Use of “Specific” Inhibitors in Biogeochemistry and Microbial Ecology

  • Ronald S. Oremland
  • Douglas G. Capone
Part of the Advances in Microbial Ecology book series (AMIE, volume 10)


The above statement, although meant to be tongue in cheek, contains an essential truism: all work with inhibitors is inherently suspect. This fact has been known by biochemists for some time. However, use of chemical inhibitors of enzymic systems and membranes continues to be a common approach taken toward unraveling the biochemistry and biophysics of plants, animals, and microorganisms. Various types of “broad-spectrum” biochemical inhibitors (e.g., poisons, respiratory inhibitors, and uncouplers) have been employed by ecologists for many years in order to demonstrate the active participation of microbes in chemical reactions occurring in natural samples (e.g., soils, sediments, and water). In recent years, considerable advances have been made in our understanding of the biochemistry of microorganisms of biogeochemical interest. Concurrent with these advances have been the discoveries of novel types of compounds that will block the metabolism of one particular group of microbes, but have little disruptive effect on other physiological types. Thus, the term “specific inhibitor” has been applied to these types of compounds when they are used to probe the functions of mixed populations of microorganisms. These substances provide powerful experimental tools for investigating the activity and function of certain types of microorganisms in natural samples.


Nitrogen Fixation Sulfate Reduction Acetylene Reduction Methanogenic Bacterium Sediment Slurry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abram, J. W., and Nedwell, D. B., 1978a, Inhibition of methanogenesis by sulfate-reducing bacteria competing for transferred hydrogen. Arch. Microbiol. 117:89–92.PubMedCrossRefGoogle Scholar
  2. Abram, J. W., and Nedwell, D. B., 1978b, Hydrogen as a substrate for methanogenesis and sulfate reduction in anaerobic saltmarsh sediment. Arch. Microbiol. 117:93–97.PubMedCrossRefGoogle Scholar
  3. Aller, R. C., and Vingst, J. Y., 1980, Relationships between microbial distributions and the anaerobic decomposition of organic matter in surface sediments of Long Island Sound, USA, Mar. Biol. 56:29–42.CrossRefGoogle Scholar
  4. Alperin, M. J., and Reeburgh, W. S., 1985, Inhibition experiments on anaerobic methane oxidation, Appl. Environ. Microbiol. 50:940–945.PubMedGoogle Scholar
  5. Anderson, J. H., 1965, Studies on the oxidation of ammonia by Nitrosomonas, Biochem. J. 95:7926–7929.Google Scholar
  6. Anthony, C., 1982,The Biochemistry of Methylotrophs, Academic Press, New York.Google Scholar
  7. Arcuri, E. J., and Ehrlich, H. L., 1979, Cytochrome involvement in Mn (II) oxidation by two marine bacteria, AppL Environ. Microbiol 37:916–923.PubMedGoogle Scholar
  8. Arp, D. J., and Zumft, W. G., 1983, Methionine-SR-sulfoximine as a probe for the role of glutamine synthetase in nitrogenase switch-off by ammonia and glutamine in Rhodo- pseudomonas palustris, Arch. Microbiol. 134:17–22.PubMedCrossRefGoogle Scholar
  9. Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., and Thingstad, F., 1983, The ecological role of water column microbes in the sea, Mar. Ecol. Prog. Ser. 10:257–263.CrossRefGoogle Scholar
  10. Babiker, H. M., and Pepper, I. L., 1984, Microbial production of ethylene in desert soils. Soil Biol. Biochem. 16:559–564.CrossRefGoogle Scholar
  11. Badour, S. S., 1978, Inhibitors used in studies of algal metabolism, in: Handbook ofPhy- cological Methods. Physiological and Biochemical Methods (J. Hellebust and J. Craigie, eds.), pp. 479–488, Cambridge University Press, London.Google Scholar
  12. Balba, M. T., and Nedwell, D. B., 1982, Microbial metabolism of acetate, propionate and butyrate in anoxic sediment from the Colne Point saltmarsh, Essex, U.K., J. Gen. Microbiol. 128:1415–1422.Google Scholar
  13. Balch, W. E., and Wolfe, R. S., 1979a, Specificity and biological distribution of coenzyme M (2-mercaptoethanesulfonic acid), J. Bacteriol. 137:256–263.PubMedGoogle Scholar
  14. Balch, W. E., and Wolfe, R. S., 1979b, Transport of coenzyme M (2-mercaptoethanesulfonic acid) in Methanobacterium ruminantium, J. Bacteriol. 137:264–273.PubMedGoogle Scholar
  15. Balch, W. M., 1987, Studies of nitrate transport of marine phytoplankton using 14Cl-ClOj as a transport analog: I. Physiological findings, J. Phycol. 23:107–118.Google Scholar
  16. Balderston, W. L., and Payne, W. J., 1976, Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides, Appl. Environ. Microbiol. 32:264–269.PubMedGoogle Scholar
  17. Balderston, W. L., Sherr, B., and Payne, W. J., 1976, Blockage by acetylene of nitrous oxide reduction inPseudomonas perfectomarinus, Appl. Environ. Microbiol. 31:504–508.PubMedGoogle Scholar
  18. Banat, I. M., and Nedwell, D. B., 1983, Mechanisms of turnover of C2-C4 fatty acids in high-sulfate and low-sulfate anaerobic sediments,FEMS Microbiol. Lett. 17:107–110.CrossRefGoogle Scholar
  19. Banat, I. M., and Nedwell, D. B., 1984, Inhibition of sulfate reduction in anoxic marine sediments by Group VI anions, Est. Coast. Shelf Sei. 18:361–366.CrossRefGoogle Scholar
  20. Banat, I. M., Lindstrom, E. B., Nedwell, D. B., and Balba, M. T., 1981, Evidence for coexistence of two distinct functional groups of sulfate-reducing bacteria in saltmarsh sediment, Appl. Environ. Microbiol. 42:985–992.PubMedGoogle Scholar
  21. Banat, I. M., Nedwell, D. B., and Balba, M. T., 1983, Stimulation of methanogenesis by slurries of saltmarsh sediment after the addition of molybdate to inhibit sulfate-reduc- ing bacteria, J. Gen. Microbiol. 129:123–129.Google Scholar
  22. Barker, H. A., 1956.Bacterial Fermentations, Wiley, New York.Google Scholar
  23. Barnes, R. O., and Goldberg, E. D., 1976, Methane production and consumption in anoxic marine sediments. Geology 4:297–300.CrossRefGoogle Scholar
  24. Batterson, J., Winters, K., and Van Baalen, C., 1978, Anilines: Selective toxicity to blue- green algae. Science 199:1068–1070.CrossRefGoogle Scholar
  25. Bauchop, T., 1967, Inhibition of rumen methanogenesis by methane analogues, J. Bacteriol. 94:171–175.PubMedGoogle Scholar
  26. Belay, N., Sparling, R., and Daniels, L., 1984, Dinitrogen fixation by a thermophilic methanogenic bacterium. Nature 312:286–288.PubMedCrossRefGoogle Scholar
  27. Belser, L. W., and Mays, E. L., 1980, Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments, AppL Environ. Microbiol. 39:505–510.PubMedGoogle Scholar
  28. Belser, L. W., and Schmidt, E. L., 1981, Inhibitory effect of nitrapyrin on three genera of ammonia-oxidizing nitrifiers, J. Environ. Microbiol. 41:819–821.Google Scholar
  29. Benner, R., Moran, M. A., and Hodson, R. E., 1986, Biogeochemical cycling of ligno-cel- lulose carbon in marine and freshwater ecosystems: Relative contribution of procary- otes and encaryotes. Limnol Oceanogr. 31:89–100.CrossRefGoogle Scholar
  30. Bennett, E. O., and Bauerle, R. H., 1960, The sensitivities of mixed populations of bacteria to inhibitors, Aust. J. Biol Sei. 13:142–149.Google Scholar
  31. Berg, P., Klemedtsson, L., and Rosswall, T., 1982, Inhibitory effect of low partial pressures of acetylene on nitrification. Soil Biol. Biochem. 14:301–303.CrossRefGoogle Scholar
  32. Billen, G., 1976, Evaluation of nitrifying activity in sediments by dark C-14 bicarbonate incorporation. Water Res. 10:51–57.CrossRefGoogle Scholar
  33. Blackmer, A. M., Bremner, J. M., and Schmidt, E. L., 1980, Production of nitrous oxide by ammonia-oxidizing chemoautotrophic microorganisms in soil, AppL Environ. Microbiol. 40:1060–1066.PubMedGoogle Scholar
  34. Bomar, M., Knoll, K., and Widdel, F., 1985, Fixation of molecular nitrogen byMethano- sarcina barkeri, FEMS Microb. Ecol. 31:47–55.CrossRefGoogle Scholar
  35. Bothe, H., 1982, Hydrogen production by algae, Experientia 38:59–66.CrossRefGoogle Scholar
  36. Bothe, H., Tennigket, J. and Eisbrenner, G., 1977a, The utilization of molecular hydrogen by the blue-green alga Anabaena cylindrica. Arch. Microbiol. 114:43–49.PubMedCrossRefGoogle Scholar
  37. Bothe, H., Tennigket, J., and Eisbrenner, G., 1977b, The hydrogenase-nitrogenase relationship in the blue-green alga Anabaena cylindrica, Planta 33:237–242.CrossRefGoogle Scholar
  38. Boussiba, S., and Gibson, J., 1985, The role of glutamine synthetase activity in ammonium and methylammonium transport in Anacystis nidulans R-2, FEBS Lett. 180:13–16.CrossRefGoogle Scholar
  39. Bouwer, E. J., and McCarthy, P. L., 1983a, Transformation of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions, Appl. Environ. Microbiol. 45:1295–1299.PubMedGoogle Scholar
  40. Bouwer, E. J., and McCarthy, P. L., 1983b, Effects of 2-bromethanesulfonic acid and 2- chloroethanesulfonic acid on acetate utilization in a continuous-flow methanogenic fixed-film column,Appl. Environ. Microbiol. 45:1408–1410.PubMedGoogle Scholar
  41. Bremner J. M., and Blackmer, A. M., 1978, Nitrous oxide: Emission from soils during nitrification of fertilizer nitrogen. Science 199:295–296.PubMedCrossRefGoogle Scholar
  42. Bremner, J. M., and Blackmer, A. M., 1979, Effects of acetylene and soil water content on emission of nitrous oxide from soils. Nature 280:380–381.CrossRefGoogle Scholar
  43. Bremner, J. M., and Blackmer, A. M., 1981, Terrestrial nitrification as a source of atmospheric nitrous oxide, in: Denitrification, Nitrification, and Atmospheric Nitrous Oxide (C. C. Delwiche, ed.), pp. 151–170, Wiley, New York.Google Scholar
  44. Brenchley, J. E., 1973, Effect of methionine sulfoximine and methionine on glutamate synthesis in Klebsiella aerogenes, J. Bacteriol. 114:666–673.PubMedGoogle Scholar
  45. Brierley, C. L., and Brierley, J. A., 1982, Anaerobic reduction of molybdenum by Sulfolobus species, Zentralbl. Bakteriol. Hyg. I Abt. Orig. 3:289–294.Google Scholar
  46. Brock, T. D., 1961, Chloramphenicol, Bacteriol. Rev. 25:32–48.PubMedGoogle Scholar
  47. Brock, T. D., 1978, The poisoned control in biogeochemical investigations, in: Environmental Biogeochemistry and Geomicrobiology, Vol. 3 (W. Krumbein, ed.), pp. 717–725, Ann Arbor Science, Ann Arbor, Michigan.Google Scholar
  48. Brodbeck, U., 1980, Enzyme Inhibitors, Verlag Chemie, Weinheim.Google Scholar
  49. Brouzes, R., and Knowles, R., 1971, Inhibition of growth of Clostridium pasteurianum by acetylene: Implications for nitrogen fixation assay, Can. J. Microbiol. 17:1483–1489.PubMedCrossRefGoogle Scholar
  50. Burdige, D. J., and Kepkay, P. E., 1983, Determination of bacterial manganese oxidation rates in sediments using an in situ dialysis technique. I. Laboratory studies, Geochim. Cosmochim. Acta 47:1907–1916.CrossRefGoogle Scholar
  51. Burdige, D. J., and Nealson, K. H., 1985, Microbial manganese reduction by enrichment cultures from coastal marine sediments, Appl. Environ. Microbiol. 50:491–497.PubMedGoogle Scholar
  52. Burris, R. H., 1974, Methodology, in: The Biology of N 2 Fixation (A. Quispel, ed.), pp. 9–33, North-Holland, Amsterdam.Google Scholar
  53. Campbell, A. M., del Campillo-Campbell, A., and Villaret, D. B., 1985, Molybdate reduction by Escherichia coli K-12 and its chl mutants, Proc. Nati Acad. Sei. USA 82:227–231.CrossRefGoogle Scholar
