauer, S. & Jacobs, K.H. (1985). Eur. J. Biochem. 151, 431–437.CrossRefGoogle Scholar
  51. Klockner, U. & Isenberg, G. (2985). Calcium activated potassium currents as an indicator for intracellular (i.c.) Ca-transients. Single smooth muscle cells from trachea and urinary bladder. Pflug. Archiv. 405, R61.Google Scholar
  52. Kojima, I., Shibata, H. & Ogata, E. (1986). Phorbol ester inhibits angiotensin-induced activation of phospholipase C in adrenal glomerulosa cells. Biochem. J. 237, 253–258.Google Scholar
  53. Labarca, R., Janowsky, A., Patel, J. & Paul, S.M. (1984). Biochem. Biophys. Res. Commun. 123, 703–709.CrossRefGoogle Scholar
  54. Lapetina, E.G. (1986). Incorporation of synthetic 1,2-diacylglycerol into platelet phosphatidylinositol is increased by cyclic AMP. FEBS Letters 195, 111–114.CrossRefGoogle Scholar
  55. Lapetina, E.G., Watson, S.P. & Cuatrecasas, P. (1984). myo-Inositol 1,4,5-trisphosphate stimulates protein phosphorylation in saponin-permeabilized human platelets. Proc. Natl. Acad. Sci. U.S.A. 81, 7431–7435.Google Scholar
  56. Leeb-Lundberg, L.M.F., Cotecchia, S., Lomasney, J.M., DeBernardis, J.F., Lefkowitz, R.J. & Caron, M.G. (1985). Phorbol esters promote a1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism. Proc. Natl. Acad. Sci. U.S.A. 82, 5651–5655.CrossRefGoogle Scholar
  57. Molinay Vedia, L.M. & Lapetina, E.G. (1986) Phorbol 12,13-dibutyrate and 1-oleyl-2-acetyldiacylglycerol stimulates inositol trisphosphate dephosphorylation in human platelets. J. Biol. Chem. 261, 10493–10495Google Scholar
  58. Monaco, M.E. & Mufson, R.A. (1986). Phorbol ester inhibition of the hormone-stimulated phosphoinositide cycle in WRK-1 cells. Biochem. J. 236, 171–175.Google Scholar
  59. Moolenaar, W.H., Kruijer, W., Tilly, B.C., Verlaan, I., Bierman, A.J. & de Laat, S.W. (1986). Growth factor like actions of phosphatidic acid. Nature (Lond.) 323, 171–173.CrossRefGoogle Scholar
  60. Naccache, P.H., Molski, T.F.P., Borgeat, P., White, J.R. & Sha’afi, R.I. (1985). Phorbol esters inhibit the fMet-leu-phe-and leukotriene B4 stimulated calcium mobilization and enzyme secretion in rabbit neurotrophils. J. Biol. Chem. 260, 2125–2131.Google Scholar
  61. Nahorski, S.R., Kendall, D.A., & Batty, I. (1986). Receptors and phosphoinositide metabolism in the central nervous system. Biochem. Pharm. 35, 2447–2454.CrossRefGoogle Scholar
  62. Nakashima, S., Tohmatsu, T., Hattori, H., Okano, Y. & Nozawa, Y. (1986). Inhibitory action of cyclic GMP on secretion, polyphosphoinositide hydrolysis and calcium mobilization in thrombin-stimulated human platelets. Biochem. Biophys. Res. Commun. 135, 1099–1104.CrossRefGoogle Scholar
  63. Nishizuka, Y. (1984). The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature (Lond.) 308, 693–697.CrossRefGoogle Scholar
  64. Orellana, S.A., Solski, P.A. & Brown, J.H. (1985). Phorbol ester inhibits phosphoinositide hydrolysis and calcium mobilization in cultured astrocytoma cells. J. Biol. Chem. 260, 5236–5239.Google Scholar
  65. Oron, Y., Dascal, N., Nadler, E. & Lupu, M. (1985). Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes. Nature (Lond.) 313, 141–143.CrossRefGoogle Scholar
  66. Pozzan, T., Gatti G., Dozio, N., Vicentini, L.M. & Meldolesi, J. (1984). Ca -dependent and -independent release of neurotransmitters from PC12 cells: a role for protein kinase C activation? J. Cell Biol. 99, 628–638.CrossRefGoogle Scholar
