Biogeochemistry and Ecophysiology of Atmospheric CO and H2

  • Ralf Conrad
Part of the Advances in Microbial Ecology book series (AMIE, volume 10)


Hydrogen and carbon monoxide are just trace constituents in our environment, but their cycles are nevertheless of great importance for life on earth. Two different cycles may be distinguished, the cycling between the biosphere and the atmosphere (atmospheric cycle) and the cycling and turnover within individual ecosystems of the biosphere (biospheric cycle). For H2, it is the biospheric cycle in anoxic environments that is of special interest, since H2 is an important intermediate in the decomposition of organic matter and functions as a regulator for the whole mineralization process. The role of H2 in these environments has been described and discussed in a number of reviews on methane production and sulfate reduction in anoxic ecosystems (Zehnder, 1978; Nedwell, 1984; Zeikus, 1983) and thus will not be the subject of this review. The biospheric cyles of CO and H2 in anoxic environments are of relatively little importance for the atmospheric budgets of CO and H2 (see Section 6). However, they are of great importance for the budget of atmospheric CH4 (Seiler, 1984), which is an indirect source for atmospheric CO and H2 (see Section 7). Biospheric cycles of CO and H2 are also operative in oxic environments.


Carbon Monoxide Anoxic Environment Hydrogenase Activity Uptake Hydrogenase Carbon Monoxide Production 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. W. W., Mortenson, L. E., and Chen, J. S., 1981, Hydrogenase, Biochim. Biophys. Acta 594:105–176.Google Scholar
  2. Anderson, J. P. E., and Domsch, K. H., 1973, Quantification of bacterial and fungal contributions to soil respiration, Arch. Microbiol. 93:113–127.Google Scholar
  3. Aragno, M., and Schlegel, H. G., 1981, The hydrogen-oxidizing bacteria, in: The Prokary- otes. A Handbook on Habitats, Isolation and Identification of Bacteria (M. P. Starr, H. Stolp, H. G. Trüper, A. Ballows, and H. G. Schlegel, eds.). Vol. 1, pp. 865–893, Springer, Berlin.Google Scholar
  4. Atlas, R. M., and Hartha, R., 1981, Microbial Ecology: Fundamentals and Applications, Addison-Wesley, Reading, Massachusetts.Google Scholar
  5. Bartholomew, G. W., and Alexander, M., 1979, Microbial metabolism of carbon monoxide in culture and in soil, Appl. Environ. Microbiol. 37:932–937.PubMedGoogle Scholar
  6. Bartholomew, G. W., and Alexander, M., 1981, Soil as a sink for atmospheric carbon monoxide, Science 212:1389–1391.Google Scholar
  7. Bartholomew, G. W., and Alexander, M., 1982, Microorganisms responsible for the oxidation of carbon monoxide in soil. Environ. Sei. Technol. 16:300–301.Google Scholar
  8. Bauer, K., Seiler, W., and Giehl, H., 1979, CO-Produktion höherer Pflanzen an natüriichen Standorten. Z. Pflanzenphysiol 94:219–230.Google Scholar
  9. Bauer, K., Conrad, R., and Seiler, W., 1980, Photooxidative production of carbon monoxide by phototrophic microorganisms, Biochim. Biophys. Acta 589:46–55.PubMedGoogle Scholar
  10. Baxter, R. M., and Carey, J. H., 1983, Evidence for photochemical generation of superoxide ion in humic waters, Nature 306:575–576.Google Scholar
  11. Bell, R. G., 1969, Studies on the decomposition of organic matter in flooded soils. Soil Biol. Biochem. 1:105–116.Google Scholar
  12. Bell, J. M., Williams, E., and Colby, J., 1985, Carbon monoxide oxidoreductases from thermophilic carboxydobacteria, in: Microbial Gas Metabolism (R. K. Poole and C. S. Dow, eds.), pp. 153–159, Academic Press, London.Google Scholar
  13. Benson, D. R., Arp, D. J., and Burris, R. H., 1980, Hydrogenase in actinorhizal root nodules and root nodule homogenates, J. Bacteriol 142:138–144.PubMedGoogle Scholar
  14. Bidwell, R. G. S., and Bebee, G. P., 1974, Carbon monoxide fixation by plants.Can. J. Bot 52:1841–1847.Google Scholar
  15. Bidwell, R. G. S., and Fraser, D. E., 1972, Carbon monoxide uptake and metabolism by leaves. Can. J. Bot. 50:1435–1439.Google Scholar
  16. Bonjour, F., and Aragno, M., 1984,Bacillus tusciae, a new species of thermoacidophilic, facultatively chemolithoautotrophic, hydrogen oxidizing spore former from a geother- mal area, Arch. Microbiol. 139:397–401.Google Scholar
  17. Bothe, H., Neuer, G., Kalbe, I., and Eisbrenner, G., 1980, Electron donors and hydrogenase in nitrogen-fixing microorganisms, in: Nitrogen Fixation (W. D. P. Stewart and J. R. Gallon, eds.), pp. 83–112, Academic Press, London.Google Scholar
  18. Bowien, B., and Schlegel, H. G., 1981, Physiology and biochemistry of aerobic hydrogen- oxidizing bacteria. Annu. Rev. Microbiol. 35:405–452.PubMedGoogle Scholar
  19. Breznak, J. A., 1982, Intestinal microbiota of termites and other xylophagous insects, Annu, Rev. Microbiol. 36:323–343.Google Scholar
  20. Broecker, W. S., and Peng, T. H., 1974, Gas exchange rates between air and sea, Tellus 26:21–35.Google Scholar
  21. Bullister, J. L., Guinasso, Jr., N. L., and Schink, D. R., 1982, Dissolved hydrogen, carbon monoxide, and methane at the CEPEX site, J. Geophys. Res. 87:2022–2034.Google Scholar
  22. Burke, Jr., R. A., Reid, D. F., Brooks, J. M., and Lavoie, D. M., 1983, Upper water column methane geochemistry in the eastern tropical North Pacific, Limnol. Oceanogr. 28:19–32.Google Scholar
  23. Burns, R. G., 1978, Enzyme activity in soil: some theoretical and practical considerations, in: Soil Enzymes (R. G. Bums, ed.), pp. 295–340, Academic Press, London.Google Scholar
  24. Burns, R. G., 1982, Enzyme activity in soil: Location and a possible role in microbial ecology, Soil Biol. Biochem. 14: 423–427.Google Scholar
  25. Bums, R. G., and Hardy, R. W. F., 1975, Nitrogen Fixation in Bacteria and Higher Plants, Springer, New York.Google Scholar