  54. Campbell, L., and Carpenter, E. J., 1986, Estimating the grazing pressure of heterotrophic nanoplankton on Synechococcus spp. using the sea water dilution and selective inhibitor techniques, Mar. Ecol. Prog. Ser. 33:121–129.CrossRefGoogle Scholar
  55. Campbell, N. E. R., and Aleem, M. I. H., 1965a, The effect of 2-chloro-6-(trichloromethyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria. I. Ammonia and hydroxylamine oxidation by Nitrosomonas, Antonie Leeuwenhoek. J. Microbiol. Serol. 31:124–136.Google Scholar
  56. Campbell, N. E. R., and Aleem, M. I. H., 1965b, The effect of 2-chloro-6-(trichloromethyl) pyridine on the chemoautotrophic metabolism of nitrifying bacteria. II. Nitrite oxidation by Nitrobacter, Antonie Leeuwenhoek J. Microbiol. Serol. 31:137–144.Google Scholar
  57. Capone, D. G., 1982, Nitrogen fixation (acetylene reduction) by rhizosphere sediments of the eelgrass, Zostera marina. L., Mar. Ecol. Prog. Ser. 10:67–75.CrossRefGoogle Scholar
  58. Capone, D. G., 1983, Benthic nitrogen fixation, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 105–137, Academic Press, New York.Google Scholar
  59. Capone, D. G., 1984, Factors controlling nitrogen fixation in marine sediments, in: Abstracts, 47th Annual Meeting of American Society of Limnol. Oceanogr., p. 14.Google Scholar
  60. Capone, D. G., 1987, Benthic nitrogen fixation; Microbiology, physiology and ecology, in: Nitrogen Cycling in Marine, Coastal Environments (T. H. Blackburn, J. Sorenson, and T. Roswall, eds.), Wiley, New York, in press.Google Scholar
  61. Capone, D. G., and Carpenter, E. J., 1982a, A perfusion method for assaying microbial activities in estuarine sediments: Applicability to studies of N2 fixation by C2H2 reduction, Appl. Environ. Microbiol. 43:1400–1405.PubMedGoogle Scholar
  62. Capone, D. G., and Carpenter, E. J., 1982b, Nitrogen fixation in the marine environment. Science 217:1140–1142. PubMedCrossRefGoogle Scholar
  63. Capone, D. G., and Kiene, R. P., 1987, Comparison of microbial dynamics in marine and freshwater sediments: Contrasts in anaerobic carbon catabolism, in: The Comparative Ecology of Freshwater and Marine Ecosystems (S. Nixon, ed.),Limnol. Oceanogr. (Special Volume), in press.Google Scholar
  64. Capone, D. G., Oremland, R. S., and Taylor, B. F., 1977, Significance of N2 fixation to the production of Thalassia testudinum communities, in:Proceedings of the CICAR [Cooperative Investigations of the Caribbean and Adjacent Regions] II Symp. Prog. Mar. Res. Caribbean & Adjacent Regions (L. B. Stewart, Jr., ed.), pp. 71–85, FAO Fisheries Report 200, Rome, Italy.Google Scholar
  65. Capone, D. G., Reese, D. D., and Kiene, R. P., 1983, Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments, Appl. Environ. Microbiol. 45:1586–1591.PubMedGoogle Scholar
  66. Cappenberg, T. E., 1974, Interrelations between sulfate-reducing and methane-producing bacteria in bottom deposits of a freshwater lake. II. Inhibition experiments, Antonie Leeuwenhoek J. Microbiol. Serol 40:297–306.Google Scholar
  67. Carpenter, E. J., 1983a, Nitrogen fixation by marineOscillatoria (Trichodesmium) in the world’s oceans, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 65–104, Academic Press, New York.Google Scholar
  68. Carpenter, E. J., 1983b, Physiology and ecology of marine planktonic Oscillatoria (Trichodesmium), Mar. Biol. Lett. 4:69–85.Google Scholar
  69. Chan, Y., and Knowles, R., 1979, Measurements of denitrification in two freshwater sediments by an in situ acetylene inhibition method, Appl. Environ. Microbiol. 37:1067–1072.PubMedGoogle Scholar
  70. Chan, Y. K., Nelson, L. M., and Knowles, R., 1980, Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium. Can. J. Microbiol. 26:1126–1131.PubMedCrossRefGoogle Scholar
  71. Chapnick, S. D., Moore, W. S., and Nealson, K. H., 1982, Microbially mediated manganese oxidation in a freshwater lake, Limnol Oceanogr. 27:1004–1014.CrossRefGoogle Scholar
  72. Chemerys, R. A., 1983, Nitrogen fixation and hydrogen cycling in salt marsh sediment, M. S. Thesis, State University of New York at Stony Brook.Google Scholar
  73. Chen, M., and Wolin, M. J., 1979, Effect of monensin and lasalocid-sodium on the growth of methanogenic and rumen saccharolytic bacteria, Appl. Environ. Microbiol 38:72–77.PubMedGoogle Scholar
  74. Ching, W. M., Wittwer, A. J., Tsai, L., and Stadtman, T. C., 1984, Distribution of two sele- nonucleosides among the selenium-containing t RNAs from Methanococcus vanielii, Proc. Natl Acad. Sei. USA 81:57–60.CrossRefGoogle Scholar
  75. Christensen, D., 1984, Determination of substrates oxidized by sulfate-reduction in intact cores of marine sediments, Limnol Oceanogr. 29:189–192.CrossRefGoogle Scholar
  76. Cloem, J. E., Cole, B. E., and Oremland, R. S., 1983, Autotrophic processes in Big Soda Lake, Nevada, Limnol Oceanogr. 28:1049–1061.CrossRefGoogle Scholar
  77. Compeau, G. C., and Bartha, R., 1985, Sulfate-reducing bacteria: Principal methylators of mercury in anoxic estuarine sediment, Appl Environ. Microbiol 50:498–502.PubMedGoogle Scholar
  78. Compeau, G. C., and Bartha, R., 1987, Effect of salinity on mercury-methylating activity of sulfate-reducing bacteria in estuarine sediments, Appl Environ. Microbiol 53:261–265.PubMedGoogle Scholar
  79. Conrad, R., and Seiler, W., 1980, Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil, Appl Environ. Microbiol 40:437–445.PubMedGoogle Scholar
  80. Comforth, I. S., 1975, The persistence of ethylene in aerobic soils. Plant Soil 42:85–96.CrossRefGoogle Scholar
  81. Coty, V. F., 1967, Atmospheric nitrogen fixation by hydrocarbon-utilizing bacteria,Biotech. Bioeng 9:25–32.CrossRefGoogle Scholar
  82. Cox, R. B., and Zatman, L. J., 1976, The effect of fluoroacetate on the growth of the facultative methylotrophs bacterium 5H2 and Pseudomonas AMI and bacterium 5B2,J. Gen. Microbiol 93:397–400.PubMedGoogle Scholar
  83. Cresswell, R. C., and Syrett, P. J., 1984, Effects of methylammonium and of l-methionine- dl-sulfoximine on the growth and nitrogen metabolism of Phaeodactylum tricornutum. Arch. Microbiol 139:67–71.CrossRefGoogle Scholar
  84. Culbertson, C. W., 1983, Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. M. S. Thesis, San Francisco State University.Google Scholar
  85. Culbertson, C. W., and Oremland, R. S., 1983, Anaerobic growth of the enrichment culture on acetylene gas, in: Abstracts Third International Symposium on Microbial Ecology, p. A4.Google Scholar
  86. Culbertson, C. W., Zehnder, A. J. B., and Oremland, R. S., 1981, Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures, Appl Environ. Microbiol 41:396–403.PubMedGoogle Scholar
  87. Daday, A., Platz, R. A., and Smith, G. D., 1977, Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena cylindrica, Appl Environ. Microbiol 34:478–483.Google Scholar
  88. Dalton, H., 1977, Ammonia oxidation by the methane oxidizing bacterium Methylococcus capsulatus strain Bath, Arch. Microbiol 114:273–279.CrossRefGoogle Scholar
  89. Dalton, H., and Whittenbury, R., 1976, The acetylene reduction technique as an assay for nitrogenase activity in the methane oxidizing bacterium Methylococcus capsulatus strain Bath,Arch. Microbiol 109:147–151.CrossRefGoogle Scholar
  90. Davis, J. B., and Yarbrough, H. F., 1966, Anaerobic oxidation of hydrocarbons by Desul- fovibrio desulfuricans, Chem. Geol 1:137–144.CrossRefGoogle Scholar
  91. Dawson, R. M. C, Elliott, D. C., Elliott, W. H., and Jones, K. M. (eds.) 1969, Data for Biochemical Research, 2nd ed., Oxford University Press, New York.Google Scholar
  92. De Bont, J. A. M., 1976a, Oxidation of ethylene by soil bacteria, Antonie Leeuwenhoek J. Microbiol Serol 42:59–71.Google Scholar
  93. De Bont, J. A. M., 1976b, Bacterial degradation of ethylene and the acetylene reduction test, Can. J. Microbiol 22:1060–1062.CrossRefGoogle Scholar
  94. De Bont, J. A. M., and Albers, A. J. M., 1976, Microbial metabolism of ethylene, Antonie Leeuwenhoek J. Microbiol. Serol. 42:73–80.Google Scholar
  95. De Bont, J. A. M., and Harder, W., 1978, Metabolism of ethylene byMycobacterium E 20, FEMS Microbiol Lett. 3:89–93.CrossRefGoogle Scholar
  96. De Bont, J. A. M., and Mulder, E. G., 1974, Nitrogen fixation and cooxidation of ethylene by a methane-utilizing bacterium, J. Gen. Microbiol. 83:113–121.Google Scholar
  97. De Bont, J A. M., and Mulder, E. G., 1976, Invalidity of the acetylene reduction assay in alkane-utilizing, nitrogen-fixing bacteria, Appl. Environ. Microbiol 31:640–647.PubMedGoogle Scholar
  98. De Bont, J. A. M., and Peck, M. W., 1980, Metabolism of acetylene by Rhodococcus Al, Arch. Microbiol 127:99–104.CrossRefGoogle Scholar
  99. Dellinger, C. A., and Ferry, J. G., 1984, Effect of monensin on growth and methanogenesis ofMethanobacterium formicicum, Appl Environ. Microbiol 48:680–682.PubMedGoogle Scholar
  100. Delwiche, C. C., 1981, The nitrogen cycle and nitrous oxide, in: Denitrification, Nitrification and Atmospheric Nitrous Oxide (C. C. Delwiche, ed.), pp. 1–15, Wiley, New York.Google Scholar
  101. Devol, A. H., 1983, Methane oxidation rates in the anaerobic sediments of Saanich Inlet, Limnol Oceanogr. 28:738–742.CrossRefGoogle Scholar
  102. Devol, A. H., Anderson, J. J., Kuivila, K., and Murray, J. W., 1984, A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet, Geochim. Cosmochim. Acta 48:993–1004.CrossRefGoogle Scholar
  103. Dicker, H. J., and Smith, D. W., 1980, Physiological ecology of acetylene reduction (nitrogen fixation) in a Delaware salt marsh, Microb. Ecol 6:161–171.CrossRefGoogle Scholar
  104. Dicker, H. J., and Smith D. W., 1985a, Effects of organic amendments on sulfate reduction activity, H2 consumption, and H2 production in salt marsh sediments, Microb. Ecol 11:299–315.CrossRefGoogle Scholar
  105. Dicker, H. J., and Smith, D. W., 1985b, Metabolism of low molecular weight organic compounds by sulfate-reducing bacteria in a Delaware saltmarsh, Microb. Ecol 11:317–335.CrossRefGoogle Scholar
  106. Dilworth, M. J., 1966, Acetylene-reduction by nitrogen-fixing preparations from Clostridium pasteurianum, Biochem. Biophys. Acta 127:285–294.PubMedCrossRefGoogle Scholar
  107. Dodds, K. L., and Collins-Thompson, D. L., 1985, Production of N2O and CO2 during the reduction of NO2 - by Lactobacillus lactis TS4, Appl Environ. Microbiol 50:1550- 1552.PubMedGoogle Scholar
  108. Duguay, L. E., and Taylor, D. L., 1978, Primary production and calcification by the soritid fordimimfQx Archais angulatus (Fichtel & Moll), J. Protozool 25:356.Google Scholar
  109. Duran, A., Cabib, E., and Bowers, B., 1979, Chitin synthetase distribution on the yeast plasma membrane. Science 203:363–365.PubMedCrossRefGoogle Scholar
  110. Ehrlich, H. L., 1966, Reactions of manganese by bacteria from marine ferromanganese nodules, Dev. Ind. Microbiol 13:57–65.Google Scholar
  111. Ehrlich, H. L., 1968, Bacteriology of manganese nodules. IL Manganese oxidation by cell- free extracts from a manganese nodule bacterium, Appl Microbiol 16:196–202.Google Scholar
  112. Ehrlich, H. L., 1978, Inorganic energy sources for chemolithotrophs and mixotrophic bacteria, Geomicrobiol J. 1:65–83.CrossRefGoogle Scholar
