The Microbial Ecology of the Dead Sea

  • Aharon Oren
Part of the Advances in Microbial Ecology book series (AMIE, volume 10)


The last decade has shown a great revival in the study of halophilic microorganisms. In part this interest has been caused by the discovery of properties interesting from a theoretical point of view, such as mechanisms of osmotic adjustment, the functioning of enzymes in the presence of high salt concentrations, and the possession of retinal pigments, such as bacteriorhodopsin and halorhodopsin in a number of Halobacterium strains, representing simple mechanisms of converting light energy into biologically available energy (Stoeckenius and Bogomolni, 1982). Moreover, accumulation of valuable products, such as glycerol and (in certain strains) β-carotene, in the halotolerant unicellular green alga Dunaliella has industrial potential (Ben-Amotz and Avron, 1983).


Enrichment Culture Soda Lake Halophilic Bacterium Great Salt Lake Purple Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arad, V., Beyth, M., and Bartov, Y., 1984, The Dead Sea and Its Surroundings. Bibliography of Geological Research, Geological Survey of Israel, Special Publication No. 3.Google Scholar
  2. Assaf, G., 1976, The Dead Sea: A scheme for a solar lake, Solar Energy 18:293–299.CrossRefGoogle Scholar
  3. Begin, Z. B., Ehrlich, A., and Nathan, Y., 1974, Lake Lisan. The Pleistocene Precursor of the Dead Sea, Bulletin No. 63, State of Israel, Ministry of Commerce and Industry, Geological Survey.Google Scholar
  4. Ben-Amotz, A., and Avron, M., 1983, Accumulation of metabolites by halotolerant algae and its industrial potential, Annu. Rev. Microbiol 37:95–119.PubMedCrossRefGoogle Scholar
  5. Ben-Amotz, A. and Ginzburg, B. Z., 1969, Light-induced proton uptake in whole cells of Dunaliella parva, Biochim. Biophys. Acta 183:144–154.CrossRefGoogle Scholar
  6. Ben-Amotz, A., Katz, A., and Avron, M., 1982, Accumulation of jS-carotene in halotolerant algae: Purification and characterization of jS-carotene-rich globules fromDunaliella bar- dawil (Chlorophyceae), J. PhycoL 18:529–537.CrossRefGoogle Scholar
  7. Ben-Yaakov, S., and Sass, E., 1977, Independent estimate of the pH of Dead Sea brines, Limnol Oceanogr. 22:374–376.CrossRefGoogle Scholar
  8. Bernard, F., 1957, Presence de flagelles marins Coccolithus et Exuviella dans le plancton de la Mer Morte, C R. Acad. Sei. (Paris) 245:1754–1756.Google Scholar
  9. Beyth, M., 1980, Recent evolution and present stage of Dead Sea brines, inHypersaline Brines and Evaporitic Environments (A. Nissenbaum, ed.), pp. 155–165, Elsevier, Amsterdam.CrossRefGoogle Scholar
  10. Brock, T. D., 1975, Salinity and the ecologyof Dunaliella from Great Salt Lake, J.Gen. Microbiol. 89:285–292.Google Scholar
  11. Brock, T. D., and Petersen, S., 1976, Some effects of light on the viability of rhodopsin- containing halobacteria, Arch. Microbiol. 109:199–200.PubMedCrossRefGoogle Scholar
  12. Buchanan, B. B., 1969, Role of ferredoxin in the synthesis of a-ketobutyrate from propionyl coenzyme A and carbon dioxide by enzymes from photosynthetic and nonphotosyn- thetic bacteria, J. Biol. Chem. 244:4218–4223.PubMedGoogle Scholar
  13. Butcher, R. W., 1959, An Introductory Account of the Smaller Algae of British Coastal Waters. Part 1: Introduction and Chlorophyceae, HMSO, London. Google Scholar
  14. Carmi, I., Gat, J. R., and Stiller, M., 1984, Tritium in the Dead Sea, Earth Planet. Sei. Lett. 71:377–389.CrossRefGoogle Scholar
  15. Cohen, S., Oren, A., and Shilo, M., 1983, The divalent cation requirement of Dead Sea halobacteria, Arch. Microbiol. 136:184–190.CrossRefGoogle Scholar