  26. Bzdega, T., Karwowska, R., Zuchmantowicz, H., Pawlak, M., Kleczkowski, L., and Nalbor- czyk, E., 1981, Absorption of carbon monoxide by higher plants. Polish Ecol. Stud. 7:387–399.Google Scholar
  27. Calvert, F., Cloez, S., and Boussingault, M., 1864, Über die Bildung von Kohlenoxyd bei der Einwirkung von Sauerstoff auf pyrogallussaures Kali, Annl. Chem. Pharmazie (Leipzig) 130:248–249.Google Scholar
  28. Chappelle, E. W., 1962, Carbon monoxide oxidation by algae, Biochim. Biophys. Acta 62:45–62.PubMedGoogle Scholar
  29. Choudhry, G. G., 1984, Humic substances. Structural aspects, and photophysical, photochemical and free radical characteristics, in: The Handbook of Environmental Chemistry (O. Hutzinger, ed.), Vol. IV, pp. 1–24, Springer, Berlin.Google Scholar
  30. Conrad, R., 1984, Capacity of aerobic microorganisms to utilize and grow on atmospheric trace gases (H2, CO, CH4), in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), pp. 461–467, American Society for Microbiology, Washington, D. C.Google Scholar
  31. Conrad, R., and Seiler, W., 1979a, Field measurements of hydrogen evolution by nitrogen- fixing legumes.Soil Biol. Biochem. 11:689–690.Google Scholar
  32. Conrad, R., and Seiler, W., 1979b, The role of hydrogen bacteria during the decomposition of hydrogen by soil, FEMS Microbiol. Lett. 6: 143–145.Google Scholar
  33. Conrad, R., and Seiler, W., 1980a, Contribution of hydrogen production by biological nitrogen fixation to the global hydrogen budget, J. Geophys. Res. 85:5493–5498.Google Scholar
  34. Conrad, R., and Seiler, W., 1980b, Role of microorganisms in the consumption and production of atmospheric carbon monoxide by soil, Appl Environ. Microbiol. 40:437–445.PubMedGoogle Scholar
  35. Conrad, R., and Seiler, W., 1980c, Photooxidative production and microbial consumption of carbon monoxide in seawater,FEMS Microbiol. Lett. 9:61–64.Google Scholar
  36. Conrad, R., and Seiler, W., 1981, Decomposition of atmospheric hydrogen by soil microorganisms and soil enzymes.Soil Biol Biochem. 13:43–49.Google Scholar
  37. Conrad, R., and Seiler, W., 1982a, Arid soils as a source of atmospheric carbon monoxide, Geophys. Res. Lett. 9:1353–1356.Google Scholar
  38. Conrad, R., and Seiler, W., 1982b, Utilization of traces of carbon monoxide by aerobic oli- gotrophic microorganisms in ocean, lake and soil. Arch. Microbiol. 132:41–46.Google Scholar
  39. Conrad, R., and Seiler, W., 1985a, Influence of temperature, moisture and organic carbon on the flux of H2 and CO between soil and atmosphere. Field studies in subtropical regions,J. Geophys. Res. 90:5699–6709.Google Scholar
  40. Conrad, R., and Seiler, W., 1985b, Destruction and production rates of carbon monoxide in arid soils under field conditions, in: Planetary Ecology (D. E. Caldwell, J. A. Brierley, and C. L. Brieriey, eds.). pp. 112–119, Van Nostrand Reinhold, New York.Google Scholar
  41. Conrad, R., and Seiler, W., 1985c, Characteristics of abiological CO formation from soil organic matter, humic acids and phenolic compounds, Environ. Sei. Technol. 19:1165–1169.Google Scholar
  42. Conrad, R., and Seiler, W., 1986a, Influence of the surface layer on the flux of non-conser- vative trace gases (H2, CO, CH4, N2O) across the ocean-atmosphere boundary layer, J. Atmos. Chem., in press.Google Scholar
  43. Conrad, R., and Seiler, W., 1986b, Exchange of CO and H2 between ocean and atmosphere, in: The Role of Air-Sea Exchange in Geochemical Cycling (P. Buat-Menard, ed.), pp. 269–282, Reidel, Dordrecht.Google Scholar
  44. Conrad R., and Thauer, R. K., 1983, Carbon monoxide production by Methanobacterium thermoautotrophicum, FEMS Microbiol. Lett. 20:229–232.Google Scholar
  45. Conrad, R., Meyer, O., and Seiler, W., 1981, Role of carboxydobacteria in consumption of atmospheric carbon monoxide by soil, Appl. Environ. Microbiol. 42:211–215.PubMedGoogle Scholar
  46. Conrad, R., Seiler, W., Bunse, G., and Giehl, H., 1982, Carbon monoxide in seawater (Atlantic Ocean), J. Geophys. Res. 87:8839–8852.Google Scholar
  47. Conrad, R., Aragno, M., and Seiler, W., 1983a, Production and consumption of hydrogen in a eutrophic lake, Appl. Environ. Microbiol. 45:502–510.PubMedGoogle Scholar
  48. Conrad, R., Aragno, M., and Seiler, W., 1983b, Production and consumption of carbon monoxide in a eutrophic lake, Limnol. Oceanogr. 28:42–49.Google Scholar
  49. Conrad R., Aragno, M., and Seiler, W., 1983c, The inability of hydrogen bacteria to utilize atmospheric hydrogen is due to threshold and affinity for hydrogen, FEMS Microbiol. Lett. 18:207–210.Google Scholar
  50. Conrad, R., Weber, M., and Seiler, W., 1983d, Kinetics and electron transport of soil hydro- genases catalyzing the oxidation of atmospheric hydrogen, Soil Biol. Biochem. 15:167–173.Google Scholar
  51. Conrad, R., Phelps, T. J., and Zeikus, J. G., 1985a, Gas metabolism evidence in support of juxtapositioning between hydrogen producing and methanogenic bacteria in sewage sludge and lake sediments,Appl. Environ. Microbiol. 50:595–601.PubMedGoogle Scholar
  52. Conrad, R., Bonjour, F., and Aragno, M., 1985b, Aerobic and anaerobic microbial consumption of hydrogen in geothermal spring water, FEMS Microbiol. Lett. 29:201–205.Google Scholar
  53. Crozier, T. E., and Yamamoto, S., 1974, Solubility of hydrogen in water, seawater, and NaCl solutions, J. Chem. Eng. Data, 19:242–244.Google Scholar
  54. Crutzen, P. J., 1979, The role of NO and NO2 in the chemistry of the troposphere and stratosphere, Annu. Rev. Earth Planet. Sei. 7:443–472.Google Scholar
  55. Crutzen, P. J., 1982, The global distribution of hydroxyl, in: Atmospheric Chemisty (E. D. Goldberg, ed.), pp. 313–328, Springer, Berlin.Google Scholar