  67. Rapoport, R.M. (1986). Cyclic guanine monophosphate inhibition of contraction may be mediated through inhibition of phosphatidylinosítol hydrolysis in rat aorta. Circulation Res. 58, 407–410.Google Scholar
  68. Reiser, G. & Hamprecht, B. (1985). Bradykinin causes a transient rise of intracellular Ca +-activity in cultured neural cells. Pflugers Archiv. 405, 260–264.CrossRefGoogle Scholar
  69. Rickard, J.E. & Sheterline, P. (1985). Evidence that phorbol ester int2e~rferes with stimulated Ca + redistribution by activating Ca efflux in neutrophil leucocytes. Biochem. J. 231, 623–628.Google Scholar
  70. Rink, T.J. & Sanchez, A. (1984). Effects of prostaglandins I2 and forskolin on the secretion from platelets evoked at basal concentrations of cytoplasmic free calcium by thrombin, collagen, phorbol ester and exogenous diacylglycerol. Biochem. J. 222, 833–836.Google Scholar
  71. Sagi-Eisenberg, R., Lieman, H. & Pecht, I. (1985). Protein kinase C regulation of the receptor-coupled calcium signal in histamine secreting rat basophilic leukaemia cells. Nature (Lond.) 313, 59–60.CrossRefGoogle Scholar
  72. Shukla, S.D. (1985). Platelet activating factor-stimulated formation of inositol trisphosphate in Alatelets and its regulation by various agents including Ca, indomethacin, CV-3988, and forskolin. Arch. Bloch. Biophys. 240, 674–681.CrossRefGoogle Scholar
  73. Sibley, D.R., Jeffs, R.A., Daniel, K., Nambi, P. & Lefkowitz, R.J. (1986). Phorbol diester treatment promotes enhanced adenylate cyclase activity in frog erythrocytes. Archiv. Biochem. Biophys. 244, 373–381.CrossRefGoogle Scholar
  74. Slack, B.E., Bell, J.E. & Benos, D.J. (1986). Inositol-1,4,5-trisphosphate injection mimics fertilization potentials in sea urchin eggs. Am. J. Physiol. 250, C340–C344.Google Scholar
  75. Stanfield, P.R., Nakajima, Y. & Yamaguchi, K. (1985). Substance P raises neuronal membrane excitability by reducing inward rectification. Nature (Lond.). 315, 498–501.CrossRefGoogle Scholar
  76. Stewart, S.J., Prpic, V.,Powers, F.S., Bocckino, S.B., Isaaks, R.E. & Exton, J.H. (1986). Perturbation of the human T cell antigen receptor-T3 complex leads to the production of inositol tetrakisphosphate: Evidence for conversion from inositol trisphosphate. Proc. Natl. Acad. Sci. U.S.A. in press.Google Scholar
  77. Storey, D.J., Shears, S.B., Kirk, C.J. & Michell, R.H. (1984). Stepwise enzymatic dephosphorylation of inositol 1,4,5-trisphosphate to inositol in liver. Nature (Lond.) 312, 374–376.CrossRefGoogle Scholar
  78. Sturani, E., Vicentini, L.M., Zippel, R., Toschi, L., Pandiella-Alonso, A., Comoglio, P.M. & Meldolesi, J. (1986). PDGF-induced receptor phosphorylation and phosphoinositide hydrolysis are unaffected by protein kinase C activation in mouse Swiss 3T3 and human skin fibroblasts. Biochim. Biophys. Res. Commun. 137, 343–350.CrossRefGoogle Scholar
  79. Sugden, D., Vanecek, J., Klein, D.C., Thomas, T.P. & Anderson, W.B. (1985). Activation of protein kinase C potentiates isoprenaline-induced cyclic AMP accumulation in rat pinealocytes. Nature (Lond.) 314, 359–361.CrossRefGoogle Scholar
  80. Tanaka, C., Taniyama, K. and Kusunoki, M.(1984). A phorbol ester and A23187 act synergistically to release acetylcholine from the guinea pig ileum. FEBS Letters. 175, 165–169CrossRefGoogle Scholar
  81. Tanaka, C., Fujiwara, H. & Fujii, Y. (1986). Acetylcholine release from guinea pig caudate slices evoked by phorbol ester and calcium, FEBS Letters. 195, 129–134CrossRefGoogle Scholar