  113. Ehriich, H. L., 1981,Geomicrobiology, Dekker, New York.Google Scholar
  114. Eisbrenner, G., and Bothe, H., 1979, Modes of electron transfer for molecular hydrogen in Anabaena cylindrica, Arch. Microbiol 123:37–45.CrossRefGoogle Scholar
  115. Elleway, R. F., Sabine, J. R., and Nicholas, D. J. D., 1971, Acetylene reduction by rumen microflora. Arch. Microbiol 76:277–291.Google Scholar
  116. Elrifi, I., and Turpin, D. F., 1986, Nitrate and ammonium induced photosynthetic supres- sion in N-limited Selenastrum minutum, Plant Physio. 81:273–279.CrossRefGoogle Scholar
  117. Emerson, S., Kalhorn, S., Jacobs, L., Tebo, B. M., Nealson, K. H., and Rosson, R. A., 1982, Environmental oxidation rate of manganese (II): Bacterial catalysis, Geochim. Cosmochim. Acta 46:1073–1079.CrossRefGoogle Scholar
  118. Enoch, H. G., and Lester, R. L., 1972, Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzymes in Escherichia coli, J. Bacteriol 110:1032–1040.Google Scholar
  119. Ereckinska, M., and Wilson, D. F. (eds.), 1984, Inhibition of Mitochondrial Function, Pergamon Press, New York.Google Scholar
  120. Evans, H. J., and Barber, L. E., 1977, Biological nitrogen fixation for food and fiber production, Science 197:332–339.PubMedCrossRefGoogle Scholar
  121. Evans, D. G., Beauchamp, E., and Trevors, J. T., 1985, Sulfide alleviation of the acetylene inhibition of nitrous oxide reduction in soil,Appl Environ. Microbiol 49:217–220.PubMedGoogle Scholar
  122. Falkowski, P., 1983, Enzymology of nitrogen assimilation, in Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone), pp. 809–838, Academic Press, New York.Google Scholar
  123. Fedorova, R. I., Milekhina, E. I., and L’yukhina, I., 1973, Evaluation of the method of "gas metabolism" for detecting extraterrestrial life. Identification of nitrogen-fixing microorganisms,Izv. Akad. Nauk SSSR Ser. Biol 6:797–806.Google Scholar
  124. Fenchel, T. M., and Riedl, R. J., 1970, The sulfide system: A new biotic community underneath the oxidized layer of marine sand bottoms. Mar. Biol 7:255–268.CrossRefGoogle Scholar
  125. Ferenci, T., 1974, Carbon monoxide-stimulated respiration in methane-utilizing bacteria, FEBS Lett. 11:94–97.CrossRefGoogle Scholar
  126. Fischer, C. R., Childress, J. J, Oremland, R. S., and Bidigare, R. R., 1987, The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep sea mussels. Marine Biol 96:59–72.CrossRefGoogle Scholar
  127. Flores, E., Guerro, M. G., and Losada, M., 1980, Short-term ammonium inhibition of nitrate utilization by Anacystis nidulans and other cyanobacteria, Arch. Microbiol 128:137–144.CrossRefGoogle Scholar
  128. Franklin, T. J., and Snow, G. A., 1981, Biochemistry of Antimicrobial Action, 3rd ed.. Chapman and Hall, New York.Google Scholar
  129. Fuhrman, J. A., and Azam, F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica, and California, Appl Environ. Micobiol 39:1085–1095.Google Scholar
  130. Fuhrman, J. A., and Azam, F., 1982, Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: Evaluation of field results. Mar. Biol 66:109–120.CrossRefGoogle Scholar
  131. Fuhrman, J. A., and McManus, G. B., 1984, Do bacteria-sized marine eukaryotes consume significant bacterial production?, Science 224:1257–1259.PubMedCrossRefGoogle Scholar
  132. Fuhrman, J. A., Ducklow, H. W., Kirchman, D. L., Hudak, J., McManus, G. B., and Kramer, J., 1986, Does adenine incorporation into nucleic acids measure total microbial production? Limnol Oceanogr. 31:627–636.CrossRefGoogle Scholar
  133. Furusaka, C., 1961, Sulfate transport and metabolism by Desulfovibrio desulfuricans, Nature 192:427–429.Google Scholar
  134. Gadd, G. M., and Griffiths, A. J., 1978, Microorganisms and heavy metal toxicity, Microb. Ecol 4:303–317.CrossRefGoogle Scholar
  135. Ghiorse, W. C., and Ehrlich, H. L., 1976, Electron transport components of the MnO2 reductase system and the location of terminal reductase in a marine Bacillus, Appl Environ. Microbiol 31:977–985.PubMedGoogle Scholar
  136. Glover, H. E., 1982, Methylamine, an inhibitor of ammonium oxidation and chemoauto- trophic growth in the marine, nitrifying bacterium Nitrosococcus oceanus, Arch. Microbiol 132:37–40.CrossRefGoogle Scholar
  137. Glover, H. E., and Morris, I., 1979, Photosynthetic carboxylating enzymes in marine phy- toplankton, Limnol Oceanogr. 24:510–519.CrossRefGoogle Scholar
  138. Goodman, B. A., and Cheshire, M. V., 1982, Reduction of molybdate by soil organic matter: EPR evidence for formation of both Mo(V) and Mo(III), Nature 299:618–620.CrossRefGoogle Scholar
  139. Gordon, J. K., and Brill, W. J., 1974, Derepression of nitrogenase synthesis in the presence of excess NH4+, Biochem. Biophys. Res. Commun. 59:967–971.PubMedCrossRefGoogle Scholar
  140. Goring, C. A., 1962, Control of nitrification by 2-chloro-6 (trichloromethyl) pyridine. Soil, Sd. 93:211–218.CrossRefGoogle Scholar
  141. Gottleib, D., and Shaw, P. D., (eds.), 1967, Antibiotics, Vol. 1: Mechanism of Action, Springer-Verlag, New York.Google Scholar
  142. Graham, B. M., Hamilton, R. D., and Campbell, N. E. R., 1980, Comparison of the nitro- gen-15 uptake and acetylene reduction methods for estimating the rates of nitrogen fixation by freshwater blue-green algae, Can. J. Fish. Aquat. Sei. 37:488–493.CrossRefGoogle Scholar
  143. Grbic-Galic, D., and Young, L. Y., 1985, Methane fermentation of ferulate and benzoate: Anaerobic degradation pathways, Appl. Environ. Microbiol. 50:292–297.PubMedGoogle Scholar
  144. Green, J., Prior, S. D., and Dalton, H., 1985, Copper ions as inhibitors of protein C of soluble methane monooxygenase ofMethylococcus capsulatus (Bath), Eur. J. Biochem. 153:137–144.PubMedCrossRefGoogle Scholar
  145. Gunsalus, R. P., and Wolfe, R. S., 1978, ATP activation and properties of the methyl coen-zyme M reductase system in Methanobacterium thermoautotrophicum, J. Bacteriol. 135:851–857.PubMedGoogle Scholar
  146. Gunsalus, R. P., and Wolfe, R. S., 1980, Methyl coenzyme M reductase from Methanobac-f terium thermoautotrophicum. Resolution and properties of the components, J. Biol. Chem. 255:1891–1895.PubMedGoogle Scholar
  147. Gunsalus, R. P., Roemesser, J. A., and Wolfe, R. S., 1978, Preparation of coenzyme M analogues and their activity in the methyl coenzyme M reductase system of Methanobacterium thermoautotrophicum. Biochemistry 17:2374–2377.PubMedCrossRefGoogle Scholar
  148. Habets-Crutzen, A. Q. H., and de Bont, J. A. M., 1985, Inactivation of alkene oxidation by epoxides in alkene- and alkane-grown bacteria,Appl. Microbiol. Biotechnol. 22:428–433.CrossRefGoogle Scholar
  149. Habte, M., and Alexander, M., 1980, Nitrogen fixation by photosynthetic bacteria in low-land rice culture, Appl. Environ. Microbiol. 39:342–347.PubMedGoogle Scholar
  150. Hahn, F. E. (ed.), 1983, Antibiotics, Vol. 6: Modes and Mechanisms of Microbial Growth Inhibitors, Springer-Verlag, Berlin.Google Scholar
  151. Hall, G. H., 1982, Apparent and measured rates of nitrification in the hypolimnion of a mesotrophic lake, Appl. Environ. Microbiol 43:542–547.PubMedGoogle Scholar
  152. Hall, G. H., 1984, Measurement of nitrification rates in lake sediments: Comparison of the nitrification inhibitors nitrapyrin and allythiourea, Microb. Ecol 10:25–36.CrossRefGoogle Scholar
  153. Hardy, R. W. F., and Havelka, U. D., 1975, Nitrogen fixation research: A key to world food?. Science. 188:633–642.PubMedCrossRefGoogle Scholar
  154. Hardy, R. W. F., Holsten, R. D., Jackson, E. K., and Bums, R. C., 1968, The acetylene- ethylene assay for N2 fixation: Laboratory and field evaluation, Plant Physiol 43:1185–1207.PubMedCrossRefGoogle Scholar
  155. Harrison, W. G., 1983, Use of isotopes, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 763–808, Academic Press, New York.Google Scholar
  156. Harrits, S. M., and Hanson, R. S., 1980, Stratification of aerobic methane-oxidizing organisms in Lake Mendota, Madison, Wisconsin, Limnol Oceanogr. 25:412–421.CrossRefGoogle Scholar
  157. Healy, J. B., Young, L. Y., and Reinhard, M., 1980, Methanogenic decomposition of ferulic acid, a model lignin derivative, App. Environ. Microbiol 39:436–444.Google Scholar
  158. Henninger, N. M., and Bollag, J. M., 1976, Effect of chemicals used as nitrification inhibitors on the denitrification process.Can. J. Microbiol 22:688.CrossRefGoogle Scholar
  159. Hendrickson, L. I., and Keeney, D. R., 1979a, Effect of some physical and chemical factors on the rate of hydrolysis of nitrapyrin (N-serve), Soil Biol Biochem. 11:47–50.CrossRefGoogle Scholar
  160. Hendrickson, L. I., and Keeney, D. R., 1979b, A bioassay to determine the effect of organic matter and pH on the effectiveness of nitrapyrin (N-serve) as a nitrification inhibitor, Soil Biol Biochem. 11:51–55.CrossRefGoogle Scholar
  161. Henriksen, K., 1980, Measurement of in situ rates of nitrification in sediment, Microb. Ecol 6:329–337.CrossRefGoogle Scholar
  162. Higgins, I. J., and Quayle, J. R., 1970, Oxygenation of methane by methane grown Pseudomonas methanica and Methylomonas methano-oxidans, Biochem. J. 118:201–208.PubMedGoogle Scholar
  163. Hill, I. R., and Wright, S. J. L. (eds.), 1978, Pesticide Microbiology, Academic Press, New York.Google Scholar
  164. Hillmer, P., and Fahlbusch K., 1979, Evidence for an involvement of glutamine synthetase in regulation of nitrogenase activity inRhodopseudomonas capsulata, Arch Microbiol 122:213–218.CrossRefGoogle Scholar
  165. Hilpert, R., Winter, J., Hammes, W., and Kandier, O., 1981, The sensitivity of archaebac- teria to antibiotics, Zentralbl Bakteriol Hyg. Abt. Orig. 2:11–20.Google Scholar
  166. Hines, M. E., and Lyons, W. B., 1982, Biogeochemistry of nearshore Bermuda sediments. I. Sulfate reduction rates and nutrient generation. Mar. Ecol. Prog. Ser. 8:87–94.CrossRefGoogle Scholar
  167. Hobbie, J., and Williams, P. J. LeB. (eds.), 1984, Heterotrophic Activity in the Sea, Plenum Press, New York.Google Scholar
  168. Hochachka, P. W., and Somero, G. N., 1984, Biochemical Adaptation, Princeton University Press, Princeton, New Jersey.Google Scholar
  169. Hordijk, K. A., Hagenaars, C. P. M. M., and Cappenberg, T. E., 1985, Kinetic studies of bacterial sulfate reduction in freshwater sediments by high-pressure liquid chromatography and microdistillation, Appl Environ. Microbiol 49:434–440.PubMedGoogle Scholar
  170. Horrigan, S. G., and Capone, D. G., 1985, Rates of nitrification and nitrate reduction in nearshore marine sediments at near ambient substrate concentrations.Mar. Chem. 16:317–327.CrossRefGoogle Scholar
  171. Hou, C. T., Patel, R., Laskin, A. I., and Bamabe, N., 1979, Microbial oxidation of gaseous hydrocarbons: Epoxidation of C2 to C4-alkenes by methylotrophic bacteria, Appl Environ. Microbiol 38:127–134.PubMedGoogle Scholar
  172. Houchins, J. P., and Burris, R. H., 1981, Physiological reactions of the reversible hydrogen- ase from Anabaena 7120, Plant Physiol 68:717–721.PubMedCrossRefGoogle Scholar
  173. Howarth, R. W., and Cole, J. J., 1985, Molybdenum availability, nitrogen limitation, and phytoplankton growth in natural waters. Science 229:653–655.PubMedCrossRefGoogle Scholar