  56. Crutzen, P. J., 1983, Atmospheric interactions. Homogeneous gas reactions of C, N, and S containing compounds, in: The Major Biogeochemical Cycles and Their Interactions (B. Bolin and R. B. Cook, eds.), pp. 65–114, Wiley, Chichester.Google Scholar
  57. Crutzen, P. J., Delany, A. C., Greenberg, J., Haagenson, P., Heidt, L., Lueb, R., Pollock, W., Seiler, W., Wartburg, A., and Zimmerman, P., 1985, Tropospheric chemical composition measurements in Brazil during dry season,J. Atmos. Chem. 2:233–256.Google Scholar
  58. Cypionka, H., Meyer, O., and Schlegel, H. G., 1980, Physiological characteristics of various species of strains of carboxydobacteria, Arch. Microbiol. 127:301–307.Google Scholar
  59. Dahm, C. N., Baross, J. A., Ward, A. K., Lilley, M. D., and Sedell, J. R., 1983, Initial effects of the Mount St. Helens emption on nitrogen cycle and related chemical processes in Ryan Lake, Appl. Environ. Microbiol. 45:1633–1645.PubMedGoogle Scholar
  60. Degens, E. T., Reuter, J. H., and Shaw, K. N. F., 1964, Biochemical compounds in offshore California sediments and sea waters,Geochim. Cosmochim. Acta 28:45–66.Google Scholar
  61. Dickert, G., and Ritter, M., 1983, Carbon monoxide fixation into carboxyl group of acetate during growth ofAcetobacterium woodii on H2 and CO2, FEMS Microbiol. Lett. 17: 299–302.Google Scholar
  62. Dickert, G., Hansch, M., and Conrad, R., 1984, Acetate synthesis from CO2 in acetogenic bacteria: Is carbon monoxide an intermediate?. Arch. Microbiol 138:224–228.Google Scholar
  63. Dixon, O. D., 1972, Hydrogenase in legume root nodule bacteroids: Occurrence and Properties, Arch. Microbiol. 107:193–201.Google Scholar
  64. Douglas, E., 1967, Carbon monoxide solubilities in sea water, J. Phys. Chem. 71:1931–1933.PubMedGoogle Scholar
  65. Duce, R. A., Mohnen, V. A., Zimmerman, P. R., Grosjean, D., Cautereels, W., Chatfield, R., Jaenicke, R., Ogren, J. A., Pellizzari, E. D., and Wallace, G. T., 1983, Organic material in the global troposphere. Rev. Geophys. Space Phys. 21:921–952.Google Scholar
  66. Duggin, J. A., and Cataldo, D. A., 1985, The rapid oxidation of atmospheric CO to CO2 by soils. Soil Biol Biochem. 17:469–474.Google Scholar
  67. Egli, T., Lindley, N. D., and Quayle, J. R., 1983, Regulation of enzyme synthesis and variation of residual methanol concentration during carbon-limited growth of Kloeckera sp. 2201 on mixtures of methanol and glucose, J. Gen. Microbiol 129:1269–1281.Google Scholar
  68. Ehhalt, D. H., 1973, On the uptake of tritium by soil water and groundwater,Water Resources Res. 9:1073–1074.Google Scholar
  69. Ehrhardt, M., 1984, Marine gelbstoff, in: The Handbook of Environmental Chemistry (O. Hutzinger, ed.). Vol. IC, pp. 63–77, Springer, Berlin.Google Scholar
  70. Eikmanns, B., Fuchs, G., and Thauer, R. K., 1985, Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum, Eur. J. Biochem. 146:149–154.PubMedGoogle Scholar
  71. Engel, R. R., Matsen, J. M., Chapman, S. S., and Schwartz, S., 1972, Carbon monoxide production from heme compounds by bacteria, J. Bacteriol 112:1310–1315.PubMedGoogle Scholar
  72. Engel, R. R., Modler, S., Matsen, J. M., and Petryka, Z. J., 1973, Carbon monoxide production from hydroxocobalamin by bacteria, Biochim. Biophys. Acta 313:150–155.PubMedGoogle Scholar
  73. Evans, H. J., Ruiz-Argüeso, T., Jennings, N., and Hanus, J., 1977, Energy coupling efficiency of symbiotic nitrogen fixation, in: Genetic Engineering for Nitrogen Fixation (A. Hollander, ed.), pp. 333–354, Plenum Press, New York.Google Scholar
  74. Fallon, R. D., 1982a, Influences of pH, temperature, and moisture on gaseous tritium uptake in surface soils, Appl Environ. Microbiol 44: 171–178.PubMedGoogle Scholar
  75. Fallon, R. D., 1982b, Molecular tritium uptake in southeastern U. S. soils,Soil Biol Biochem. 14:553–556.Google Scholar
  76. Farquhar, G. J., and Rovers, F. A., 1973, Gas production during refuse decomposition. Water Air Soil Pollul 2:483–495.Google Scholar
  77. Ferenci, T., Ström, T., and Quayle, J. R., 1975, Oxidation of carbon monoxide and methane by Pseudomonas methanica, J. Gen. Microbiol. 91:79–91.PubMedGoogle Scholar
  78. Fischer, K., and Lüttge, U., 1978, Light-dependent net production of carbon monoxide by plants. Nature 275:740–741.Google Scholar
  79. Fischer, K., and Lüttge, U., 1979, Lichtabhängige CO-Bildung grüner Pflanzen und ihre Bedeutung fur den CO-Haushah der Atmosphäre, Flora. 168:121–137.Google Scholar
  80. Fishman, J., and Seiler, W., 1983, Correlative nature of ozone and carbon monoxide in the troposphere: Implications for the tropospheric ozone budget, J. Geophys. Res. 88:3662–3670.Google Scholar
  81. Gallon, J. R., 1981, The oxygen sensitivity of nitrogenase: A problem for biochemists and microorganisms, TIBS 6:19–23.Google Scholar
  82. Glauser, M., Aragno, M., and Gandolla, M., 1988. Anaerobic digestion of urban wastes: Sewage and organic fraction of garbage, in: Bioenvironmental Systems (Vol. 3, D. Wise, ed.), CRC Press, Boca Raton, Florida, in press.Google Scholar
  83. Gohre, K., and Miller, G. C., 1983, Singlet oxygen generation on soil surfaces. J. Agric. Food Chem. 31:1104–1108.Google Scholar
  84. Goto, E., Kodama, T., and Minoda, Y., 1978, Growth and taxonomy of thermophilic hydrogen bacteria, Agric. Biol. Chem. 42:1305–1308.Google Scholar
  85. Gottschal, J. C., and Kuenen, J. G., 1980, Mixotrophic growth of Thiobacillus A2 on acetate and thiosulfate as growth limiting substrates in the chemostat, Arch. Microbiol. 126:33–42.Google Scholar
  86. Gunter, B. D., and Musgrave, B. C., 1966, Gas chromatographic measurements of hydro- thermal emanations at Yellowstone National Park, Geochim. Cosmochim. Acta 30:1175–1189.Google Scholar
  87. Haag, W. R., Hoigne, J., Gassman, E., and Braun, A. M., 1984, Singlet oxygen in surface waters. 2. Quantum yields of its production by some natural humic materials as a function of wavelength, Chemosphere 13:641–650.Google Scholar