  16. Danon, A., and Caplan, S. R., 1977, CO2 fixation by Halobacterium halobium, FEBS Lett. 74:255–258.PubMedCrossRefGoogle Scholar
  17. Danon, A., and Stoeckenius, W., 1975, Photophosphorylation in Halobacterium halobium, Proc. Natl. Acad Sei. USA 71:1234–1238.CrossRefGoogle Scholar
  18. Edgerton, M. E., and Brimblecombe, P., 1981, Thermodynamics of halobacterial environments, Can. J. Microbiol. 27:899–909.PubMedCrossRefGoogle Scholar
  19. Ehrlich, H. L., and Zapkin, M. A., 1981, Mn" oxidizing bacteria from the Dead Sea region in Israel, Abstract N-60, Annual Meeting of the American Society for Microbiology.Google Scholar
  20. Elazari-Volcani, B., 1940, Studies on the microflora of the Dead Sea, Ph. D. Thesis, Hebrew University of Jerusalem (in Hebrew).Google Scholar
  21. Elazari-Volcani, B., 1943a, Bacteria in the bottom sediments of the Dead Sea,Nature 152:274–275.CrossRefGoogle Scholar
  22. Elazari-Volcani, B., 1943b, A dimastigamoeba in the bed of the Dead Sea,Nature 152:301–302.CrossRefGoogle Scholar
  23. Elazari-Volcani, B., 1944, A ciliate from the Dead Sea, Nature 154:335.CrossRefGoogle Scholar
  24. Evans, R. W., Kushwaha, S. C., and Kates, M., 1980, The lipids of Halobacterium maris- mortui, an extremely halophilic bacterium in the Dead Sea, Biochim. Biophys. Acta 619:533–544.PubMedGoogle Scholar
  25. Garber, R. A., Nishry, A., Nissenbaum, A., and Friedman, G. M., 1981, Modem deposition of manganese along the Dead Sea shore, Sed. Geol. 30:267–274.CrossRefGoogle Scholar
  26. Ginzburg, M., Sachs, L., and Ginzburg, B. Z., 1970, Ion metabolism in a Halobacterium. I. Influence of age of culture on intracellular concentrations, J. Gen. Physiol. 55:187–207.PubMedCrossRefGoogle Scholar
  27. Gonzalez, C., Gutierrez, C., and Ramirez, C., 1978, Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium, Can. J. Microbiol. 24:710–715.PubMedCrossRefGoogle Scholar
  28. Imhof, J. F., and Rodriguez-Valera, F., 1984, Betaine is the main compatible solute of hal- ophilic eubacteria, J. Bacteriol 160:478–479.Google Scholar
  29. Javor, B. J., 1984, Growth potential of halophilic bacteria isolated from solar salt environments: Carbon sources and salt requirements, Appl. Environ. Microbiol. 48:352–360.PubMedGoogle Scholar
  30. Javor, B. J., Requadt, C., and Stoeckenius, W., 1982, Box-shaped halophilic bacteria, J. Bacteriol. 151:1532–1542.PubMedGoogle Scholar
  31. Kaplan, I. R., and Baedecker, M. J., 1970, Biological productivity in the Dead Sea. Part IL Evidence for phosphatidyl glycerophosphate lipid in sediment, Isr. J. Chem. 8:529–533.Google Scholar
  32. Kaplan, I. R., and Friedmann, A., 1970, Biological productivity in the Dead Sea. Part I. Microorganisms in the water column, Isr. J. Chem. 8:513–528.Google Scholar
  33. Katz, A., Starinsky, A., Taitel-Goldman, N., and Beyth, M., 1981, Solubilities of gypsum and halite in the Dead Sea and in its mixtures with sea water, Limnol. Oceangr. 26:709–716.CrossRefGoogle Scholar
  34. Kirk, R. G., and Ginzburg, M., 1972, Ultrastructure of two species of Halobacterium, J. Ultrastructure Res. 41:80–94.CrossRefGoogle Scholar
  35. Klein, C., 1961, On the Fluctuations of the Level of the Dead Sea Since the Beginning of the 19th Century, Hydrological Paper No. 7, Ministry of Agriculture, Hydrological Service of Israel.Google Scholar
  36. Klein, C., 1982, Morphological evidence of lake level changes, western shore of the Dead Sea, Isr. J. Earth Sei. 31:67–94.Google Scholar
  37. Krasil’nikov, N. A., Duda, V. L, and Pivovarov, G. E., 1971, Characteristics of the cell structure of soil anaerobic bacteria forming vesicular caps on their spores, Microbiology 40:592–597.Google Scholar