  174. Huber, D. M., Murray, G. A., and Crane, J. M., 1969, Inhibition of nitrification as a deterrent to nitrogen loss. Soil Sei. Soc. Am. J. 33:975–976.CrossRefGoogle Scholar
  175. Huber, D. M., Warren, H. L., Nelson, D. W., and Tsai, C. Y., 1977, Nitrification inhibitors—New tools for food production. Bioscience 27:523–529.CrossRefGoogle Scholar
  176. Hubley, J. H., Thomson, A. W., and Wilkinson, J. F., 1975, Specific inhibitors of methane oxidation inMethylosinus trichosporium. Arch. Microbiol 102:199–202.CrossRefGoogle Scholar
  177. Hyman, M. R., and Arp, D., 1987, Quantification and removal of some contaminating gases from acetylene used to study gas-utilizing enzymes and microorganisms, Appl Environ. Microbiol 53:298–303.PubMedGoogle Scholar
  178. Hyman, M. R., and Wood, P. M., 1985, Suicidal inactivation and labelling of ammonia mono-oxygenase by acetylene, Biochem. J. 227:719–725.PubMedGoogle Scholar
  179. Hynes, R. K., and Knowles, R., 1978, Inhibition by acetylene of ammonia oxidation in Nitrosomonas europaea, FEMS Microbiol Lett. 4:319–321.CrossRefGoogle Scholar
  180. Hynes, R. K., and Knowles, R., 1982, Effect of acetylene on autotrophic and heterotrophic nitrification, Can. J. Microbiol 28:334–340.CrossRefGoogle Scholar
  181. Hynes, R. K., and Knowles, R., 1983, Inhibition of chemoautotrophic nitrification by sodium chlorate and sodium chlorite: A reexamination, Appl Environ. Microbiol 45:1178–1182.PubMedGoogle Scholar
  182. Hynes, R. K., and Knowles, R., 1984, Production of nitrous oxide by Nitrosomonas europaea: Effects of acetylene, pH, and oxygen. Can. J. Microbiol 30:1397–1404.CrossRefGoogle Scholar
  183. Hag, L., and Curtis, R. W., 1968, Production of ethylene by fungi, Science 159:1357.CrossRefGoogle Scholar
  184. Indrebo, G., Pengerud, B., and Dundas, I., 1979, Microbial activities in a permanently stratified estuary. II. Microbial activities at the oxic-anoxic interface, Mar. Biol 51:305–309.CrossRefGoogle Scholar
  185. Iversen, N., and Blackburn, T. H., 1981, Seasonal rates of methane oxidation in anoxic marine sediments, Appl. Environ. Microbiol. 41:1295–1300.PubMedGoogle Scholar
  186. Iversen, N., and Jorgensen, B. B., 1985, Anaerobic methane oxidation rates at the sulfate- methane transition in marine sediments from Kattegat and Skagerrat (Denmark), Lim- nol. Oceanogr. 30:944–955.CrossRefGoogle Scholar
  187. Iversen, N., Oremland, R. S., and Klug, M. J., 1987, Big Soda Lake (Nevada). 3. Pelagic methanogenesis and anaerobic methane-oxidation, Limnol. Oceanogr. 32:804–814.CrossRefGoogle Scholar
  188. Izawa, S., 1980, Acceptors and donors for chloroplast electron transport, in: Methods in Enzymology, Vol. 69 (A. San Pietro, ed.), pp. 413–434, Academic Press, New York.Google Scholar
  189. Jacobson, M. E., Mackin, J. E., and Capone, D. G., 1987, Ammonium production in sediments inhibited with molybdate: Implications for the sources of ammonium in anoxic marine sediments, Appl. Environ. Microbiol, 53:2435–2439.PubMedGoogle Scholar
  190. Jain, B., 1982,Handbook of Enzyme Inhibitors, Wiley, New York.Google Scholar
  191. Jannasch, H. W., and Wirsen, C. O., 1979, Chemosynthetic primary production at east Pacific sea floor spreading centers. Bioscience 29:592–598.CrossRefGoogle Scholar
  192. Jarrell, K. F., and Hamilton, E. A., 1985, Effect of gramicidin on methanogenesis by various methanogenic bacteria, Appl. Environ. Microbiol. 50:179–182.PubMedGoogle Scholar
  193. Jarrell, K. F., and Sprott, G. D., 1983, The effect of ionophores and metabolic inhibitors on methanogenesis and energy-related properties of Methanobacterium bryantii, Arch. Biochem. Biophys. 225:33–41.PubMedCrossRefGoogle Scholar
  194. Jenkins, M. C., and Kemp, W. M., 1984, The coupling of nitrification and denitrification in two estuarine sediments, Limnol. Oceanogr. 29:598–608.CrossRefGoogle Scholar
  195. Jensen, S., and Jumelov, A., 1969, Biological methylation of mercury in aquatic environments, Nature 223:753–754.PubMedCrossRefGoogle Scholar
  196. Johnson, P. W., and Sieburth, J. McN., 1982, In-situ morphology and occurrence of eucary- otic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters, J. Phycol. 18:318–327.CrossRefGoogle Scholar
  197. Jones, J. B., and Stadtman, T. A., 1977, Methanococcus vannielii: Culture and effects of selenium and tungsten on growth, J. Bacteriol. 130:1404–1406.PubMedGoogle Scholar
  198. Jones, J. B., and Stadtman, T. C., 1981, Selenium-dependent and selenium-independent formate dehydrogenases of Methanococcus vannielii. Separation of the two forms and characterization of the purified selenium-independent form, J. Biol. Chem. 256:656–663.PubMedGoogle Scholar
  199. Jones, J. G., and Simon, B. M., 1985, Interactions of acetogens and methanogens in anaerobic freshwater sediments, Appl. Environ. Microbiol. 49:944–948.PubMedGoogle Scholar
  200. Jones, J. G., Simon, B. M., and Gardener, S., 1982, Factors affecting methanogenesis and associated anaerobic processes in the sediments of a stratified eutrophic lake, J. Gen. Microbiol. 128:1–11.Google Scholar
  201. Jones, R. D., and Morita, R. Y., 1983a, Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers, Can. J. Microbiol. 29:1545–1551.CrossRefGoogle Scholar
  202. Jones, R. D., and Morita, R. Y., 1983b, Methane oxidation by Nitrosococcus oceanus and Nitrosomonas europea, Appl. Environ. Microbiol. 45:401–410.PubMedGoogle Scholar
  203. Jones, R. D., and Morita, R. Y., 1984, Effect of several nitrification inhibitors on carbon monoxide and methane oxidation by ammonium oxidizers, Can. J. Microbiol. 30:1276–1279.CrossRefGoogle Scholar
  204. Jones, R. D., Morita, R. Y., and Griffiths, R. P., 1984, Methods for estimating in situ chemolithotrophic ammonium oxidation using carbon monoxide oxidation, Mar. Ecol. Prog Ser. 17:259–269.CrossRefGoogle Scholar
  205. Jones, T. W., and Estes, P. S., 1984, Uptake and phytotoxicity of soil-sorbed atrazine for the submerged aquatic plant,Potamogeton perfoliatus L.,Arch. Environ. Contam. Toxicol. 13:237–241.CrossRefGoogle Scholar
  206. Jorgensen, B. B., 1982, Ecology of the bacteria of the sulfur cycle with special reference to anoxic-oxic interface environments. Phil Trans. R. Soc. Lond. B 298:543–561.CrossRefGoogle Scholar
  207. Kandier, O., and Hippe, H., 1977, Lack of peptidoglycan in the cell walls of Methanosarcina barken, Arch. Microbiol. 113:57–60.CrossRefGoogle Scholar
  208. Kandier, O., and König, H., 1978, Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch. Microbiol. 118:141–152.CrossRefGoogle Scholar
  209. Kanner, D., and Bartha, R., 1979, Growth of Nocardia rhodochrous on acetylene gas, J. Bacteriol. 139:225–230.PubMedGoogle Scholar
  210. Kanner, D., and Bartha, R., 1982, Metabolism of acetylene by Nocardia rhodochrous, J. Bacteriol. 150:989–992.PubMedGoogle Scholar
  211. Kaplan, W. A., 1983, Nitrification, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 139–190, Academic Press, New York.Google Scholar
  212. Kaspar, H. F., 1982, Denitrification in marine sediments: Measurement of capacity and estimate of in situ rate, Appl. Environ. Microbiol. 43:522–527.PubMedGoogle Scholar
  213. Kaspar, H. F., and Tiedje, J. M., 1981, Denitrification and dissimilatory reduction of nitrate and nitrite in the bovine rumen: Nitrous oxide production and effect of acetylene, Appl. Environ. Microbiol. 41:705–709.PubMedGoogle Scholar
  214. Katunuma, N., Umezawa, H., and Holzer, H., 1983, Proteinase Inhibitors: Medical and Biological Aspects, Japan Science Society Press, Tokyo.Google Scholar
  215. Kays, S. J., and Pallas, J. E., Jr., 1980, Inhibition of photosynthesis by ethylene. Nature 285:51–52.CrossRefGoogle Scholar
  216. Kelly, D. P., 1982, Biochemistry of the chemolithotrophic oxidation of inorganic sulphur, Phil. Trans. R. Soc. Lond. B 298:499–528.CrossRefGoogle Scholar
  217. Kemps, C. W., Curtiss, M. A., Robrish, S. A., and Bowen, W. H., 1983, Biogenesis of methane in primate dental plaque, FEBS Lett. 155:61–64.CrossRefGoogle Scholar
  218. Kenealy, W., and Zeikus, J. G., 1981, Influence of corrinoid antagonists on methanogen metabolism, J. Bacteriol. 146:133–140.PubMedGoogle Scholar
  219. Kepkay, P. E., Cooke, R. C., and Novitsky, J. A., 1979, Microbial autotrophy: A primary source of organic carbon in marine sediments.Science 204:68–69.PubMedCrossRefGoogle Scholar
  220. Kiene, R. P., and Capone, D. G., 1985, Degassing of pore water methane during sediment incubations, Appl. Environ. Microbiol. 49:143–147.PubMedGoogle Scholar
  221. Kiene, R. P., and Visscher, P., 1987. Metabolism of the terminal s-methyl group of methionine in anoxic sediments.Appl. Environ. Microbiol. 53:2426–2434.PubMedGoogle Scholar
  222. Kiene, R. P., Oremland, R. S., Catena, A., Miller, L. G., and Capone, D. G., 1986, Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen, Appl. Environ. Microbiol 52:1037–1045.PubMedGoogle Scholar
  223. King, G. M., 1984, Metabolism of trimethylamine, choline, and glycine betaine by sulfate- reducing and methanogenic bacteria in marine sediments, Appl Environ. Microbiol 48:719–725.PubMedGoogle Scholar
  224. King, G. M., Klug, M. J., and Lovely, D. R., 1983, Metabolism of acetate, methanol, and methylated amines in intertidal sediments of Lowes Cove, Maine, Appl Environ. Microbiol 45:1848–1853.PubMedGoogle Scholar
  225. Knowles, R., 1979, Denitrification, acetylene reduction and methane metabolism in lake sediment exposed to acetylene, Appl Environ. Microbiol 38:486–493.PubMedGoogle Scholar
  226. Knowles, R., 1983, Denitrification, Microbiol Rev. 46:43–70.Google Scholar
  227. Kosiur, D. R., and Warford, A. L., 1979, Methane production and oxidation in Santa Barbara Basin sediments, Est. Coast. Mar. ScL 8:379–385.CrossRefGoogle Scholar
  228. Kuenen, J. G., and Beudeker, R. F., 1982, Microbiology of thiobacilli and other sulphur- oxidizing autotrophs, mixotrophs and heterotrophs, Phil Trans. R. Soc. Lond. B 298:473–497.CrossRefGoogle Scholar
  229. Kun, E., 1969, Mechanism of action of fluoro analogs of citric acid cycle compounds: An.essay on biochemical tissue specificity, in: Citric Acid Cycle, Control and Compartmen- tation (J. M. Lowenstein, ed.), pp. 297–339, Dekker, New York.Google Scholar
  230. Lai, R. (ed.), 1984, Insecticide Microbiology, Springer-Verlag, Berlin.Google Scholar
  231. Lambert, G. R., and Smith, G. D., 1981, The hydrogen metabolism of cyanobacteria (blue- green algae), Biol Rev. 56:589–660.CrossRefGoogle Scholar
  232. Lambert, G. R., Daday, A., and Smith, G. D., 1979, Effects of ammonium ions, oxygen, carbon monoxide, and acetylene on anaerobic and aerobic hydrogen formation by Ana- baena cylindrica B629, Appl Environ. Microbiol 38:521–529.PubMedGoogle Scholar
  233. Lancini, G., and Parenti, F., 1982, Antibiotics: An Integrated View, Springer-Verlag, Berlin.Google Scholar
  234. Landry, M. R., and Hassett, R. P., 1982, Estimating the grazing impact of marine micro-’ Zooplankton, Mar. Biol 67:282–288.CrossRefGoogle Scholar
  235. Legendre, L., Demers, S., Yentsch, C. M., and Yensch, C. S., 1983, The 14C method: Patterns of dark CO2 fixation and DCMU correction to replace the dark bottle, Limnol Ocean-ogr. 28:996–1003.CrossRefGoogle Scholar