  88. Hallenbeck, P. C., and Benemann, J. R., 1979, Hydrogen from algae. Top. Photosynth. 3:331–364.Google Scholar
  89. Hampson, R. F., 1980, Chemical Kinetic and Photochemical Data Sheets for Atmospheric Research, Report FAA-EE-80–17, National Bureau of Standards, Washington, D. C.Google Scholar
  90. Hanson, R. S., 1980, Ecology and diversity of methylotrophic organisms.Adv. Appl. Microbiol. 26:3–39.Google Scholar
  91. Harrison, W. H., and Aiyer, P. A. S., 1913, The gases of swamp soils, Mem. Dep. Agr. Ind. 3:65–104.Google Scholar
  92. Hegeman, G., 1980, Oxidation of carbon monoxide by bacteria, TIBS 5:256–259.Google Scholar
  93. Heichel, G. H., 1973, Removal of carbon monoxide by field and forest soils,J. Environ. Qual. 2:419–423.Google Scholar
  94. Heidt, L. R., Krasnec, J. P., Lueb, R. A., Pollock, W. H., Henry, B. E., and Crutzen, P.J., 1980, Latitudinal distribution of CO and CH4 over the Pacific, J. Geophys. Res. 85:7329–7336.Google Scholar
  95. Herr, F. L., 1984, Dissolved hydrogen in Eurasian arctic waters, Tellus 36B:55–66.Google Scholar
  96. Herr, F. L., and Barger, W. R., 1978, Molecular hydrogen in the near surface atmosphere and dissolved in waters of the tropical North Atlantic, J. Geophys. Res. 83:6199–6205.Google Scholar
  97. Herr, F. L., Scranton, M. L, and Barger, W. R., 1981, Dissolved hydrogen in the Norwegian Sea: Mesoscale surface variability and deep water distribution, Deep-Sea Res. 28:1001–1016.Google Scholar
  98. Herr, F. L., Frank, E. C., Leone, G. M., and Kennicutt, M. C., 1984, Diurnal variability ofdissolved molecular hydrogen in the tropical South Atlantic Ocean, Deep-Sea Res. 31:13–20.Google Scholar
  99. Holzapfel-Pschom, A., Conrad, R., and Seiler, W., 1986, Effects of vegetation on the emission of methane by submerged paddy soil, Plant Soil 92:223–233.Google Scholar
  100. Hu, S. I., Drake, H. L, and Wood, H. G., 1982, Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum, J. Bacteriol. 149:440–448.PubMedGoogle Scholar
  101. Ingersoll, R. B., Inman, R. E., and Fisher, W. R., 1974, Soil’s potential as a sink for atmospheric carbon monoxide, Tellus 26:151–159.Google Scholar
  102. Inman, R. E., and Ingersoll, R. B., 1971, Note on the uptake of carbon monoxide by soil fungi, J. Air Pollut. Control Assoc. 21:646–647.Google Scholar
  103. Inman, R. E., Ingersoll, R. B., and Levy, E. A., 1971, Soil: A natural sink for carbon monoxide, Science 172:1229–1231.PubMedGoogle Scholar
  104. Jansen, K., Thauer, R. K., Widdel, F., and Fuchs, G., 1984, Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch. Microbiol. 138:257–262.Google Scholar
  105. Jenkinson, D. S., and Ladd, J. N., 1981, Microbial biomass in soil: Measurement and turnover, in: Soil Biochemistry (E. A. Paul and J. N. Ladd, eds.). Vol. 5, pp. 415–471, Marcel Dekker, New York.Google Scholar
  106. Jones, R. D., and Morita, R. Y., 1983, Carbon monoxide oxidation by chemolithotrophic ammonium oxidizers. Can. J. Microbiol 29:1545–1551.Google Scholar
  107. Jones, R. D., Morita, R. Y., and Griffiths, R. P., 1984, Method for estimating in-situ chemolithotrophic ammonium oxidation using carbon monoxide oxidation. Mar. Ecol. Prog. Ser. 17:259–269.Google Scholar
  108. Jorgensen, B. B., 1977, Bacterial sulfate reduction within reduced microniches of oxidized marine sediments. Mar. Biol. 41:7–17.Google Scholar
  109. Junge, C., Seiler, W., Bock, R., Greese, K. D., and Radier, F., 1971, Über die CO-Produktion von Mikroorganismen, Naturwissenschaften 58: 362–363.PubMedGoogle Scholar
  110. Junge, C., Seiler, W., Schmidt, U., Bock, R., Greese, K. D., Radier, F., and Rüger, H. J., 1972, Kohlenoxid- und Wasserstoff-Produktion mariner Mikroorganismen im Nährmedium mit synthetischem Seewasser, Naturwissenschaften 59:514–515.PubMedGoogle Scholar
  111. Kawasumi, T., Igarashi, Y., Kodama, T., and Minoda, Y., 1984, Hydrogenobacter thermo- philus gen. nov. sp. nov., an extremely thermophilic, aerobic hydrogen-oxidizing bacterium, Int. J. Syst. Bacteriol. 34:5–10.Google Scholar
  112. Kerby, R., Niemczura, W., and Zeikus, J. G., 1983, Single-carbon catabolism in acetogens: Analysis of carbon flow in Acetobacterium woodii and Butyribacterium methylotrophi- cum by fermentation and ’14C nuclear magnetic resonance measurements,J. Bacteriol. 155:1208–1218.PubMedGoogle Scholar
  113. Khalil, M. A. K., and Rasmussen, R. A., 1983, Sources, sinks, and seasonal cycles of atmospheric methane, J. Geophys. Res. 88:5131–5144.Google Scholar
  114. Khalil, M. A. K., and Rasmussen, R. A., 1984, Carbon monoxide in the earth’s atmosphere: Increasing trend. Science 224:54–56.PubMedGoogle Scholar
  115. Kiessling, M., and Meyer, O., 1982, Profitable oxidation of carbon monoxide or hydrogen during heterotrophic growth of Pseudomonas carboxydoflava, FEMS Microbiol. Lett. 13:333–338.Google Scholar
  116. Krinsky, N. J., 1978, Non-photosynthetic functions of carotenoids, Phil. Trans. R. Soc. Lond 284B:581–590.Google Scholar
  117. Kristjansson, J. K., Ingason, A., and Alfredsson, G. A., 1985, Isolation of thermophilic obli- gately autotrophic hydrogen-oxidizing bacteria, similar to Hydrogenobacter thermophi- lus, from Icelandic hot springs.Arch. Microbiol. 140:321–325.Google Scholar
  118. Krüger, B., and Meyer, O., 1984, Thermophilic Bacilli growing with carbon monoxide. Arch. Microbiol. 139:402–408.Google Scholar
  119. Kryukov, V. R., Saveleva, N. D., and Pusheva, M. A., 1983, Calderobacterium hydrogeno- philum nov. gen., no v. sp., an extreme thermophilic hydrogen bacterium, and its hydro- genase activity, Mikrobiologija 52:781–788.Google Scholar