  38. Kritzman, G., 1973, Observations on the microorganisms in the Dead Sea, M. Sc. Thesis, Hebrew University of Jerusalem (in Hebrew).Google Scholar
  39. Kritzman, G., Keller, P., and Henis, Y., 1973, Ecological studies on the heterotrophic extreme halophilic bacteria of the Dead Sea, in: Abstracts of the 1st International Congress Bacteriology, Vol. II, p. 242, Jerusalem.Google Scholar
  40. Kushner, D. J., 1978, Life in high salt and solute concentrations: Halophilic bacteria, in: Microbial Life in Extreme Environments (D. J. Kushner, ed.), pp. 317–368, Academic Press, London.Google Scholar
  41. Larsen, H., 1980, Ecology of hypersaline environments, in: Hypersaline Brines and Evapor- itic Environments (A. Nissenbaum, ed.), pp. 23–39, Elsevier, Amsterdam.CrossRefGoogle Scholar
  42. Lerche, W., 1937, Untersuchungen über Entwicklung und Fortpflanzung in der Gattung Dunaliella, Arch. Protistenkd. 88:236–268.Google Scholar
  43. Lerman, A., 1967, Model of chemical evolution of a chloride lake—The Dead Sea, Geo- chim. Cosmochim. Acta 31:2309–2330.CrossRefGoogle Scholar
  44. Levy, Y., 1980, Seasonal and Long Range Changes in Oxygen and Hydrogen Sulfide Concentration in the Dead Sea, Report MG/9/80, Ministry of Energy and Infrastructure, Geological Survey of Israel.Google Scholar
  45. Lortet, M. L., 1892, Researches on the pathogenic microbes of the mud of the Dead Sea, Palestine Exploration Fund 1892:48–50.Google Scholar
  46. Mackay, M. A., Norton, R. S., and Borowitzka, L. J., 1984, Organic osmoregulatory solutes in cyanobacteria, J. Gen. Microbiol 130:2177–2191.Google Scholar
  47. Mullakhanbhai, M. F., and Francis, G. W., 1972, Bacterial lipids. 1. Lipid constituents of a moderately halophilic bacterium.Acta Chem. Scand. 26:1399–1410.PubMedCrossRefGoogle Scholar
  48. Mullakhanbhai, M. F., and Larsen, H., 1975, Halobacterium volcanii spec, nov., a Dead Sea halobacterium with a moderate salt requirement. Arch. Microbiol. 104:207–214.PubMedCrossRefGoogle Scholar
  49. Neev, D., and Emery, K. O., 1966, The Dead Sea, Science J. 2:50–55.Google Scholar
  50. Neev, D., and Emery, K. O., 1967, The Dead Sea. Depositional Processes and Environments of Evaporites, Bulletin No. 41, State of Israel, Ministry of Development, Geological Survey.Google Scholar
  51. Nicholson, D. E., and Fox, G. E., 1983, Molecular evidence for a close phylogenetic relationship among box-shaped halophilic bacteria, Halobacterium vallismortis, and Hal- obacterium marismortu. U Can. J. Microbiol 29:52–59.CrossRefGoogle Scholar
  52. Nishry, A., 1984, The geochemistry of manganese in the Dead Sea, Earth Planet. Sei. Lett. 71:415–426.CrossRefGoogle Scholar
  53. Nishry, A., and Stiller, M., 1984, Iron in the Dead Sea, Earth Planet Sei. Lett. 71:405–414.CrossRefGoogle Scholar
  54. Nissenbaum, A., 1975, The microbiology and biogeochemistry of the Dead Sea, Mierob. Eeol. 2:139–161.Google Scholar
  55. Nissenbaum, A., 1977, Minor and trace elements in Dead Sea water, Chem. Geol. 19:99–111.CrossRefGoogle Scholar
  56. Nissenbaum, A., 1979, Life in a Dead Sea—Fables, allegories and scientific search. Bioscience 29:153–151.CrossRefGoogle Scholar
  57. Nissenbaum, A., and Kaplan, I. R., 1976, Sulfur and carbon isotopic evidence for biogeo- chemical processes in the Dead Sea ecosystem, in: Environmental Biochemistry (J. O. Nriagu, ed.). Vol. 1, pp. 309–325, Ann Arbor Scientific, Ann Arbor, Michigan.Google Scholar
  58. Nissenbaum, A., Baedecker, M. J., and Kaplan, I. R., 1977, Organic geochemistry of Dead Sea sediments, Geochim. Cosmochim. Acta 36:709–727.CrossRefGoogle Scholar