  236. Leighton, T., Markes, E., and Leighton, F., 1981, Pesticides: Insecticides and fungicides are Chitin synthesis inhibitors, Science 213:905–907.PubMedCrossRefGoogle Scholar
  237. Lethbridge, G., Davison, M. S., and Sparung, G. P., 1982, Critical evaluation of the acetylene reduction test for estimating the activity of nitrogen-fixing bacteria associated with the roots of wheat and bariey.Soil Biol Biochem. 14:27–35.CrossRefGoogle Scholar
  238. Li, W. K. W., and Dickie, P. M., 1985a, Metabolic inhibition of size-fractionated marine plankton radiolabeled with amino acids, glucose, bicarbonate, and phosphate in the light and dark, Microb. Ecol 11:11–24.CrossRefGoogle Scholar
  239. Li, W. K. W., and Dickie, P. M., 1985b, Growth of bacteria in seawater filtered through 0.2 /Ltm Nuclepore membranes: Implications for dilution experiments. Mar. Ecol Prog. Ser. 26:245–252.CrossRefGoogle Scholar
  240. Li, W. K. W., Subba Rao, V., Harrison, W. G., Smith, J. C., Gullen, J. J., Irwin, B., and Piatt, T., 1983, Autotrophic picoplankton in the tropical ocean. Science 219:292–295.PubMedCrossRefGoogle Scholar
  241. Lidstrom, M. E., 1983, Methane consumption in Framvaren Fjord, Limnol Oceanogr. 28:1247–1251.CrossRefGoogle Scholar
  242. Lipschultz, F., 1981, Methane release from a brackish intertidal salt-marsh embayment of Chesapeake Bay, Maryland, Estuaries 4:143–145.CrossRefGoogle Scholar
  243. Lovley, D. R., and Klug, M. J., 1982, Intermediary metabolism of organic matter in the sediments of a eutrophic lake,Appl Environ. Microbiol 43:522–560.Google Scholar
  244. Lovley, D. R., and Klug, M. J., 1983, Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations, Appl Environ. Microbiol 45:187–192.PubMedGoogle Scholar
  245. Lovley, D. R., Dwyer, D. F., and Klug, M. J., 1982, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments, Appl Environ. Microbiol 43:1373–1379.PubMedGoogle Scholar
  246. Macalaster, E. G., Barker, D. A., and Kasper, M. W. (eds.), 1983, Chesapeake Bay: A Profile of Environmental Change, U.S. Environmental Protection Agency.Google Scholar
  247. Martens, C. S., and Bemer, R. A., 1977, Interstitial water chemistry of anoxic Long Island Sound sediments. 1. Dissolved gases, Limnol Oceanogr. 22:10–25.CrossRefGoogle Scholar
  248. Martikainen, P. J., 1985, Nitrous oxide emission associated with autotrophic ammonium oxidation in acid coniferous forest soil, Appl Environ. Microbiol 50:1519–1525.PubMedGoogle Scholar
  249. Maurino, S. G., Vargas, M. A., Aparicio, P. J., and Maldonado, J. M., 1983, Blue-light reactivation of spinach nitrate reductase inactivated by acetylene or cyanide, Physiol Plant. 57:411–416.CrossRefGoogle Scholar
  250. McBride, B. C., and Edwards, T. L., 1977, Role of methanogenic bacteria in the alkylation of arsenic and mercury, in: Biological Implications of Metals in the Environment (H. Drucker and R. E. Wildung, eds.), pp. 1–17, ERDA Symposium Series 42, NTIS, Springfield, Virginia.Google Scholar
  251. McCambridge, J., and McMeekin, T. A., 1980, Relative effects of bacterial and protozoan predators on survival of Escherichia coli in estuarine water samples, Appl Environ. Microbiol. 40 :901–911. Google Scholar
  252. McCarthy, R. E., 1980, Delineation of the mechanism of ATP synthesis in chloroplasts: Use of uncouplers, energy transfer inhibitors, and modifiers of coupling factor, in: Methods in Enzymology, Vol. 69 (A. San Pietro, ed.) pp. 719–728, Academic Press, New York.Google Scholar
  253. McFadden, B. A., and Purohit, K., 1978, Chemosynthetic, photosynthetic, and cyanobac- terial ribulose bisphosphate carboxylase, in: Photosynthetic Carbon Assimilation (W. Siegleman and G. Hine, eds.), pp. 179–207. Plenum Press, New York.Google Scholar
  254. McKenna, C. E., and Huang, C. W., 1979, In vivo reduction of cyclopropene by Azotobacter vinelandii nitrogenase. Nature 280:609–610.CrossRefGoogle Scholar
  255. McKenna, C. E., Benemann, J. R., and Taylor, T. G., 1970, A vanadium containing nitrogenase preparation: Implications for the role of molybendenum in nitrogen fixation, Biochem. Biophys. Res. Commun. 41:1501–1508.PubMedCrossRefGoogle Scholar
  256. Meyers, A. J., 1980, Evaluation of bromomethane as a suitable analogue in methane oxidation studies, FEMS Microbiol. Lett. 9:297–300.CrossRefGoogle Scholar
  257. Meyers, A. J., 1982, Obligate methylotrophy: Evaluation of dimethylether as a C-1 compound, J. Bacteriol. 150:966–968.PubMedGoogle Scholar
  258. Moller, M. M., Nielsen, L. P., and Jorgensen, B. B., 1985, Oxygen responses and mat formation by Beggiatoa spp., Appl. Environ. Microbiol. 50:373–382.PubMedGoogle Scholar
  259. Mopper, K., and Taylor, B. F., 1986, Biogeochemical cycling of sulfur: Thiols in coastal marine sediments, in: Organic Marine Geochemistry (M. Sohn, ed.), pp. 324–339, American Chemical Society Symposium Series, Washington, D.C.CrossRefGoogle Scholar
  260. Moreno-Vivian, C., Cejudo, F. J., Cardenas, J., and Castillo, F., 1983, Ammonia assimilation pathways in Rhodopseudomonas capsulata El Fl, Arch. Microbiol. 136:147–151.CrossRefGoogle Scholar
  261. Moriarty, D. J. W., and Hayward, A. C., 1982, Ultrastructure of bacteria and the proportion of Gram-negative bacteria in marine sediments, Microb. Ecol. 8:1–14.CrossRefGoogle Scholar
  262. Mosier, A. R., 1980, Acetylene inhibition of ammonium oxidation in soil.Soil Biol. Biochem. 12:443–444.CrossRefGoogle Scholar
  263. Mountfort, D. O., Asher, R. A., Mays, E. L., and Tiedje, J. M., 1980, Carbon and electron flow in mud and sandflat sediments at Delaware Inlet, Nelson, New Zealand, Appl. Environ. Microbiol. 39:686–694.PubMedGoogle Scholar
  264. Murphy, L. S., and Haugen, E. M., 1985, The distribution and abundance of phototrophic ultraplankton in the North Atlantic, Limnol. Oceanogr. 30:47–58.CrossRefGoogle Scholar
  265. Murray, P. A., and Zinder, S. H., 1984, Nitrogen fixation by a methanogenic archaebacter- ium. Nature 312:284–286.CrossRefGoogle Scholar
  266. Naumann, E., Fahlbusch, K., and Gottshalk, G., 1984, Presence of a trimethylamine:HS- coenzyme M methyltransferase in Methanosarcina barkeri, Arch. Microbiol. 138:79–83.CrossRefGoogle Scholar
  267. Nedwell, D. B., 1982, The cycling of sulfur in marine and freshwater sediments, in: Sediment Microbiology, (D. B. Nedwell and C. M. Brown, eds.), pp. 73–106, Academic Press, New York.Google Scholar
  268. Nedwell, D. B., and Aziz, S., 1980, Heterotrophic nitrogen fixation in an intertidal saltmarsh sediment. Est. Coast. Mar. Sei. 10:699–702.CrossRefGoogle Scholar
  269. Nedwell, D. B., and Banat, L M., 1981, Hydrogen as an electron donor for sulfate-reducing bacteria in slurries of salt marsh sediment. Microb. Ecol. 7:305–313.CrossRefGoogle Scholar
  270. Newell, S. Y., Sherr, F. B., Sherr, E. B., and Fallon, R. D., 1983, Bacterial response to presence of eukaryote inhibitors in water from a coastal marine environment, Mar. Environ. Res. 10:147–157.CrossRefGoogle Scholar
  271. Nicholas, D. J. D., 1978, Intermediary metabolism of nitrifying bacteria, with particular reference to nitrogen, carbon and sulfur compounds, in: Microbiology—1978 (D. Schlessinger, ed.), pp. 305–309, American Society for Microbiology, Washington, D.C.Google Scholar
  272. Nicholas, D. J. D., Wilson, P. W., Heinen, W., Palmer, G., and Beinert, H., 1962. Use of electron paramagnetic resonance spectroscopy in investigations of functional metal components in micro-organisms, Nature 196:433–436.PubMedCrossRefGoogle Scholar
  273. Nishio, T., Koike, L, and Hattori, A., 1982, Denitrification nitrogen reduction and oxygen consumption in coastal and estuarine sediments, Appl Environ. Microbiol 43:648–653.PubMedGoogle Scholar
  274. Norqvist, A., and RofFey, R., 1983, Alternative method for monitoring the effect of inhibitors on sulfate reduction, J. Gen. Appl. Microbiol. 29:335–344.CrossRefGoogle Scholar
  275. Notton, B. A., Watson, E. F., and Hewitt, E. J., 1979, Effects of A-serve (2-chloro-6- [trichloromethyl] pyridine) formulations on nitrification and on loss of nitrate in sand culture experiements, Plant Soil 51:1–12.CrossRefGoogle Scholar
  276. O’Neill, J. G., and Wilkinson, J. F., 1977, Oxidation of ammonia by methane-oxidizing bacteria and the effects of ammonia on methane oxidation, J. Gen. Microbiol. 100:407–412.Google Scholar
  277. Oremland, R. S., 1975, Methane production in shallow-water, tropical marine sediments, Appl. Microbiol 30:602–608.PubMedGoogle Scholar
  278. Oremland, R. S., 1976, Studies on the methane cycle in tropical marine sediments. Dissertation, University of Miami, Miami, Florida.Google Scholar
  279. Oremland, R. S., 1979, Methanogenic activity in plankton samples and fish intestines: A mechanism for in situ methanogenesis in oceanic surface waters, Limnol Oceanogr. 24:1136–1141.CrossRefGoogle Scholar
  280. Oremland, R. S., 1981, Microbial formation of ethane in anoxic estuarine sediments, Appl Environ. Microbiol 42:122–129.PubMedGoogle Scholar
  281. Oremland, R. S., 1983, Hydrogen metabolism by decomposing cyanobacterial aggregates in Big Soda Lake, Nevada, Appl Environ. Microbiol 45:1519–1525.PubMedGoogle Scholar
  282. Oremland, R. S., and Polcin, S., 1982, Methanogenesis and sulfate-reduction: Competitive and non-competitive substrates in estuarine sediments, Appl Environ. Microbiol 44:1270–1276.PubMedGoogle Scholar
  283. Oremland, R. S., and Silverman, M. P., 1979, Microbial sulfate reduction measured by an automated electrical impedance technique,Geomicrobiol J. 1:355–372.CrossRefGoogle Scholar
  284. Oremland, R. S., and Taylor, B. F., 1975, Inhibition of methanogenesis in marine sediments by acetylene and ethylene: Validity of the acetylene reduction assay for anaerobic microcosms,Appl Microbiol 30:707–709.PubMedGoogle Scholar
  285. Oremland, R. S., and Taylor, B. F., 1978, Sulfate reduction and methanogenesis in marine sediments, Geochim. Cosmochim. Acta 42:209–214.CrossRefGoogle Scholar
  286. Oremland, R. S., and Zehr, J. P., 1986, Formation of methane and carbon dioxide from dimethylselenide in anoxic sediments and by a methanogenic bacterium, Appl Environ. Microbiol 52:1031–1036.PubMedGoogle Scholar
  287. Oremland, R. S., Marsh, L., and Des Marais, D. J., 1982a, Methanogenesis in Big Soda Lake, Nevada: An alkaline, moderately hypersaline desert lake, Appl Environ. Microbiol 43:462–468.PubMedGoogle Scholar
  288. Oremland, R. S., Marsh, L. M., and Polcin, S., 1982b, Methane production and simultaneous sulfate reduction in anoxic saltmarsh sediments. Nature 296:143–145.CrossRefGoogle Scholar
  289. Oremland, R. S., Culbertson, C. W., and Simoneit, B. R. T., 1982c, Methanogenic activity in sediment from Leg 64, Gulf of California, Init. Rep. Deep Sea Drilling Project 64:759–762.Google Scholar
  290. Oremland, R. S., Umberger, C., Culbertson, C. W., and Smith, R. L., 1984, Denitrification in San Francisco bay intertidal sediments, Appl Environ. Microbiol 47:1106–1112.PubMedGoogle Scholar
  291. Oremland, R. S., Cloem, J. E., Sofer, Z., Smith, R. L., Culbertson, C. W., Zehr, J., Miller, L., Cole, B., Harvey, R., Iversen, N., Klug, H., Des Marais, D. J., and Rav, G., 1988, Microbial and biogeochemical processes in Big Soda Lake, Nevada, in: Lacustrine petroleum source rocks (K. Kelts and A. Fleet, eds.) Geological Society, London (in press).Google Scholar