  120. Krzycki, J. A., Wolkin, R. H., and Zeikus, J. G., 1982, Comparison of unitrophic and mix- otrophic substrate metabolism by an acetate-adapted strain of Methanosarcina barkeri, J. Bacteriol. 149:247–254.PubMedGoogle Scholar
  121. Kuznetsov, S. I., 1959,Die Rolle der Mikroorganismen im Stoffkreislauf der Seen, VEB Deutscher Verlag für Wissenschaften, Berlin.Google Scholar
  122. La Favre, J. S., and Focht, D. D., 1983, Conservation in soil of Hj liberated from N2 fixation by Hup" nodules, Appl. Environ. Microbiol 46:304–311.PubMedGoogle Scholar
  123. Lambert, G. R., and Smith, G. D., 1981, The hydrogen metabolism of cyanobacteria (blue- green algae), Biol. Rev. Camb. Phil. Soc. 56:589–660.Google Scholar
  124. Langdon, S. E., 1917, Carbon monoxide, occurrence free in kelp (Nereocystis luetkeana), J. Am. Chem. Soc. 39:149–156.Google Scholar
  125. Law, A. T., and Button, D. K., 1977, Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium, J. Bacteriol. 129:115–123.PubMedGoogle Scholar
  126. Lespinat, P. A., and Berlier, Y. M., 1981, The dependence of hydrogen recycling upon nitro- genase activity in Azospirillum brasilense Sp. 7, FEMS Microbiol Lett. 10:127–132.Google Scholar
  127. Li, Y. H., Chin, Y. H., Zhao, H. Y., Zhang, X. J., and Zhou, P. Z., 1980, Survey of hydrogen evolution by leguminoid rhizobia strains, Wei Sheng Wu Hsueh Pao 20:180–184.Google Scholar
  128. Liebl, K. H., and Seiler, W., 1976, CO and H2 destruction at the soil surface, in: Production and Utilization of Gases (H 2 , CH 4 , CO) (H. G. Schlegel, G. Gottschalk, and N. Pfennig, eds.), pp. 215–229, Goltze, Göttingen.Google Scholar
  129. Lilley, M. D., Baross, J. A., and Gordon, L. L, 1982a, Dissolved hydrogen and methane in Saanich Inlet, British Columbia. Deep-Sea Res. 29:1471–1484.Google Scholar
  130. Lilley, M. D., De Angelis, M. A., and Gordon, L. L, 1982b, CH4, H2, CO and N2O in submarine hydrothermal vent waters. Nature 300:48–49.Google Scholar
  131. Lion, L. W., and Leckie, J. O., 1981, The biogeochemistry of the air-sea interface, Annu. Rev. Earth Planet. Scl 9:449–486.Google Scholar
  132. Liss, P. S., and Slater, P. G., 1974, Flux of gases across the air-sea interface. Nature 247:181-184.Google Scholar
  133. Loewus, M. W., and Delwiche, C. C., 1963, Carbon monoxide production by algae. Plant Physiol 38: 371–374.PubMedGoogle Scholar
  134. Logan, J. A., Prather, M. J., Wofsy, S. C, and McElroy, M. B., 1981, Tropospheric chemistry: A global perspective, J. Geophys. Res. 86:7210–7254.Google Scholar
  135. Lovley, D. R., Dwyer, D. F., and Klug, M. J., 1982, Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments, Appl Environ. Microbiol 43:1373–1379.PubMedGoogle Scholar
  136. Lowe, D. C., and Schmidt, U., 1983, Formaldehyde (HCHO) measurements in the nonur- ban atmosphere, J. Geophys. Res. 88:10844–10858.Google Scholar
  137. Lüttge, U., and Fischer, K., 1980, Light-dependent net carbon monoxide-evolution by C3 and C4 plants,Planta 149:59–63.Google Scholar
  138. Lupton, F. S., and Marshall, K. C., 1981, Specific adhesion of bacteria to heterocysts of Anabaena sp and its ecological significance, Appl Environ. Microbiol 42:1085–1092.PubMedGoogle Scholar
  139. Lupton, F. S., Conrad, R., and Zeikus, J. G., 1984, CO metabolism of Desulfovibrio vulgaris strain Madison: Physiological function in absence and presence of exogenous substrate, FEMS Microbiol Lett. 23: 263–268.Google Scholar
  140. Lyons, C. M., Justin, P., Colby, J., and Williams E., 1984, Isolation, characterization and autotrophic metabolism of a moderately thermophilic carboxydobacterium, Pseudomonas thermocarboxydovorans sp. nov., J. Gen. Microbiol 130:1097–1105.Google Scholar
  141. Malik, K. A., and Schlegel, H. G., 1980, Enrichment and isolation of new nitrogen-fixing hydrogen bacteria, FEMS Microbiol. Lett. 8:101–104.Google Scholar
  142. Marenco, A., and Delaunay, J. C., 1980, Experimental evidence of natural sources of CO from measurements in the troposphere,J. Geophys. Res. 85:5599–5613.Google Scholar
  143. Martens, C. S., 1976, Control of methane sediment-water bubble transport by macroin- faunal irrigation in Cape Lookout Bight, North Carolina, Science 192:998–1000.PubMedGoogle Scholar
  144. Martens, C. S., and Val Klump, J., 1980, Biogeochemical cycling in an organic-rich coastal marine basin. 1. Methane sediment-water exchange processes, Geochim. Cosmochim. Acta 44:471–490.Google Scholar
  145. McFarlane, J. C., Rogers, R. D., and Bradley, Jr., D. V., 1978, Environmental tritium oxidation in surface soil,Environ. Sei. Technol. 12:590–593.Google Scholar
  146. McGee, J. M., Brown, L. R., and Tischer, R. G., 1967, A high temperature hydrogen oxidizing bacterium—Hydrogenomonas thermophilus n. sp.. Nature 214:715–716.PubMedGoogle Scholar
  147. Meyer, O., 1978, Kohlenmonoxidoxidation und -Assimilation durch das aerobe Wasser- stoffbakterium Pseudomonas carboxydovorans, Ph. D. Thesis, Göttingen.Google Scholar
  148. Meyer, O., 1985, Metabolism of aerobic carbon monoxide-utilizing bacteria, in: Microbial Gas Metabolism (R. K. Poole and C. S. Dow, eds.), pp. 131–151, Academic Press, London.Google Scholar
  149. Meyer, O., and Schlegel, H. G., 1983, Biology of aerobic carbon monoxide-oxidizing bacteria,Annu. Rev. Microbiol. 37:277–310.PubMedGoogle Scholar
  150. Miyahara, S., and Takahashi, H., 1971, Biological CO evolution: Carbon monoxide evolution during autoenzymatic oxidation of phenols, J. Biochem. 69:231–233.PubMedGoogle Scholar
  151. Molongoski, J. J., and Klug, M. J., 1980, Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. Freshwater Biol. 10:507–518.Google Scholar
  152. Moortgat, G., and Warneck, P., 1979, CO and H2 quantum yields in the photodecomposi- tion of formaldehyde in air, J. Chem. Phys. 70:3639–3651.Google Scholar