  59. Oesterhelt, D., and Stoeckenius, W., 1971, Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nature 233:149–152.Google Scholar
  60. Oren, A., 1981, Approaches to the microbial ecology of the Dead Sea, Kieler Meeresforsch. Sonderh. 5:416–424.Google Scholar
  61. Oren, A., 1983a, Bacteriorhodopsin-mediated CO2 photoassimilation in the Dead Sea, Lim- nol. Oceanogr. 28:33–41.CrossRefGoogle Scholar
  62. Oren, A., 1983b, Population dynamics of halobacteria in the Dead Sea water column, Lim- nol. Oceanogr. 28:1094–1103.CrossRefGoogle Scholar
  63. Oren, A., 1983c,Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int. J. Syst. Bacteriol. 33:381–386.CrossRefGoogle Scholar
  64. Oren, A., 1983d, A thermophilic amyloglucosidase from Halobacterium sodomense, a halophilic bacterium from the Dead Sea, Curr. Microbiol. 8:225–230.CrossRefGoogle Scholar
  65. Oren, A., 1983e,Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136:42–48.CrossRefGoogle Scholar
  66. Oren, A., 1985, The rise and decline of a bloom of halobacteria in the Dead Sea, Limnol. Oceanogr. 30:911–915.CrossRefGoogle Scholar
  67. Oren, A., 1986a, Intracellular salt concentrations of the anaerobic halophilic eubacteria Hal- oanaerobium praevalens and Halobacteroides halobius, Can. J. Microbiol, 32: 4–9.CrossRefGoogle Scholar
  68. Oren, A., 1986b, The ecology and taxonomy of anaerobic halophilic eubacteria,FEMS Microbiol Rev. 39: 23–29.CrossRefGoogle Scholar
  69. Oren, A., and Shilo, M., 1981, Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea,Arch. Microbiol 130:185–187.CrossRefGoogle Scholar
  70. Oren, A., and Shilo, M., 1982, Population dynamics ofDunaliella parva in the Dead Sea, Limnol Oceangr. 27:201–211.CrossRefGoogle Scholar
  71. Oren, A., and Shilo, M., 1985, Factors determining the development of algal and bacterial blooms in the Dead Sea: A study of simulation experiments in outdoor ponds,FEMS Microbiol Ecol 31:229–237.CrossRefGoogle Scholar
  72. Oren, A., and Vlodavsky, L., 1985, Survival of Escherichia coli andVibrio harveyi in Dead Sea water, FEMS Microbiol Ecol 31:365–371.CrossRefGoogle Scholar
  73. Oren, A., Paster, B. J., and Woese, C. R., 1984a, Haloanaerobiaceae: A new family of moderately halophilic, obligatory anaerobic bacteria, Syst. Appl Microbiol 5:71–80.CrossRefGoogle Scholar
  74. Oren, A., Weisburg, W. G., Kessel, M., and Woese, C. R., 1984b,Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea, Syst. Appl Microbiol 5:58–70.CrossRefGoogle Scholar
  75. Post, F. J., 1977, The microbial ecology of the Great Salt Lake, Microb. Ecol 3:143–165.CrossRefGoogle Scholar
  76. Pundak, S., and Eisenberg, H., 1981, Structure and activity of malate dehydrogenase from the extreme halophilic bacteria of the Dead Sea. 1. Conformation and interaction with water and salt between 5 M and 1 M NaCl concentration, Eur. J. Biochem. 118:463–470.PubMedCrossRefGoogle Scholar
  77. Rafaeli-Eshkol, D., 1968, Studies on halotolerance in a moderately halophilic bacterium. Effect of growth conditions on salt resistance of the respiratory system, Biochem. J. 109:679–685.PubMedGoogle Scholar
  78. Rodriguez-Valera, F., Ruiz-Berraquero, F, and Ramos-Cormenzana, A., 1980, Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources, J. Gen. Microbiol. 119:535–538.Google Scholar
  79. Sass, E., and Ben-Yaakov, S., 1977, The carbonate system in hypersaline solutions: Dead Sea brines. Mar. Chem. 5:183–199.CrossRefGoogle Scholar
  80. Shindler, D. B., Wydro, R. M., and Kushner, D. J., 1977, Cell-bound cations of the moderately halophilic bacterium Vibrio costicola, J. Bacteriol. 130:698–703.Google Scholar