  292. Orth, R. J., and Moore, K. A., 1983, Chesapeake Bay: An unprecedented dedine in submerged aquatic vegetation, Science 222:51–53.PubMedCrossRefGoogle Scholar
  293. Pace, J., and McDermott, E, 1952, Methionine sulphoximine and some enzyme systems involving glutamine, Nature 169:415–416.PubMedCrossRefGoogle Scholar
  294. Paerl, H. W., 1983, Environmental regulation of H2 utilization (3H2 exchange) among natural and laboratory populations of N2 and non-Na fixing phytoplankton. Microb, Ecol 9:79–97.CrossRefGoogle Scholar
  295. Panganiban, Jr., A. T., Patt, T. E., Hart, W., and Hanson, R. S., 1979, Oxidation of methane in the absence of oxygen in lake water samples, Appl Environ. Microbiol 37:303–309.PubMedGoogle Scholar
  296. Patrick, Jr., W. H., Peterson, F. J., and Turner, F. T., 1968, Nitrification inhibitors for lowland rice. Soil Sei. 105:103–105.Google Scholar
  297. Paul, J. H. 1984. Effects of antimetabolites on the adhesion of an estuarine Vibrio sp. to polystyrene, Appl. Environ. Microbiol. 48:924–929.PubMedGoogle Scholar
  298. Payne, W. J., 1973, Gas chromatographic analysis of denitrification by marine bacteria, in: Estuarine Microbial Ecology (L. H. Stevenson, ed.), pp. 53–71, University of South Carolina Press, Columbia, South Carolina.Google Scholar
  299. Payne, W. J., 1981,Denitrification, Wiley, New York.Google Scholar
  300. Payne, W. J., 1984, Influence of acetylene on microbial and enzymatic assays,J. Microbiol. Meth. 2:117–133.CrossRefGoogle Scholar
  301. Payne, W. J., and Grant, M. A., 1982, Influence of acetylene on growth of sulfate-respiring bacteria, Appl. Environ. Microbiol. 43:727–730.PubMedGoogle Scholar
  302. Pearsall, K. A., and Bonner, F. T., 1980, Analysis of dinitrogen-nitrogen oxide mixtures employing direct vacuum line-gas Chromatograph injection, J. Chromatog. 200:224–227.CrossRefGoogle Scholar
  303. Peck, Jr., H. D., 1959, The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfiirican, Proc. Natl. Acad. Sei. USA 45:701–708.CrossRefGoogle Scholar
  304. Peck, Jr., H. D., 1960, Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen byDesulfovibrio desulfuricans, J. Biol. Chem. 235:2734–2738.PubMedGoogle Scholar
  305. Peck, Jr., H. D., 1962, The role of adenosine-5’-5-phosphosulfate in the reduction of sulfate to sulfite by Desulfovibrio desulfuricans, J. Biol. Chem. 237:198–203.PubMedGoogle Scholar
  306. Pedersen, D., and Sayler, G. D., 1981, Methanogenesis in freshwater sediments: Inherent variability and effects of environmental contaminants. Can. J. Microbiol. 27:198–205.PubMedCrossRefGoogle Scholar
  307. Peeters, T., and Aleem, M. I. H., 1970, Oxidation of sulfur compounds and electron transport in Thiobacillus denitrificans, Arch. Microbiol. 71:319–330.Google Scholar
  308. Pelczar, M. J., Jr., Chan, E. C. S., and Krieg, N. R., 1986, Microbiology, 5th ed., McGraw- Hill, New York.Google Scholar
  309. Peschek, G. A., 1979, Evidence for two functionally distinct hydrogenases in Anacystis nidu- lans. Arch. Microbiol. 123:81–92.CrossRefGoogle Scholar
  310. Peterson, H. G., 1986,Antimicrobial Agents Annual, Elsevier, New York.Google Scholar
  311. Peterson, R. B., and Burris, R. H., 1976, Conversion of acetylene reduction rates to nitrogen fixation rates in natural populations of blue-green algae, Anal. Biochem. 73:404–410.PubMedCrossRefGoogle Scholar
  312. Phelan, P. J., and Mattigod, S. V., 1984, Adsorption of molybdate anion (MoO4 2) by sodium-saturated kaolinite,Clays Clay Minerals 32:45–48.CrossRefGoogle Scholar
  313. Phelps, T. J., and Zeikus, J. G., 1985, Effect of fall turnover on terminal carbon metabolism in Lake Mendota sediments, Appl. Environ. Microbiol. 50:1285–1291.PubMedGoogle Scholar
  314. Pizzey, J. A., Bennett, F. A., and Jones, G. E., 1983, Monensin inhibits initial spreading of cultured human fibroblasts, Nature 305:315–317.PubMedCrossRefGoogle Scholar
  315. Piatt, T., Subba Rao, V., and Irwin, B., 1983, Photosynthesis of picoplankton in the oligo- trophic ocean, Nature 301:702–704.CrossRefGoogle Scholar
  316. Postgate, J., 1949, Competitive inhibition of sulfate reduction by selenate. Nature 172:670–671.CrossRefGoogle Scholar
  317. Postgate, J. R., 1952, Competitive and non-competitive inhibitors of bacterial sulfate reduction, J. Gen. Microbiol. 6:128–142.PubMedGoogle Scholar
  318. Postgate, J. R., 1979, The Sulfate-Reducing Bacteria, Cambridge University Press, Cambridge.Google Scholar
  319. Postgate, J. R., 1982, The Fundamentals of Nitrogen Fixation, Cambridge University Press, Cambridge.Google Scholar
  320. Poth, M., and Focht, D. D., 1985, ’15N kinetic analysis of N2O production by Nitrosomonas europaea: An examination of nitrifier denitrification, Appl. Environ. Microbiol 49:1134–1141.Google Scholar
  321. Powell, S. J., and Prosser, J. I., 1985, The effects of nitrapyrin and chloropicolinic acid on ammonium oxidation byNitrosomonas europaea, FEMS Microbiol Lett. 28:51–54.CrossRefGoogle Scholar
  322. Primrose, S. B., 1976, Ethylene-forming bacteria from soil and water, J. Gen. Microbiol 97:343–346.PubMedGoogle Scholar
  323. Primrose, S. B., 1977, Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli, J. Gen. Microbiol 98:519–528.PubMedGoogle Scholar
  324. Primrose, S. B., and Dilworth, M. J., 1976, Ethylene production by bacteria, J. Gen. Microbiol 93:l77–181.Google Scholar
  325. Prins, R. A., van Nevel, C. J., and Demeyer, D. L, 1972, Pure culture studies of inhibitors for methanogenic bacteria, Antonie Leeuwenhoek Microbiol Serol 38:281–287.CrossRefGoogle Scholar
  326. Prins, R. A., Cline-Thiel, W., Malestein, A., and Counotte, G. H. M., 1980, Inhibition of nitrate reduction in some rumen bacteria by tungstate, Appl Environ. Microbiol 40:163–165.PubMedGoogle Scholar
  327. Raimbault, M., 1975, Etude d’influence inhibitrice de I’acetylene sur la formation biolo- gique du methane dans un sol riziere, Ann. Microbiol Inst. Pasteur 126A:247–258.Google Scholar
  328. Ramirez, C., and Alexander, M., 1980, Evidence suggesting protozoan predation on Rhi- zobium associated with germinating seeds and in the rhizosphere of beans(Phaseolus vulgaris L.),Appl Environ. Microbiol 40:492–499.PubMedGoogle Scholar
  329. Ramos, J. L., and Guerrero, M. G., 1983, Involvement of ammonium metaboHsm in the nitrate inhibition of nitrogen fixation in Anabaena sp. ATCC 33047, Arch. Microbiol 136:81–83.CrossRefGoogle Scholar
  330. Reeburgh, W. S., 1976, Methane consumption in Cariaco Tranch waters and sediments, Earth Planet. ScL Lett. 15:334–337.Google Scholar
  331. Reeburgh, W. S., 1980, Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments. Earth Planet. Sci Lett. 47:345–352.CrossRefGoogle Scholar
  332. Reeburgh, W. S., and Heggie, D. T., 1977, Microbial methane consumption reactions and their effect on methane distributions in freshwater and marine environments, Limnol Oceanogr. 22:1–9.CrossRefGoogle Scholar
  333. Ribbons, D. W., 1975, Oxidation of C-1 compounds by particulate fractions from Meth- ylococcus capsulatus: Distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase), J. Bacteriol 122:1351–1363.PubMedGoogle Scholar
  334. Ribbons, D. W., and Michaelover, J. L., 1970, Methane oxidation by cell-free extracts of Methylococcus capsulatus, FEBS Lett. 11:41–44.PubMedCrossRefGoogle Scholar
  335. Richmond, M. H., 1969, Antimetabolites, antibacterial agents and enzyme inhibitors, in: Data for Biochemical Research, 2nd ed. (R. M. C. Dawson, D. C. Elliott, W. H. Elliott, and K. M. Jones, eds.), pp. 335–404, Oxford University Press, New York.Google Scholar
  336. Rigano, C., Rigano, V., Vona, V., and Fuggi, A., 1979, Glutamine synthetase activity, ammonia assimilation and control of nitrate reduction in the unicellular red alga Cyan- idium caldarium, Arch. Microbiol 121:117–120.CrossRefGoogle Scholar
  337. Rittmann, B. E., and McCarty, P. L., 1980, Utilization of dichloromethane by suspended and fixed-film bacteria, Appl Environ. Microbiol 39:1225–1226.PubMedGoogle Scholar
  338. Rivera-Ortiz, J. M., and Burris, R. H., 1975, Interactions among substrates and inhibitors of nitrogenase, J. Bacteriol 123:537–545.PubMedGoogle Scholar
  339. Robbins, P. W., and Lipmann, F., 1958, Enzymatic synthesis of adenosine-5’-phosphosul- fate, J. Biol Chem. 233:686–690.PubMedGoogle Scholar
  340. Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., and Postgate, J. R., 1986, The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme, Nature 322:388–390.CrossRefGoogle Scholar
  341. Rodgers, G. A., and Ashworth, J., 1982, Bacteriostatic action of nitrification inhibitors, Can. J. Microbiol 28:1093–1100.CrossRefGoogle Scholar
  342. Rodgers, G. A., Ashworth, J., and Walker, N., 1980, Recovery of nitrifier populations from inhibition by nitrapyrin or carbon disulfide, Zentralbl BakterioL Parasitkd Infek- tionskr. Hyg. Abt. 2 135:477–483.Google Scholar
  343. Rosson, R. A., and Nealson, K. H., 1982, Manganese binding and oxidation by spores of a marine bacillus, J. Bacteriol 151:1027–1034.PubMedGoogle Scholar
  344. Rozyccki, M., and Bartha, R., 1981, Problems associated with the use of azide as an inhibitor of microbial activity in soil, Appl Environ. Microbiol. 41:833–846.Google Scholar
  345. Rudd, J. W., and Hamilton, R. D., 1978, Methane cycling in a eutrophic shield lake and its effects on whole lake metabolism,Limnol. Oceanogr. 23:337–348.CrossRefGoogle Scholar
  346. Rudd, J. W. M., Hamilton, R. D., and Campbell, N. E. R., 1974, Measurement of microbial oxidation of methane in lakewater, Limnol. Oceanogr. 19:519–524.CrossRefGoogle Scholar
  347. Rudd, J. W., Fututania, A., Flett, R. J., and Hamilton, R. D., 1976, Factors controlling methane oxidation in shield lakes: The role of nitrogen fixation and oxygen concentration, Limnol. Oceanogr. 21:357–364.CrossRefGoogle Scholar
  348. Ryden, J. C., 1982, Effects of acetylene on nitrification and denitrification in two soils during incubation with ammonium nitrate, J. Soil Sei. 33:263–270.Google Scholar
  349. Saino, T., and Hattori, A., 1982, Aerobic nitrogen fixation by the marine non-heterocystous cyanobacteriumTrichodesmium (Oscillatoria) spp.: Its protective mechanism against oxygen. Mar. Biol. 70:251–254.CrossRefGoogle Scholar
  350. Saleh, A. M., Macpherson, R., and Miller, J. D. A., 1964, The effect of inhibitors on sulfate reducing bacteria: A compilation, J. Appl. Bacteriol 27:281–293.CrossRefGoogle Scholar
  351. Salvas, P. L., and Taylor, B. F., 1980, Blockage of methanogenesis in marine sediments by the nitrification inhibitor 2-chloro-6-(trichloromethyl) pyridine (nitrapyrin or N-serve), Curr. Microbiol. 4:305–308.CrossRefGoogle Scholar
  352. Salvas, P. L., and Taylor, B. F., 1984, Effect of pyridine compounds on ammonia oxidation by autotrophic nitrifying bacteria and Methylosinus trichosporium OB3b, Curr. Microbiol. 10:53–56.CrossRefGoogle Scholar
  353. Samuelsson, M.-O., 1985, Dissimilatory nitrate reduction to nitrite, nitrous oxide, and ammonium by Pseudomonas putrefaciens, Appl Environ. Microbiol. 50:812–815.PubMedGoogle Scholar