  153. Nedwell, D. B., 1984, The input and mineralization of organic carbon in anaerobic aquatic sediments, in: Advances in Microbial Ecology, Vol. 7 (K. C. Marshall, ed.), pp. 93–131, Plenum Press, New York.Google Scholar
  154. Neitzert, V., and Seiler, W., 1981, Measurement of formaldehyde in clean air,Geophys. Res. Lett. 8:79–82.Google Scholar
  155. Nohrstedt, H. O., 1984, Carbon monoxide as an inhibitor of N2 Case activity (C2H2) in control measurements of endogenous formation of ethylene by forest soils. Soil Biol. Biochem. 16:19–22.Google Scholar
  156. Norkrans, B., 1980, Surface microlayers in aquatic environments, in:Advances in Microbial Ecology, Vol. 4 (M. Alexander, ed.), pp. 51–85, Plenum Press, New York.Google Scholar
  157. Nozhevnikova, A. N., and Yurganov, L. N., 1978, Microbial aspects of regulating the carbon monoxide content of the earth’s atmosphere, in: Advances in Microbial Ecology, Vol. 2 (M. Alexander, ed.), pp. 203–244, Plenum Press, New York.Google Scholar
  158. Oremland, R. S., 1983, Hydrogen metabolism by decomposing cyanobacterial aggregates in Big Soda Lake, Nevada, Appl. Environ. Microbiol. 45:1519–1525.PubMedGoogle Scholar
  159. Paerl, H. W., 1982,In situ hydrogen production and utilization by natural populations of nitrogen-fixing blue-green algae. Can. J. Bot. 60:2542–2546.Google Scholar
  160. Paerl, H. W., 1983, Environmental regulation of hydrogen utilization (tritiated-hydrogen exchange) among natural and laboratory populations of nitrogen and non-nitrogen fixing phytoplankton, Microb. Ecol. 9:79–97.Google Scholar
  161. Pedrosa, F. O., Döbereiner, J., and Yates, M. G., 1980, Hydrogen-dependent growth and autotrophic carbon dioxide fixation in Derxia, J. Gen. Microbiol. 119:547–551.Google Scholar
  162. Pedrosa, F. O., Stephan, M., Döbereiner, J., and Yates, M. G., 1982, Hydrogen-uptake hydrogenase activity in nitrogen-fixing Azospirillum brasilense, J. Gen. Microbiol. 128:161–166.Google Scholar
  163. Peiser, G. D., Lizada, C. C., and Yang, S. F., 1982, Dark metabolism of carbon monoxide in lettuce leaf disks. Plant Physiol. 70:397–400.PubMedGoogle Scholar
  164. Peng, T. H., Broecker, W. S., Mathieu, G. G., and Li, Y. H., 1979, Radon evasion rates in the Atlantic and Pacific Oceans as determined during GEOSECS program, J. Geophys. Res. 84:2471–2486.Google Scholar
  165. Pezacka, E., and Wood, H. G., 1984, The synthesis of acetyl-Co2 by Clostridium thermo- aceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate. Arch. Microbiol 137:63–69.PubMedGoogle Scholar
  166. Philips, E. J., and Mitsui, A., 1982, Light intensity preference and tolerance of aquatic pho- tosynthetic microorganisms, in: CRC Handbook of Biosolar Resources (A. Mitsui and C. C. Black, eds.) Vol. 1, pp. 257–308, CRC Press, Boca Raton, Horida.Google Scholar
  167. Popelier, F., Liessens, J., and Verstraete, W., 1985, Soil Hz-uptake in relation to soil properties and rhizobial Hs-production, Plant Soil 85:85–96.Google Scholar
  168. Radier, F., Greese, K. D., Bock, R., and Seiler, W., 1974, Die Bildung von Spuren von Kohlenmonoxid durchSaccharomyces cerevisiae und andere Mikroorganismen, Arch. Microbiol. 100:243–252.Google Scholar
  169. Radmer, R. J., and Kok, B., 1979, Rate-temperature curves as an unambiguous indicator of biological activity in soil,Appl. Environ. Microbiol. 38:224–228.PubMedGoogle Scholar
  170. Rasmussen, R. A., and Khalil, M. A. K., 1981, Atmospheric methane (CH4): Trends and seasonal cyles, J. Geophys. Res. 86:9826–9832.Google Scholar
  171. Rasmussen, R. A., and Khalil, M. A. K., 1983, Global production of methane by termites. Nature 301:700–702. Google Scholar
  172. Robinson, E., Clark, D., and Seiler, W., 1984, The latitudinal distribution of carbon monoxide across the Pacific from California to Antarctica, J. Atmos, Chem. 1:137–150.Google Scholar
  173. Robinson, J. A., and Tiedje, J. M., 1982, Kinetics of hydrogen consumption by rumen fluid, anaerobic digestor sludge, and sediment, Appl. Environ. Microbiol. 44:1374–1384.PubMedGoogle Scholar
  174. Robinson, W. O., 1930, Some chemical phases of submerged soil conditions,Soil Sei. 30:197–217.Google Scholar
  175. Robson, R L., and Postgate, J. R., 1980, Oxygen and hydrogen in biological nitrogen fixation, Annu. Rev. Microbiol. 34:183–207.PubMedGoogle Scholar
  176. Roelofsen, W., and Akkermans, A. D. L., 1979, Uptake and evolution of hydrogen and reduction of acetylene by root nodules and nodule homogenates of Alnus glutinosa. Plant Soil 52 :57–57. Google Scholar
  177. Rudd, J. W. M., and Taylor, C. D., 1980, Methane cycling in aquatic environments.Adv. Aquat. Microbiol. 2:77–150.Google Scholar
  178. Saveleva, N. D., Kryukov, V. R., and Pusheva, M. A., 1982, Obligate thermophilic hydrogen bacteria, Mikrobiologija 51:765–769.Google Scholar
  179. Schink, B., and Zeikus, J. G., 1984, Ecology of aerobic hydrogen-oxidizing bacteria in two freshwater lake ecosystems. Can. J. Microbiol. 30:260–265.Google Scholar
  180. Schink, B., Lupton, F. S., and Zeikus, J. G., 1983, Radioassay for hydrogenase activity in viable cells and documentation of aerobic hydrogen-consuming bacteria living in extreme environments, Appl. Environ. Microbiol. 45:1491–1500.PubMedGoogle Scholar
  181. Schlegel, H. G., 1974, Production, modification, and consumption of atmospheric trace gases by microorganisms, Tellus 26:11–20.Google Scholar
  182. Schlegel, H. G., and Vollbrecht, D., 1980, Formation of the dehydrogenases for lactate, ethanol, and butanediol in the strictly aerobic bacterium Alcaligenes eutrophus, J.Gen. Microbiol. 117:475–481.Google Scholar
  183. Schmidt, U., 1974, Molecular hydrogen in the atmosphere, Tellus 26:78–90.Google Scholar
  184. Schmidt, U., 1978, The latitudinal and vertical distribution of molecular hydrogen in the troposphere, J. Geophys. Res. 83:941–946.Google Scholar
