Advertisement

Fungal Communities in the Decay of Wood

  • A. D. M. Rayner
  • Lynne Boddy
Part of the Advances in Microbial Ecology book series (AMIE, volume 10)

Abstract

Nowhere, we believe, can the presence of fungal communities, their structure, dynamics, and diversity, be more explicit and susceptible to direct analysis than in decaying wood. In consequence, wood provides an excellent venue, both for the study of community interactions, and for the development of a conceptual framework within which they can be rationalized. Three outstanding characteristics of wood, as a resource for exploitation by heterotrophs, account for this belief: its bulk, its spatial definition, and its durability.

Keywords

Fungal Community Decay Fungus Somatic Incompatibility Latent Invasion Decay Column 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, J. H., 1984a, Life history strategies of plant parasites,Adv. Plant, Pathol. 2:105–130.Google Scholar
  2. Andrews, J. H., 1984b, Relevance of r- and X-theory to the ecology of plant pathogens, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), pp. 1–7, American Society for Microbiology, Washington, D.C.Google Scholar
  3. Andrews, J. H., and Rouse, D. L, 1982, Plant pathogens and the theory of r- and i-selection, Am. Nat. 120:283–296.Google Scholar
  4. Barrett, D. K., 1970,Armillaria mellea as a possible factor predisposing roots to infection by Polyporus schweinitzii: Trans, of Brit. Mycol Soc. 55:459–462.Google Scholar
  5. Boddy, L., 1983a, The effect of temperature and water potential on the growth rate of wood- rotting basidiomycetes, Trans. Br. Mycol. Soc. 80:141–149.Google Scholar
  6. Boddy, L., 1983b, Microclimate and moisture dynamics of wood decomposing in terrestrial ecosystems, Soil Biol Biochem. 15:149–157.Google Scholar
  7. Boddy, L., 1983c, Carbon dioxide release from decomposing wood: Effect of water content and temperature, Soil Biol. Biochem. 15:501–510.Google Scholar
  8. Boddy, L., 1986, Water and decomposition processes in terrestrial ecosystems, in: Water, Fungi and Plants (P. G. Ayres and L. Boddy, eds.), pp. 375–398, Cambridge University Press, Cambridge.Google Scholar
  9. Boddy, L., and Rayner, A. D. M., 1981, Fungal communities and formation of heartwood wings in attached oak branches undergoing decay, Ann. Bot. 47:271–274.Google Scholar
  10. Boddy, L., and Rayner, A. D. M., 1982, Population structure, inter-mycelial interactions and infection biology of Stereum gausapatum, Trans. Br. Mycol. Soc. 78:337–351.Google Scholar
  11. Boddy, L., and Rayner, A. D. M., 1983a, Ecological roles of basidiomycetes forming decay communities in attached oak branches, New Phytol. 93:77–88.Google Scholar
  12. Boddy, L., and Rayner, A. D. M., 1983b, Mycelial interactions, morphogenesis and ecology of Phlebia radiata and P. rufa from oak. Trans. Br. Mycol. Soc. 80:437–448.Google Scholar
  13. Boddy, L., and Rayner, A. D. M., 1983c, Origins of decay in living deciduous trees: The role of moisture content and a reappraisal of the expanded concept of tree decay, New Phytol. 94:623–641.Google Scholar
  14. Boddy, L., and Swift, M. J., 1984, Wood decomposition in an abandoned beech and oak coppiced woodland in south-east England. III. Decay rate and turnover time of twigs and branches. Holarc. Ecol 7:229–238.Google Scholar
  15. Boddy, L., Gibbon, O. M., and Grundy, M. A., 1985, Ecology of Daldinia concentrica: Effect of abiotic variables on mycelial extension and interspecific interactions. Trans. Br. Mko/.Soc. 85:201–211.Google Scholar
  16. Botton, B., and El-Khouri, M., 1978, Synnema and rhizomorph production inSphaerostilbe repens under the influence of other fungi. Trans. Br. Mycol. Soc. 70:131–136.Google Scholar
  17. Boyce, J. S., 1961,Forest Pathology, 3rd ed. McGraw-Hill, New York.Google Scholar
  18. Brasier, C. M., 1975a, Stimulation of sex organ formation in Phytophthora by antagonistic species of Trichoderma. I. The effect in vitro. New Phytol. 74:183–194.Google Scholar