  81. Soliman, G. S. H., and Trüper, H. G., 1982, Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement, Zen- tralbl Bakteriol. Hyg. I Abt. Orig. C 3:318–329.Google Scholar
  82. Steinhom, L, 1983, In situ salt precipitation at the Dead Sea, Limnol. Oceanogr. 28:580–583.CrossRefGoogle Scholar
  83. Steinhorn, L, and Gat, J. R., 1983, The Dead Sea, Sei. Am. 249(4): 102–109.Google Scholar
  84. Steinhom, I., Assaf, G., Gat, J. R., Nishry, A., Nissenbaum, A., Stiller, M., Beyth, M., Neev, D., Garber, R., Friedman, G. M., and Weiss, W., 1979, The Dead Sea: Deepening of the mixolimnion signifies the overture to overturn of the water column, Science 206:55–57.CrossRefGoogle Scholar
  85. Stephens, D. W., and Gillespie, D. M., 1976, Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment, Limnol. Oceanogr. 21:74–87.CrossRefGoogle Scholar
  86. Stiller, M., and Chung, Y. C., 1984, Radium in the Dead Sea: A possible tracer for the duration of meromixis, Limnol. Oceanogr. 29:574–586.CrossRefGoogle Scholar
  87. Stiller, M., and Kaufman, A., 1984, 210pb and 210po during the destruction of stratification in the Dead Sea, Earth Planet. Sei. Lett. 71:390–404.CrossRefGoogle Scholar
  88. Stiller, M., Gat, J. R., Bauman, N., and Shasha, S., 1984a, A short meromictic episode in the Dead Sea: 1979–1982 Verh. Int. Verein. Limnol. 22:132–135.Google Scholar
  89. Stiller, M., Mantel, M., and Rapaport, M. S., 1984b, The determination of trace elements (Co, Cu, and Hg) in the Dead Sea by neutron activation followed by X-ray spectrometry and magnetic deflection of beta ray interference, J. Radioanalyt. Nucl. Chem. 83:345–352.CrossRefGoogle Scholar
  90. Stoeckenius, W., and Bogomolni, R. A., 1982, Bacteriorhodopsin and related pigments of halobacteria, Annu. Rev. Biochem. 52:587–616.CrossRefGoogle Scholar
  91. Tabor, H. Z., 1966, Solar ponds. Sei. J. 1966(June):66–71.Google Scholar
  92. Tindall, B. J., Mills, A. A., and Grant, W. D., 1980, An alkalophilic red halophilic bacterium with a low magnesium requirement from a Kenyan soda lake, J. Gen. Microbiol. 116:257–260.Google Scholar
  93. Tindall, B. J., Ross, H. N. M., and Grant, W. D., 1984, Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria, Syst. Appl. Microbiol. 5:41–57.CrossRefGoogle Scholar
  94. Torsvik, T., and Dundas, I. D., 1974, Bacteriophage of Halobacterium salinarium, Nature 248:680–681.PubMedCrossRefGoogle Scholar
  95. Volcani, B. E., 1944, The microorganisms of the Dead Sea, in: Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann, pp. 71–85, Collective Volume, Daniel Sieff Research Institute, Rehovoth.Google Scholar
  96. Walsby, A. E., 1980, A square bacterium, Nature 283:69–71.CrossRefGoogle Scholar
  97. Wegmann, K., Ben-Amotz, A., and Avron, M., 1980, Effect of temperature on glycerol retention in the halotolerant algae Dunaliella and Asteromonas, Plant Physiol 66:1196–1197.PubMedCrossRefGoogle Scholar
  98. Weiner, D., 1985, The Dead Sea. Past, present, future, Interdisc. Sei. Rev. 10:151–158.CrossRefGoogle Scholar
  99. Werber, M. M., and Mevarech, M., 1978, Induction of dissimilatory reduction pathway of nitrate in Halobacterium of the Dead Sea. A possible role for the 2 Fe-ferredoxin isolated from this organism. Arch. Biochem. Biophys. 186:60–65.PubMedCrossRefGoogle Scholar
  100. Widdel, F., and Pfennig, N., 1981, Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Arch. Microbiol. 129:401–402.PubMedCrossRefGoogle Scholar
  101. Wilkansky, B., 1936, Life in the Dead Sea, Nature 138:467.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Aharon Oren
    • 1
  1. 1.Division of Microbial and Molecular Ecology, Institute of Life SciencesHebrew University of JerusalemJerusalemIsrael

Personalised recommendations