  354. Sanders, R. W., and Porter, K. G., 1986, Use of metabolic inhibitors to estimate protozoo- plankton grazing and bacterial production in a monomictic eutrophic lake with an anaerobic hypolimnion, Appl. Environ. Microbiol. 52:101–107.PubMedGoogle Scholar
  355. Schannong Jorgensen, K., Beck Jensen, H., and Sorensen, J., 1984, Nitrous oxide production from nitrification and denitrification in marine sediment at low oxygen concentrations. Can. J. Microbiol. 30:1073–1078.CrossRefGoogle Scholar
  356. Schink, B., 1985a, Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylen- icus sp. nov. Arch. Microbiol 142:295–301.CrossRefGoogle Scholar
  357. Schink, B., 1985b, Inhibition of methanogenesis by ethylene and other unsaturated hydrocarbons, FEMS Microbiol Ecol 31:63–68.CrossRefGoogle Scholar
  358. Scranton, M. I., 1983, The role of the cyanobacteriumOscillatoria (Trichodesmium) thie- bautii in the marine hydrogen cycle. Mar. Ecol Prog. Ser. 11:79–87.CrossRefGoogle Scholar
  359. Scranton, M. I., 1984, Hydrogen cycling in the waters near Bermuda: The role of the nitrogen fixer, Oscillatoria thiebautii, Deep-Sea Res. 31:133–143.CrossRefGoogle Scholar
  360. Scranton, M. I., Novelli, P. C., and Loud, P. A., 1984, The distribution and cycUng of hydro-gen gas in the waters of two anoxic marine environments, Limnol Oceanogr. 29:993–1003.CrossRefGoogle Scholar
  361. Seitzinger, S., Nixon, S., Pilson, M. E. Q., and Burke, S., 1980, Denitrification and N2O production in near-shore marine sediments, Geochim. Cosmochim. Acta 44:1853–1860.CrossRefGoogle Scholar
  362. Shapiro, S., and Wolfe, R. S., 1980, Methyl-coenzyme M, an intermediate in methanogenic dissimilation of Q compounds by Methanosarcina barkeri, J. Bacteriol 141:728–734.PubMedGoogle Scholar
  363. Shattuck, G. E., and Alexander, M., 1963, A differential inhibitor of nitrifying organisms, Soil Sei. Soc. Am. Proc. 27:600–601.CrossRefGoogle Scholar
  364. Shaw, D. G., Alperin, M. J., Reeburgh, W. S., and Mcintosh, D. J., 1984, Biogeochemistry of acetate in anoxic sediments of Skan Bay, Alaska, Geochim. Cosmochim. Acta 48:1819–1825.CrossRefGoogle Scholar
  365. Sherr, B. F., Sherr, E. B., Andrew, T. L., Fallon, R. D., and Newell, S. Y., 1987, Investigation of the trophic interactions between heterotrophic protozoa and bacterioplankton in estuarine water using selective metabolic inhibitors,Mar. Ecol. Prog. Ser., in press.Google Scholar
  366. Sieburth, J. McN., 1979,Sea Microbes, Oxford, London.Google Scholar
  367. Slater, J., and Capone, D. G., 1984, Effect of metals on nitrogen fixation and denitrification in slurries of anoxic saltmarsh sediment. Mar. Ecol. Prog. Ser. 18:89–95.CrossRefGoogle Scholar
  368. Slater, J. and Capone, D. G., 1987, Denitrification in aquifer soil and nearshore marine sediments influenced by groundwater nitrate, Appl. Environ. Microbiol. 53:1292–1297.PubMedGoogle Scholar
  369. Slater, J., and Capone, D. G., 1988a, Denitrification by enrichment cultures of bacteria from sahmarsh sediments: Effects of Ni(II) and Cr(VI), manuscript submitted.Google Scholar
  370. Slater, D. G., and Capone, D. G., 1988b, Assessment of denitrification measurement in salt- marsh sediments by acetylene blockage, manuscript submitted.Google Scholar
  371. Slovacek, R. E., and Hannan, P. J., 1977, In vivo fluorescence determinations of phytoplank-ton chlorophylla, Limnol. Oceanogr. 22:919–924.CrossRefGoogle Scholar
  372. Smith, A. M., 1976, Ethylene in soil biology, Annu. Rev. Phytopathol. 14:53–73.CrossRefGoogle Scholar
  373. Smith, K. A., and Dowdell, R. J., 1974, Field studies of soil atmosphere. I. Relationships between ethylene, oxygen, soil-moisture content and temperature, Soil Sei. 25:217–230.Google Scholar
  374. Smith, K. A., and Restall, S. W. F., 1971, The occurrence of ethylene in anaerobic soil, J. Soil Sei. 22:430–433.Google Scholar
  375. Smith, K. A., and Russell, R. S., 1969, Occurrence of ethylene, and its significance, in anaerobic soil. Nature 222: 769–771.CrossRefGoogle Scholar
  376. Smith, L. A., Hills, S., and Yates, M. G., 1976, Inhibition by acetylene of conventional hydrogenase in nitrogen-fixing bacteria,Nature 262:209–210.PubMedCrossRefGoogle Scholar
  377. Smith, M. R., 1983, Reversal of 2-bromoethanesulfonate inhibition of methanogenesis in Methanosarcina sp., J. Bacteriol. 156:516–523.PubMedGoogle Scholar
  378. Smith, M. R., and Mah, R. A., 1978, Growth and methanogenesis by Methanosarcina strain 227 on acetate and methanol, Appl. Environ. Microbiol. 36:870–879.PubMedGoogle Scholar
  379. Smith, M. R., and Mah, R. A., 1981,2-Bromoethanesulfonate: A selective agent for isolating resistant Methanosarcina mutants, Curr. Microbiol. 6:321–326.CrossRefGoogle Scholar
  380. Smith, M. S., 1982, Dissimilatory reduction of N02 - to NH4 + and N2O by a soil Citrobacter sp., Appl. Environ. Microbiol 43:854–860.PubMedGoogle Scholar
  381. Smith, R. L., and Klug, M. J., 1981, Electron donors utilized by sulfate-reducing bacteria in eutrophic lake sediments, Appl. Environ. Microbiol. 42:116–121.PubMedGoogle Scholar
  382. Smith, R. L., and Oremland, R. S., 1987, Big Soda Lake (Nevada). 2. Pelagic sulfate reduction, Limnol Oceanogr., 32:794–803.CrossRefGoogle Scholar
  383. Smucker, R. A., and Simon, S. L., 1986, Some effects of diflubenzuron on growth and spo- rogenesis in Streptomyces spp., Appl Environ. Microbiol 51:25–31.PubMedGoogle Scholar
  384. Somville, M., 1978, A method for the measurement of nitrification rates in water.Water Res. 12:843–848.CrossRefGoogle Scholar
  385. Somville, M., 1984, Use of nitrifying activity measurements for describing the effect of salinity on nitrification in the Sheldt Estuary, Appl. Environ. Microbiol. 47:424–426.PubMedGoogle Scholar
  386. Sorensen, J., 1978, Denitrification rates in a marine sediment as measured by the acetylene inhibition technique, Appl Environ. Microbiol. 35:301–305.PubMedGoogle Scholar
  387. Sorensen, J., 1982, Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate, Appl. Environ. Microbiol. 43:319–324.PubMedGoogle Scholar
  388. Sorensen, J., Tiedje, J. M., and Firestone, R. B., 1980, Inhibition by sulfide of nitric and nitrous oxide reduction by denitrifying Pseudomonas fluorescens, Appl. Environ. Microbiol. 39:105–108.PubMedGoogle Scholar
  389. Sorensen, J., Christensen, D., and Jorgensen, B. B., 1981, Volatile fatty acids and hydrogen as substrates for sulfate-reducing bacteria in anaerobic marine sediment, Appl. Environ. Microbiol. 42:5–11.PubMedGoogle Scholar
  390. Sprott, G. D., and Jarrell, K. F., 1982, Sensitivity of methanogenic bacteria to dicyclohex- ylcarbodiimide.Can. J. Microbiol. 28:982–986.PubMedCrossRefGoogle Scholar
  391. Sprott, G. D., Jarrell, K. F., Shaw, K. M., and Knowles, R., 1982, Acetylene as an inhibitor of methanogenic bacteria, J. Gen. Microbiol 128:2453–2462.Google Scholar
  392. Stevenson, J. C., and Confer, N. M., 1978, Summary of Available Information on Chesapeake Bay Submerged Vegetation, FWS/OBS-78/66, Fish and Wildlife Service, United States Department of the Interior.Google Scholar
  393. Stewart, W. D. P., and Rowell, P., 1975, Effects of l-methionine-of dl-sulfoximine on the assimilation of newly fixed NH3, acetylene reduction and heterocyst production in Anabaena cylindrica, Biochem. Biophys. Res. Commun. 65:846–856.PubMedCrossRefGoogle Scholar
  394. Stewart, W. D. P., Fitzgerald, G. P., and Burris, R. H., 1967, In situ studies on N2 fixation, using the acetylene reduction technique, Proc. Natl Acad. Scl USA 58:2071–2078.CrossRefGoogle Scholar
  395. Stirling, D. I., and Dalton, H., 1979, Properties of the methane monooxygenase from extracts of Methylosinus trichosporium OB3b and evidence for its similarity to the enzyme from Methylococcus capsulatus (Bath), Eur. J. Biochem. 96:205–212.PubMedCrossRefGoogle Scholar
  396. Stokes, D. M., and Walker, D. A., 1972, Photosynthesis by isolated chloroplasts,Biochem. J. 128:1147–1157.PubMedGoogle Scholar
  397. Stratton, G. W., Burrell, R. E., and Corke, C. T., 1982, Technique for identifying and minimizing solvent-pesticide interactions in bioassays. Arch. Environ. Contam. Toxicol 11:437–445.CrossRefGoogle Scholar
  398. Sutherland, J. B., and Cook, R. J., 1980, Effects of chemical and heat treatments on ethylene production in soil. Soil Biol Biochem. 12:357–362.CrossRefGoogle Scholar
  399. Sutton, W. D., 1980, Eifects of protein synthesis inhibitors on acetylene reduction activity of lupin root nodules, Aust. J. Plant Physiol 7:261–270.CrossRefGoogle Scholar
  400. Syrett, P. J., 1981, Nitrogen metabolism of microalgae, in: Physiological Basis of Phyto- plankton Ecology (T. Piatt, ed.). Can. Bull Fish. Aquat. Set Bull 210:182–210.Google Scholar
  401. Takeda, K., Tezuka, C., Fukuoka, S., and Takahara, Y., 1976, Role of copper ions in methane oxidation byMethanomonas margaritae, J. Ferment. Technol 54:557–562.Google Scholar
  402. Tam, T. Y., and Knowles, R., 1979, Effects of sulfide and acetylene on nitrous oxide reduction by soil and by Pseudomonas aeroginosa, Can. J. Microbiol 25:1133–1138.PubMedCrossRefGoogle Scholar
  403. Tam, T. Y., Mayfield, C. I., and Inniss, W. E., 1981, Nitrogen fixation and methane metabolism in a stream-water system amended with leaf material. Can. J. Microbiol 27:511–516.PubMedCrossRefGoogle Scholar
  404. Tam, T. Y., Mayfield, C. I., and Inniss, W. E., 1983, Aerobic acetylene utilization by stream sediment and isolated bacteria, Curr. Microbiol 8:165–168.CrossRefGoogle Scholar
  405. Tate III, R. L., 1977, Nitrification in histosols: A potential role for the heterotrophic nitrifier, Appl Environ. Microbiol 33:911–914.PubMedGoogle Scholar
  406. Taylor, B. F., 1983, Assays of microbial nitrogen transformations, in: Nitrogen in the Marine Environment (E. J. Carpenter and D. G. Capone, eds.), pp. 809–837, Academic Press, New York.Google Scholar
  407. Taylor, B. F., and Oremland, R. S., 1979, Depletion of adenosine triphosphate in Desulfov- ibrio by oxyanions of group VI elements, Curr. Microbiol 3:101–103.CrossRefGoogle Scholar
  408. Taylor, C. D., and Wolfe, R. S., 1974, Structure and methylation of coenzyme M (HSCH2CH2SO3), J. Biol Chem. 249:4879–4885.Google Scholar
  409. Taylor, C. D., McBride, B. C., Wolfe, R. S., and Bryant, M. P., 1974, Coenzyme M, essential for growth of a rumen strain of Methanobacterium ruminantium, J. Bacteriol 120:974–975.PubMedGoogle Scholar
  410. Taylor, G. T., and Pace, M. L., 1987, Validity of eucaryote inhibitors for assessing production and grazing mortality of marine bacterioplankton, Appl Environ. Microbiol 53:119–128.PubMedGoogle Scholar
  411. Thomas, K. C., and Spencer, M., 1978, Evolution of ethylene by Saccharomyces cerevisiae as influenced by the carbon source for growth and the presence of air. Can. J. Microbiol 24:637–642.PubMedCrossRefGoogle Scholar
  412. Tonge, G. M., Harrison, D. E. F., Knowles, C. J., and Higgins, I. J., 1975, Properties and partial purification of the methane-oxidizing enzyme system from Methylosinus tri- chosporium, FEBS Lett. 58:293–299.PubMedCrossRefGoogle Scholar
  413. Tonge, G. M., Drozd, J. W., and Higgins, I. J., 1977, Energy coupling in Methylosinus tri- chosporium, J. Gen. Microbiol 99:229–232.Google Scholar