  19. Brasier, C. M., 1975b, Stimulation of sex organ formation in Phytophthora by antagonistic species of Trichoderma. II. Ecological implications.New Phytol 74:195–198.Google Scholar
  20. Brasier, C. M., 1978, Stimulation of oospore formation in Phytophthora by antagonistic species of Trichoderma and its ecological implications,Ann. Appl Biol 89:135–138.Google Scholar
  21. Brasier, C. M., 1984, Inter-mycelial recognition systems in Ceratocystis ulmi: Their physiological properties and ecological importance, inThe Ecology and Physiology of the Fungal Mycelium (D. H. Jennings and A. D. M. Rayner, eds.), pp. 451–497, Cambridge University Press, Cambridge.Google Scholar
  22. Bull, A. T., and Slater, J. H., 1982, Microbial interactions and community structure, in: Microbial Interactions and Communities (A. T. Bull and J. H. Slater, eds.). pp. 13–44, Academic Press, London.Google Scholar
  23. Carrodus, B. B., and Triffett, A. C. K., 1975, Analysis of composition of respiratory gases in woody stems by mass spectrometry.New Phytol 74:43–246.Google Scholar
  24. Cartwright, K. St. G., and Findlay, W. P. K., 1958, Decay of Timber and its Prevention, 2nd ed. HMSO, London.Google Scholar
  25. Chase, W. W., 1934, The Composition, Quantity and Physiological Significance of Gases in Tree Stems, University of Minnesota Agricultural Experiment Station,Technical Bulletin, No. 99, pp. 1–51.Google Scholar
  26. Clubbe, C. P., 1980, Colonisation of wood by micro-organisms, Ph.D. Thesis, University of London.Google Scholar
  27. Coates, D., 1984, The biological consequences of somatic incompatibility in wood decaying basidiomycetes and other fungi, Ph.D. Thesis, University of Bath.Google Scholar
  28. Coates, D., and Rayner, A. D. M., 1985a, Genetic control and variation in expression of the “bow-tie” reaction between homokaryons of Stereum hirsutum. Trans. Br. Mycol. Soc. 84:191–205.Google Scholar
  29. Coates, D., and Rayner, A. D. M., 1985b, Fungal population and community development in beech logs. L, Establishment via the aerial cut surface. New Phytol. 101:153–171.Google Scholar
  30. Coates, D., and Rayner, A. D. M., 1985c, Fungal populations and community development in beech logs. IL, Establishment via the buried cut surface, New Phytol. 101:173–181.Google Scholar
  31. Coates, D., and Rayner, A. D. M., 1985d, Fungal pupulation and community development in beech logs. IIL, Spatial dynamics, interactions and strategies. New Phytol. 101:183–198.Google Scholar
  32. Coates, D., Rayner, A. D. M., and Todd, N. K., 1981, Mating behaviour, mycelial antagonism and the establishment of individuals in Stereum hirsutum, Trans, Br. Mycol. Soc. 76:41–51.Google Scholar
  33. Cooke, R. C., and Rayner, A. D. M., 1984, The Ecology of Saprotrophic Fungi, Longman, London.Google Scholar
  34. Cote, W. A. Jr., 1977, Wood ultrastructure in relation to chemical composition, in: The Structure, Biosynthesis and Degradation of Wood (F. A. Loewus and V. C. Runeckels, eds.), pp. 1–44, Plenum Press, New York.Google Scholar
  35. Cowling, E. B., 1970, Nitrogen in forest trees and its role in wood deterioration. Acta Univ. Upsal. Diss. Sci. 164.Google Scholar
  36. Dickinson, D. J., 1982, The decay of commercial timbers, in: Decomposer Basidiomycetes (J. C. Frankland, J. N. Hedger, and M. J. Swift, eds.), pp. 179–190, Cambridge University Press, Cambridge.Google Scholar
  37. Dowding, P., 1981, Nutrient uptake and allocation during substrate exploitation by fungi, in: The Fungal Community (D. T. Wicklow and G. C Carroll, eds.), pp. 621–635, Dekker, New York.Google Scholar
  38. Dowding, P., 1984, The evolution of insect-fungus relationships in the primary invasion of forest timber, in: Invertebrate-Microbial Interactions (J. M. Anderson, A. D. M. Rayner, and D. W. H. Walton, eds.), pp. 133–154, Cambridge University Press, Cambridge.Google Scholar
  39. Dowson, C. G., 1982, Mycelial ecology of the Xylariaceae, Project report, University of Bath.Google Scholar
  40. Dumpert, K., 1978,The Social Biology of Ants, Pitman, Boston.Google Scholar