  185. Schmidt, U., 1979, The solubility of carbon monoxide and hydrogen in water and sea-water at partial pressures of about 10" atmospheres, Tellus 31:68–74.Google Scholar
  186. Schubert, K. R., and Evans, H. J., 1976, Hydrogen evolution: A major factor affecting the efficiency of nitrogen fixation in nodulated symbionts, Proc. Nat. Acad. Sei. USA 73:1207–1211.Google Scholar
  187. Schütz, H., Conrad, R., Goodwin, S. and Seiler, W., 1988, Emission of hydrogen fi-om deep and shallow freshwater environments.Biogeoehemistry, in press.Google Scholar
  188. Scranton, M. I., 1983, The role of the cyanobacterium Oseillatoria (Trichodesmium) thie- bautii in the marine hydrogen cycle, Mar. Eeolg. Progr. Sen 11:79–87.Google Scholar
  189. Scranton, M. I., 1984, Hydrogen cycling in the waters near Bermuda: The role of the nitrogen fixer, Oseillatoria thiebautii, Deep-Sea Res. 31:133–144.Google Scholar
  190. Scranton, M. I., and Farrington, J. W., 1977, Methane production in the waters off Walvis Bay, J. Geophys. Res. 82:4947–4953.Google Scholar
  191. Scranton, M. I., Barger, W. R., and Herr, F. L., 1980, Molecular hydrogen in the urban troposphere: Measurement of seasonal variability, J. Geophys. Res. 85:5575–5580.Google Scholar
  192. Scranton, M. I., Jones, M. M., and Herr, F. L., 1982, Distribution and variability of dissolved hydrogen in the Mediterranean Sea,J. Mar. Res. 40:873–891.Google Scholar
  193. Scranton, M. I., Novelli, P. C., and Loud, P. A., 1984, The distribution and cycling of hydrogen gas in the waters of two anoxic marine environments, Limnol. Oceanogr. 29:993–1003.Google Scholar
  194. Sebacher, D. I., Harriss, R. C., and Bartlett, K. B., 1985, Methane emissions to the atmosphere through aquatic plants, J. Environ. Qual. 14:40–46.Google Scholar
  195. Seiler, W., 1974, The cycle of atmospheric CO, Tellus 26:116–135.Google Scholar
  196. Seiler, W., 1978, The influence of the biosphere and the atmospheric CO and H2 cycles, in: Environmental Biogeochemistry and Geomicrobiology (W. E. Krumbein, ed.), pp. 773–810, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  197. Seiler, W., 1984, Contribution of biological processes to the global budget of CH4 in the atmosphere, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), pp. 468–477, American Society for Microbiology, Washington, D.C.Google Scholar
  198. Seiler, W., 1985, Increase of atmospheric methane: Causes and impact on the environment, in:WMO Special Environmental Report No. 16, WMO No. 647, pp. 177–203. Google Scholar
  199. Seiler, W., and Conrad, R., 1982, Global carbon monoxide fluxes: Inappropriate measurement procedures, Science 216 :161–162.Google Scholar
  200. Seiler, W., and Conrad, R., 1987, Contribution of tropical ecosystems to the global budgets of trace gases, especially CH4, H2, CO and N2O in: The Geophysiology of Amazonia (R. E. Dickinson, ed.), pp. 133–162, Wiley, New York.Google Scholar
  201. Seiler, W., and Fishman, J., 1981, The distribution of carbon monoxide and ozone in the free troposphere, J. Geophys. Res. 86:7255–7265.Google Scholar
  202. Seiler, W., and Giehl, H., 1977, Influence of plants on the atmospheric carbon monoxide, Geophys. Res. Lett. 4:329–332.Google Scholar
  203. Seiler, W., and Schmidt, U., 1974, Dissolved nonconservative gases in seawater, in The Sea (E. D. Goldberg, ed.). Vol. 5, pp. 219–243, Wiley, New York.Google Scholar
  204. Seiler, W., and Warneck, P., 1972, Decrease of carbon monoxide mixing ratio at the tro- popause, J. Geophys. Res. 77:3204–3214.Google Scholar
  205. Seiler, W., and Zankl, H., 1975, Die Spurengase CO und H2 über München, Umschau 75:735–736.Google Scholar
  206. Seiler, W., and Zankl, H., 1976, Man’s impact on the atmospheric carbon monoxide cycle, in:Environmental Biogeochemistry (J. O. Nriagu, ed.). Vol. 1, pp. 25–37, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  207. Seiler, W., Liebl, K. H., Stöhr, W. T., and Zakosek, H., 1977, CO- und H2-Abbau in Böden, Z.Pflanzenernähr, Bodenkd. 140:257–272.Google Scholar
  208. Seiler, W., Giehl, H., and Bunse, G., 1978, The influence of plants on atmospheric carbon monoxide and dinitrogen oxide, Pure AppL Geophys. 116:439–451.Google Scholar
  209. Seiler, W. Conrad, R., and Scharffe, D., 1984a, Field studies of methane emission from termite nests into the atmosphere and measurements of methane uptake by tropical soils, J. Atmos. Chem. 1:171–186.Google Scholar
  210. Seiler, W., Holzapfel-Pschorn, A., Conrad, R., and Scharffe, D., 1984b, Methane emission from rice paddies, J. Atmos. Chem. 1:241–268.Google Scholar
  211. Seiler, W., Giehl, H., Brunke, E. G., and Halliday, E., 1984c, The seasonality of CO abundance in the Southern Hemisphere, Tellus 36:219–231.Google Scholar
  212. Setser, P. J., Bullister, J. L., Frank, E. C., Guinasso, Jr., N. L., and Schink, D. R., 1982, Relationships between reduced gases, nutrients, and fluorescence in surface waters off Baja California, Deep-Sea Res. 29:1203–1215.Google Scholar
  213. Simpson, F. B., and Burris, R. H., 1984, A nitrogen pressure of 50 atmosphere does not prevent evolution of hydrogen by nitrogenase. Science 224:1095–1097.PubMedGoogle Scholar
  214. Simpson, F. J., Narasimhachari, N., and Westlake, D. W. S., 1963, Degradation of rutin by Aspergillus flavus. The carbon monoxide producing system, Can. J. Microbiol. 9:15–25.Google Scholar
  215. Singh, H. B., 1977, Preliminary estimation of the average tropospheric HO concentrations in the Northern and Southern Hemispheres, Geophys. Res. Lett. 4:453–456.Google Scholar
  216. Sjöstrand, T., 1970, Early studies of CO production,Ann. N. Y. Acad. Sei. 174:5–10.Google Scholar
  217. Skujins, J., 1978, History of abiontic soil enzyme research, in: Soil Enzymes (R. G. Bums, ed.), pp. 1–49, Academic Press, London.Google Scholar