  82. Takai, Y., Kaibuchi, K., Matsubara, T. & Nishizuka, Y. (1981). Inhibitory action of guanine 3’,5’-monophosphate on thrombin-induced phosphatidylinositol turnover and protein phosphorylation in human platelets Bioch. Biophys. Res. Commun. 101, 61–67.CrossRefGoogle Scholar
  83. Taylor, C.W. & Merritt, J.E. (1986). Receptor coupling to polyphosphoinsitide turnover: A parallel with the adenylate cyclase systems. Trends in Pharmacol. Sci. 7, 238–242.CrossRefGoogle Scholar
  84. Taylor, M.V., Metcalfe, J.C., Hesketh, T.R., Smith, G.A. & Moore, J.P. (1984). Mitogens increase phosphorylation of phosphoinositdes in thymocytes. Nature (Lond.) 312, 462–465.CrossRefGoogle Scholar
  85. Touqui, L., Rothhut, B., Shaw, A.M., Fradin, A., Vargaftig, B.B. & Russo-Marie, F. (1986). Platelet-activation - a role for a 40K anti-phospholipase A2 protein indistinguishable from lipocortin. Nature (Lond.) 321, 177–180.CrossRefGoogle Scholar
  86. Trevisani, A., Biondi, C., Bulluzzi, O., Borasio, P.G., Cappuzzo, A., Ferretti, M.E. & Perri, V. (1982). Evidence for increased release of prostaglandins of E-type in response to orthodromic stimulation in the guinea-pig superior cervical ganglion. Brain Res. 236, 375–381.CrossRefGoogle Scholar
  87. Turner, P.R., Jaffe, L.A. & Fein, A. (1985). Regulation of cortical vesicle exocytosis in sea urchin eggs by inositol 1,4,5-trisphosphate and GTP-binding protein. J. Cell Biol. 102, 70–76.CrossRefGoogle Scholar
  88. Vergara, J., Tsien, R.Y. & Delay, M. (1985). Inositol 1,4,5-trisphosphate: A possible chemical link in excitation-contraction coupling in muscle. Proc. Natl. Acad. Sci. U.S.A. 82, 6352–6356.CrossRefGoogle Scholar
  89. Volpe, P., Salviati, G., Di Virgilio, F. & Pozzan, T. (1985). Inositol 1,4,5-trisphosphate induces calcium release from sarcoplasmic reticulum of skeletal muscle. Nature (Lond.) 316, 347–349.CrossRefGoogle Scholar
  90. Watson, S.P., McConnell, R.T. & Lapetina, E.G. (1984). The rapid formation of inositol phosphates in human platelets by thrombin is inhibited by prostacyclin. J. Biol. Chem. 259, 13199–13203.Google Scholar
  91. Watson, S.P., Ruggiero, M., Abrahams, S.L. & Lapetina, E.G. (1986). Inositol 1,4,5-trisphosphate induces aggregation and release of 5-hydroxytrypamine from saponin-permeabilized human platelets. J. Biol. Chem. 261, 5368–5372.Google Scholar
  92. Whitaker, M. & Irvine, R.F. (1984). Inositol 1,4,5-trisphosphate microinjection activates sea urchin eggs. Nature (Lond.) 312, 636–639.CrossRefGoogle Scholar
  93. Yamanishi, J., Takai, Y., Kaibuchi, K., Sano, K., Castagna, M. & Nishizuka, Y. (1983). Synergistic functions of phorbol ester and calcium in serotonin release from human platelets. Biochem. Biophys. Res. Commun. 112, 778–786.CrossRefGoogle Scholar
  94. Yano, K., Higashida, H., Hattori, H. & Zozawa,Y. (1985). Bradykinin-induced transient accumulation of inositol trisphosphate in neuron-like cell line NG 108–15 cells. FEBS Letters 181, 403–406.CrossRefGoogle Scholar
  95. Yano, K., Higashida, H., Inoue, R. & Nozawa, Y. (1984). Bradykinin-induced rapid breakdown of phosphatidylinositol 4,5-bisphosphate in neuroblastoma x glioma hybrid NG 108–15 cells. J. Biol. Chem. 259, 10201–10207.Google Scholar
  96. Zavoico, G.B. & Feinstein, M.B. (1984). Cytoplasmic Cat+ in platelets is controlled by cyclic AMP: Antagonism between stimulators and inhibitors of adenylate cyclase. Biochem. Biophys. Res. Commun. 120, 579–585.CrossRefGoogle Scholar

Copyright information

© The Wenner-Gren Center 1987

Authors and Affiliations

  • M. J. Berridge

There are no affiliations available

Personalised recommendations