  41. Etheridge, D. E., and Craig, H. M., 1976, factors influencing infection and initiation of decay by the Indian paint fungus (Echinodontium tinctorium) in western hemlock. Can. J. For. Res. 6:299–318.Google Scholar
  42. Fries, N., 1973, Effects of volatile organic compounds on the growth and development of fungi. Trans. Br. Mycol. Soc. 60:1–21.Google Scholar
  43. Garrett, S. D., 1963,Soil and Soil Fertility, Pergamon Press, Oxford.Google Scholar
  44. Garrett, S. D., 1970,Pathogenic Root-Infecting Fungi, Cambridge University Press, Cambridge.Google Scholar
  45. Gibbs, J. N., and Gulliver, C. C., 1977, Fungal decay of dead elms, Eur. J. For. Pathol. 7:193–200.Google Scholar
  46. Griffin, D. M., 1977, Water potential and wood decay fungi, Annu. Rev. Phytopathol 15:319–329.Google Scholar
  47. Grime, J. P., 1977, Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 111:1169–1194.Google Scholar
  48. Grime, J. P., 1978, Competition and the struggle for existence, Symp. Br. Ecol Soc. 20:123–139.Google Scholar
  49. Grime, J. P., 1979, Plant Strategies and Vegetation Processes, Wiley, London.Google Scholar
  50. Guinier, P., 1933, Sur la biologic de deux champignons lignicoles, C. R. Soc. Biol. Nancy 112:1363.Google Scholar
  51. Hart, J. H., and Shrimpton, D. M., 1979, Role of stilbenes in resistance of wood to decay. Phytopathology 69:1138–1143.Google Scholar
  52. Highley, T. L., and Kirk, T. K., 1979, Mechanisms of wood decay and the unique features of heartrots. Phytopathology 69:1151–1157.Google Scholar
  53. Hillis, W. E. (ed.), 1962, Wood Extractives, Academic Press, New York.Google Scholar
  54. Hillis, W. E., 1977, Secondary changes in wood, in: The Structure, Biosynthesis, and Degradation of Wood (F. A. Loewus and V. C. Runeckles, eds.), pp. 247–309, Plenum Press, New York.Google Scholar
  55. Hintikka, V., 1969, Acetic acid tolerance in wood and litter-decomposing Hymenomycetes, Karstenia 10:177–183.Google Scholar
  56. Hintikka, V., 1982, The colonization of litter and wood by basidiomycetes in Finnish forests, in: Decomposer Basidiomycetes: Their Biology and Ecology (J. C. Frankland, J. N. Hedger, and M. J. Swift, eds.), pp. 227–239, Cambridge University Press, Cambridge.Google Scholar
  57. Hudson, H. J., 1968, The ecology of fungi in plant remains above the soil,New Phytol 67:837–874.Google Scholar
  58. Hulme, M. A., and Shields, J. K., 1975, Antagonistic and synergistic effects for biological control of decay, in: Biological Transformation of Wood by Micro-organisms (W. Liese ed.), pp. 52–63, Springer-Verlag, New York.Google Scholar
  59. Hulme, M. A., and Stranks, D. W., 1970, Induction and the regulation of production of cellulase by fungi. Nature 226:469–470.PubMedGoogle Scholar
  60. Ikediugwu, F. E. O., 1976, Ultrastructure of hyphal interference between Coprinus hepte- merus and Ascobolus crennlatus. Trans. Br. My col. Soc. 66:281–290.Google Scholar
  61. Ikediugwu, F. E. O., Dennis, C., and Webster, J., 1970, Hyphal interference by Pueniophora gigantea against Meterobasidion annosum. Trans. Br. My col. Soc. 54:307–309.Google Scholar
  62. Ingold, C. T., 1971, Fungal Spores; Their Liberation and Dispersal, Clarendon Press, Oxford.Google Scholar
  63. Jennings, D. H., 1982, The movement of Serpula lacrimans from substrate to substrate over nutritionally inert surfaces, in: Decomposer Basidiomycetes: Their Biology and Ecology (J. C. Frankland, J. N. Hedger, and M. J. Swift, eds.), pp. 91–108, Cambridge University Press, Cambridge.Google Scholar
  64. Jennings, D. H., and Rayner, A. D. M., 1984, The Ecology and Physiology of the Fungal Mycelium, Cambridge Unviversity Press, Cambridge.Google Scholar
  65. Käärik, A. A., 1974, Decomposition of wood, in: Biology of Plant Litter Decomposition, (C. H. Dickinson and G. J. F. Pugh, eds.), pp. 129–174, Academic Press, London.Google Scholar
  66. King, B., Smith, G. M., Baecker, A. A. W., and Bruce, A., 1981, Wood nitrogen control of toxicity of copper chrome arsenic preservatives. Mat. Org. 16:105–118.Google Scholar