  414. Tonsager, S. R., and Averill, B. A., 1980, Difficulties in the analysis of acid-labile sulfide in Mo-S and Mo-Fe-S systems. Anal Biochem. 102:13–15.PubMedCrossRefGoogle Scholar
  415. Topp, E., and Knowles, R., 1982, Nitrapyrin inhibits the obligate methylotrophsMethylosinus trichosporium and Methylococcus capsulatus, FEMS Microbiol Lett. 14:47–49.CrossRefGoogle Scholar
  416. Topp, E., and Knowles, R., 1984, Effects of nitrapyrin [2-chloro-6-(trichloromethyl) pyridine] on the obligate methanotroph Methylosinus trichosporium OB3b, Appl Environ. Microbiol 47:258–262.PubMedGoogle Scholar
  417. Trebst, A., 1980, Inhibitors in electron flow: Tools for the functional and structural localization of carriers and energy conservation sites, in: Methods in Enzymology, (A. SanPietro, ed), pp. 765, Academic Press, New York.Google Scholar
  418. Trimble, R. B., and Ehrlich, H. L., 1968, Bacteriology of manganese nodules. III. Reduction of Mn02 by two strains of nodule bacteria, Appl Microbiol 16:695–702.PubMedGoogle Scholar
  419. Tromballa, H. W., and Broda, E., 1971, Das verhalten von Chlorella fusca gegenüber Perchlorat und chlorat, Arch. Microbiol. 78:214–223.Google Scholar
  420. Truper, H. G., and Fischer, U., 1982, Anaerobic oxidation of sulphur compounds as electron donors for bacterial photosynthesis, Phil Trans. R. Soc. Lond. B 298:529–542.CrossRefGoogle Scholar
  421. Turpin, D. H., Edie, S. A., and Canvin, D. T., 1984, In vivo nitrogenase regulation by ammonium and methlyamine and the effect of MSX on ammonium transport in Anabaena flos-aquae. Plant Physiol 74:701–704.PubMedCrossRefGoogle Scholar
  422. Tuttle, J. H., and Dugan, P. R., 1976, Inhibition of growth, iron, and sulfur oxidation in Thiobacillus ferrooxidans by simple organic compounds, Can. J. Microbiol 22:719–730.PubMedCrossRefGoogle Scholar
  423. Tuttle, J. H., and Jannasch, H. W., 1977, Thiosulfate stimulation of microbial dark assimilation of carbon dioxide in shallow marine waters, Microb. Ecol 4:9–25.CrossRefGoogle Scholar
  424. Umezawa, H., 1982, Low-molecular-weight enzyme inhibitors of microbial origin,Annu. Rev. Microbiol 36:75–99.PubMedCrossRefGoogle Scholar
  425. Van Berkum, P., and Sloger, C., 1979, Immediate acetylene reduction by excised grass roots not previously preincubated at low oxygen tensions. Plant Physiol 64:739–743.PubMedCrossRefGoogle Scholar
  426. Van Berkum, P., and Sloger, C., 1981, Comparing time course profiles of immediate acetylene reduction by grasses and legumes, Appl Environ. Microbiol 41:184–189.PubMedGoogle Scholar
  427. Van der Meijden, P., Heythuysen, H. J., Sliepenbeek, H. T., Houwen, F. P., van der Drift, C., and Vogels, G. D., 1983, Activation and inactivation of methanol: 2-Mercapto- ethanesulfonic acid methyltransferase from Methanosarcina barkeri, J. Bacteriol 153:6–11.PubMedGoogle Scholar
  428. Vanderaieulen, J. H., Davis, N. D., and Muscatine, L., 1972, The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates, Mar. Biol 16:185–191.Google Scholar
  429. Van Nevel, C. J., and Demeyer, D. L, 1977, Effect of monensin on rumen metabolism in vitro, AppL Environ. Microbiol. 34:251–257.PubMedGoogle Scholar
  430. Van Raalte, C. D., and Patriquin, D. G., 1979, Use of the "acetylene blockage" technique for assaying denitrification in a salt marsh. Mar. Biol. 52:315–320.CrossRefGoogle Scholar
  431. van Vliet-Smits, M., Harder, W., and van Dijken, J. P., 1981, Some properties of the amine oxidase of the facultative methylotroph Arthrobacter P1, FEMS Microbiol. Lett. 11:31–35.CrossRefGoogle Scholar
  432. Vincent, W. F., and Downes, M. T., 1981, Nitrate accumulation in aerobic hypolimnia: Relative importance of benthic and planktonic nitrifiers in an oligotrophic lake, Appl. Environ. Microbiol. 42:565–573.PubMedGoogle Scholar
  433. Vogel, T. M., Oremland, R. S., and Kvenvolden, K. A., 1982, Low temperature formation of hydrocarbon gases in San Francisco Bay sediment (California, U.S.A.), Chem. Geol. 37:289–298.CrossRefGoogle Scholar
  434. Wake, L. V., Christopher, R. K., Rickard, P. A. D., Andersen, J. E., and Ralph, B. J., 1977, A thermodynamic assessment of possible substrates for sulfate/reducing bacteria,Aust. J.Biol.Sci 30:115–127. Google Scholar
  435. Walter, H. M., Kenney, D. R., and Fillery, I. R., 1979, Inhibition of nitrification by acetylene, Soil Sei. Am. J. 43:195–196.CrossRefGoogle Scholar
  436. Ware, D. A., and Postgate, J. R., 1971, Physiological and chemical properties of a reductant- activated inorganic pyrophosphatase fromDesulfovibrio desulfuricans, J. Gen. Microbiol, 67:145–160.PubMedGoogle Scholar
  437. Watanabe, I., and de Guzman, M. R., 1980, Effect of nitrate on acetylene disappearance from anaerobic soil. Soil Biol. Biochem, 12:193–194.CrossRefGoogle Scholar
  438. Weathers, P. J., 1984, N2O evolution by green algae, Appl. Environ. Microbiol. 48:1251–1253.PubMedGoogle Scholar
  439. Webb, K. L., and Wiebe, W. J., 1975, Nitrification on a coral reef, Can. J. Microbiol. 21:1427–1431PubMedCrossRefGoogle Scholar
  440. Wheeler, P. A., 1980, Use of methylammonium as an ammonium analogue in nitrogen transport and assimilation studies withCyclotella cryptica (Bascillariophyceae), J. Phy- col. 16:328–334.Google Scholar
  441. Wheeler, P. A., and Kirchman, D. L., 1986, Utilization of inorganic and organic nitrogen by bacteria in marine systems,Limnol. Oceanogr, 31:998–1009.CrossRefGoogle Scholar
  442. Wildenauer, F. X., Blotevogel, K. H., and Winter, J., 1984, Effect of monensin and 2-bro- methanesulfonic acid on fatty acid metabolism and methane production from cattle manure, Microbiol. Biotechnol 19:125–130.CrossRefGoogle Scholar
  443. Wilson, L. G., and Bandurski, R. S., 1958, Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate, J. Biol. Chem. 233:975–981.PubMedGoogle Scholar
  444. Winfrey, M. R., and Ward, D. M., 1983, Substrates for sulfate reduction and methane production in intertidal sediments, Appl. Environ. Microbiol. 45:193–199.PubMedGoogle Scholar
  445. Winfrey, M. R., and Zeikus, J. G., 1977, Effect of sulfate on carbon and electron flow during microbial methanogenesis in freshwater sediments, Appl. Environ. Microbiol. 33:312–318.PubMedGoogle Scholar
  446. Winfrey, M. R., and Zeikus, J. G., 1979, Anaerobic metabolism of immediate methane precursors in Lake Mendota, Appl Environ. Microbiol 37:244–253.PubMedGoogle Scholar
  447. Witty, J. F., 1979, Acetylene reduction assay can overestimate nitrogen/fixation in soil.Soil Biol Biochem. 11:209–210.CrossRefGoogle Scholar
  448. Wolin, M. J., and Miller, T. L., 1980, Molybdate and sulfide inhibit H2 and increase formate production from glucose byRuminococcus albus, Arch. Microbiol 124:137–142.PubMedCrossRefGoogle Scholar
  449. Wolin, E. A., Wolfe, R. S. and Wilin, M. J., 1964, Viologen dye inhibition of methane formation of Methanobacillus omelianskii, J. BacterioL 87:993–998.PubMedGoogle Scholar
  450. Wood, J. M., Kennedy, F. S., and Wolfe, R. S., 1968a, The reaction of multihalogenated hydrocarbons with free and bound vitamin B12,Biochemistry 7:1707–1713.PubMedCrossRefGoogle Scholar
  451. Wood, J. M., Kennedy, F. S., and Rosen, C. G., 1968b, Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium. Nature 220:173–174.PubMedCrossRefGoogle Scholar
  452. Wood, L. B., Hurley, B. J. E., and Matthews, P. J., 1981, Some observation on the biochemistry and inhibition of nitrification. Water Res. 15:543–551.CrossRefGoogle Scholar
  453. Wright, R. T., and Coffin, R. B., 1983, Flanktonic bacteria in estuaries and coastal waters of northern Massachusetts: Spatial and temporal distributions, Mar. Ecol. Prog. Ser. 11:205–216.CrossRefGoogle Scholar
  454. Yamazaki, S., 1982, A selenium-containing hydrogenase from Methanococcus vannielii, J. Biol. Chem. 257:7926–7929.PubMedGoogle Scholar
  455. Yang, S. F., 1974, The biochemistry of ethylene: Biogenesis and metabolism, Ree. Adv. Phyto. chem. 7:131–164.Google Scholar
  456. Yeomans, J., and Beauchamp, E. G., 1978, Limited inhibition of nitrous oxide reduction in soil in the presence of acetylene. Soil Biol. Biochem. 10:517–519.CrossRefGoogle Scholar
  457. Yetka, J. E., and Wiebe, W. J., 1974, Ecological application of antibiotics as respiratory inhibitors of bacterial populations, Appl. Microbiol. 28:1033–1039.PubMedGoogle Scholar
  458. Yoch, D. C., and Gotto, J. W., 1982, Effect of light intensity and inhibitors of nitrogen assimilation on inhibition of nitrogenase activity in Rhodopseudomonas rubrum and Anabaena sp.,J. Bacteriol 151:800–806.PubMedGoogle Scholar
  459. Yoch, D. C., and Whiting, G. J., 1986, Evidence for NH^ switch-off regulation of nitrogenase activity by bacteria in salt marsh sediments and roots of the grass Spartina alter- niflora, Appl. Environ. Microbiol. 51:143–149.PubMedGoogle Scholar
  460. Yokota, A., and Canvin, D. T., 1985, Ribulose biphosphate carboxylase/oxygenase content determined with [14C] carboxypentitol biphosphate in plants and algae, Plant Physiol. 77:735–739. CrossRefGoogle Scholar
  461. Yoshinari, T., 1984, Nitrite and nitrous oxide production by Methylosinus trichosporium. Can. J. Microbiol. 31:139–144.CrossRefGoogle Scholar
  462. Yoshinari, T., and Knowles, R., 1976, Acetylene inhibition of nitrous oxide reduction by denitrifying bacteria, Biochem. Biophys. Res. Commun. 69:705–710.PubMedCrossRefGoogle Scholar
  463. Yoshinari, T, Hynes, R., and Knowles, R., 1977, Acetylene inhibition of nitrous oxide reduction and measurement of denitrification and nitrogen fixation in soil, Soil Biol. Biochem. 9:177–183.CrossRefGoogle Scholar
  464. Young, J. C., 1983, Comparison of 3 forms of 2-chloro-6-(trichloromethyl) pyridine as a nitrification inhibitor in BOD tests, J. Water Pollut. Control Fed. 55:415–416.Google Scholar
  465. Zehnder, A. J. B., and Brock, T. D., 1979, Methane formation and methane oxidation by methanogenic bacteria, J. Bacteriol 137:420–432.PubMedGoogle Scholar
  466. Zehnder, A. J. B., and Brock, T. D., 1980, Anaerobic methane oxidation: Occurrence and ecology, Appl Environ. Microbiol 39:194–204.PubMedGoogle Scholar
  467. Zehr, J. P., and Oremland, R. S., 1987, Reduction of selenate to selenide by sulfate-respiring bacteria: Experiments with cell suspensions and estuarine sediments. Appl. Environ. Microbiol 53:1365–1369.PubMedGoogle Scholar
  468. Zinder, S. H, and Brock, T. D, 1978, Production of methane and carbon dioxide from methane thiol and dimethylsulfide by anaerobic lake sediments, Nature 273 :226–228CrossRefGoogle Scholar
  469. Zinder, S. H., Anguish, T., and Cardwell, S. C., 1984, Selective inhibition by 2-bromo- ethanesulfonate of methanogenesis from acetate in a thermophilic anaerobic digestor, Appl Environ. Microbiol, 47:1343–1345.PubMedGoogle Scholar
  470. ZoBell, C. E., 1947, Microbial transformations of molecular hydrogen in marine sediments, with particular reference to petroleum, Am. Assoc. Petrol. GeoL Bull 31:1709–1751.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ronald S. Oremland
    • 1
  • Douglas G. Capone
    • 2
  1. 1.Water Resources DivisionUnited States Geological SurveyMenlo ParkUSA
  2. 2.Chesapeake Biological Laboratory, Center for Environmental and Estuarine StudiesUniversity of MarylandSolomonsUSA

Personalised recommendations