  218. Skujins, J., 1984, Microbial ecology of desert soil, in: Advances in Microbial Ecology, Vol. 7 (K. C. Marshall, ed.), pp. 49–91, Plenum Press, New York.Google Scholar
  219. Spratt, Jr., H. G., and Hubbard, J. S., 1981, Carbon monoxide metabolism in roadside soils, Appl. Environ. Microbiol. 41:1191–1201.Google Scholar
  220. Strayer, R. F., and Tiedje, J. M., 1978, In situ methane production in a small, hypereu- trophic, hard-water lake: Loss of methane from sediments by vertical diffusion and ebullition, Limnol. Oceanogr. 23:1201–1206.Google Scholar
  221. Swinnerton, J. W., and Lamontagne, R.A., 1974, Carbon monoxide in the South Pacific Ocean, 26:136–142.Google Scholar
  222. Swinnerton, J. W., Linnenbom, V. J., and Lamontagne, R. A., 1970, Ocean: A natural source of carbon monoxide. Science 167:984–986.PubMedGoogle Scholar
  223. Swinnerton, J. W., Lamontagne, R. A., and Bunt, J. S., 1977, Field Studies of Carbon Monoxide and Light Hydrocarbon Production Related to Natural Biological Processes, Naval Research Laboratory, Washington, D. C, Report 8099, pp. 1–9.Google Scholar
  224. Tenhunen, R., Marver, H. S., and Schmid, R., 1969, Microsomal heme oxygenase. Characterization of the enzyme, J. Biol. Chem. 244:6388–6394.PubMedGoogle Scholar
  225. Trevors, J. T., 1985, Hydrogen consumption in soil. Plant Soil 87:417–422.Google Scholar
  226. Troxler, R. F., 1972, Synthesis of bile pigments in plants. Formation of carbon monoxide and phycocyanobilin in wild-type and mutant strains of the alga, Cyanidium caldar- ium, Biochemistry 11:4235–4242.Google Scholar
  227. Troxler, R. F., and Dokos, J. M., 1973, Formation of carbon monoxide and bile pigment in red and blue-green algae. Plant Physiol. 51:72–75.PubMedGoogle Scholar
  228. Uratsu, S. K., Keyer, H. H., Weber, D. F., and Lim, S. T., 1982, Hydrogen uptake (HUP) activity of Rhizobium japonicum from major U. S. soybean production areas. Crop Sei. 22:600–602.Google Scholar
  229. Vallentyne, J. R., and Whittaker, J. R., 1956, On the presence of free sugars in filtered lake water. Science 124:1026–1027.PubMedGoogle Scholar
  230. Walker, C. C., and Yates, M. G., 1978, The hydrogen cycle in nitrogen-fixing Azotobacter chroococcum, Biochimie 60:225–231.PubMedGoogle Scholar
  231. Wangersky, P. J., 1976, The surface film as a physical environment, Annu. Rev. EcoL Syst. 7:161–176.Google Scholar
  232. Westlake, D. W. S., Talbot, G., Blakley, E. R., and Simpson, F. J., 1959, Microbial decomposition of rutin. Can. J. Microbiol. 5:621–629.PubMedGoogle Scholar
  233. Wilks, S. S., 1959, Carbon monoxide in green plants. Science 129:964–966.PubMedGoogle Scholar
  234. Williams, P. J. LeB., 1981, Microbial contribution to overall marine plankton metabolism: Direct measurement of respiration, Oceanol. Acta 4:359–364.Google Scholar
  235. Williams, R. T., and Bainbridge, A. E., 1973, Dissolved CO, CH4, and H2 in the southern ocean, J. Geophys. Res. 78:2691–2694.Google Scholar
  236. Wilson, D. F., Swinnerton, J. W., and Lamontagne, R. A., 1970, Production of carbon monoxide and gaseous hydrocarbons in seawater: Relation to dissolved organic carbon, Science UmSll-1519. Google Scholar
  237. Winkler, L. W., 1901, Die Löslichkeit der Gase in Wasser (Dritte Abhandlung), Ber. Chem. Ges. 34:1400–1422.Google Scholar
  238. Wittenberg, J., 1960, The source of carbon monoxide in the float of the Portuguese Man-of War Physalis physalis, J. Exp. Biol. 37:698–705.Google Scholar
  239. Wolff, D. G., and Bidlack, W. R., 1976, The formation of carbon monoxide during peroxidation of microsomal lipids, Biochem. Biophys. Res. Commun. 73:850–857.PubMedGoogle Scholar
  240. Yamane, I., and Sato, K., 1963, Decomposition of organic acids and gas formation in flooded soil. Soil Sei. Plant Nutr. 9:32–36.Google Scholar
  241. Yamane, I., and Sato, K., 1964, Decomposition of glucose and gas formation in flooded soil.Soil Sei. Plant Nutr. 10:127–133.Google Scholar
  242. Yamane, I. and Sato, K., 1967, Effect of temperature on the decomposition of organic substances in flooded soil, Soil Sei. Plant Nutr. 13:94–100.Google Scholar
  243. Yoshida, T., Noguchi, M., and Kikuchi, G., 1982, The step of carbon monoxide liberation in the sequence of heme degradation catalyzed by the reconstituted microsomal heme oxygenase system, J. Biol. Chem. 257:9345–9348.PubMedGoogle Scholar
  244. Zafiriou, O. C, Joussotdubien, J., Zepp, R. G., and Zika, R. G., 1984, Photochemistry of natural waters. Rev. Environ. Sei. Technol. 18:A358-A371.Google Scholar
  245. Zavarzin, G. A., and Nozhevnikova, A. N., 1977, Aerobic carboxydobacteria, Microb. Ecol. 3:305–326.Google Scholar
  246. Zehnder, A. J. B., 1978, Ecology of methane formation, in: Water Pollution Microbiology (R. Mitchell, ed.). Vol. 2, pp. 349–376, Wiley, New York.Google Scholar
  247. Zeikus, J. G., 1983, Metabolic communication between biodegradative populations in nature, in: Microbes in Their Natural Environments (J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny, eds.), pp. 423–462, Cambridge University Press, Cambridge.Google Scholar
  248. Zimmerman, P. R., Chatfield, R. B., Fishman, J., Crutzen, P. J., and Hanst, P. L., 1978, Estimates on the production of CO and H2 from the oxidation of hydrocarbon emissions from vegetation,Geophys. Res. Lett. 5:679–682.Google Scholar
  249. Zimmerman, P. R., Greenberg, J. G., Wandiga, S. O., and Crutzen, P. J., 1982, Termites: A potential large source of atmospheric methane, carbon dioxide, and molecular hydrogen, Science218:563–565.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ralf Conrad
    • 1
  1. 1.Max-Planck-Institut für ChemieMainzFederal Republic of Germany

Personalised recommendations