  67. Kirk, T. K., 1975, Effects of a brown-rot fungus, Lenzites trabea, on lignin in spruce wood, Holzforschung 29:99–107.Google Scholar
  68. Kirk, T. K., and Adler, E., 1979, Methoxyl-deficient structural elements in lignin of sweet- gum decayed by a brown-rot fungus. Acta Chem. Scand. B 24:3379–3390.Google Scholar
  69. Kirk, T. K., and Fenn, P., 1982, Formation and action of the ligninolytic system in basidiomycetes, in: Decomposer Basidiomycetes: Their Biology and Ecology (J. C. Frankland, J. N. Hedger, and M. J. Swift, eds.), pp. 67–90, Cambridge University Press, Cambridge.Google Scholar
  70. Kirk, T. K., Schulz, E., Connors, W. J., Lorenz. L. F., and Zeikus, J. G., 1978, Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium, Arch; Microbiol 117:277–285.Google Scholar
  71. Koenigs, J. W., 1972a, Effects of hydrogen peroxide on cellulose and its susceptibility to cellulase, Mat Org. 7:133–147.Google Scholar
  72. Koenigs, J. W., 1972b, Production of extra-cellular hydrogen peroxide and peroxidase by wood-rotting fungi. Phytopathology 62:100–110.Google Scholar
  73. Koenigs, J. W., 1974a, Hydrogen peroxide and iron: A proposed system for decomposition of wood by brown-rot basidiomycetes. Wood Fibre 6:66–79.Google Scholar
  74. Koenigs, J. W., 1974b, Production of hydrogen peroxide by wood-decaying fungi in wood and its correlation with weight loss, depolymerisation and pH changes. Arch. Microbiol. 99:129–145.Google Scholar
  75. Kogl, F., and Fries, N., 1937, Uber den einfluss von biotin, aneurin und meso-inosit auf das Wachstum verschieden pilzarlen, Z.Physiol. Chem. 249:23–110.Google Scholar
  76. Levi, M. P., and Cowling, E. B., 1969, Role of nitrogen in wood deterioration. VIL, Physi-, ological adaptation of wood-destroying and other fungi to substrates deficient in nitrogen, Phytopathology 59:460–468.Google Scholar
  77. Levi, M. P., Merrill, W., and Cowling, E. B., 1968, Role of nitrogen in wood deterioration. VL, Mycelial fractions and model nitrogen compounds as substrates for growth of Poly- porus versicolor and other wood-destroying and wood-inhabiting fungi, Phytopathology 58:626–634.Google Scholar
  78. Levy, J. F., 1975, Colonisation of wood by fungi, in: Biological Transformation of Wood by Micro-organisms i. Liese, ed.), pp. 16–23, Springer-Verlag, Berlin.Google Scholar
  79. Levy, J. F., 1982, The place of basidiomycetes in the decay of wood in contact with the ground, in:Decomposer Basidiomycetes: Their Biology and Ecology (J. C. Frankland, J. N. Hedger, and M. J. Swift, eds.), pp. 161–178, Cambridge University Press, Cambridge.Google Scholar
  80. Loman, A. A., 1962, The influence of temperature on the location and development of decay fungi in lodgepole pine logging slash. Can. J. Bot. 40:1545–1559.Google Scholar
  81. Loman, A. A., 1965, The lethal effect of periodic high temperatures on certain lodgepole slash decaying basidiomycetes. Can. J. Bot. 43:334–338.Google Scholar
  82. Madelin, M. F., 1984, Myxomycetes, micro-organisms and animals: A model of diversity in animal-microbial interactions, in: Invertebrate-Microbial Interactions (J. M. Anderson, A. D. M. Rayner, and D. W. H. Walton, eds.), pp. 1–33, Cambridge University Press, Cambridge.Google Scholar
  83. Manion, P. D., and Zabel, R. A., 1979, Stem decay perspectives—An introduction to the mechanisms of tree defense and decay patterns, Phytopathology 69:1136–1138.Google Scholar
  84. Merrill, W., and Cowling, E. B., 1966, Role of nitrogen in wood deterioration: Amounts and distribution of nitrogen in tree stems. Can. J. Bot. 44:1555–1580.Google Scholar
  85. Morris, D. M., 1979, The mutualistic fungi of Xyleborini beetles, in: Insect-Fungus Symbiosis (L. R. Batra, ed.), pp. 53–63, Allanheld, Osmun, Montclair, New Jersey.Google Scholar
  86. Park, D., 1976, Carbon and nitrogen levels as factors influencing fungal decomposers, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 41–59, Blackwell, Oxford.Google Scholar
  87. Peace, T. R., 1962,Pathology of Trees and Shrubs, Clarendon Press, Oxford.Google Scholar
  88. Pentland, G. D., 1965, Stimulation of rhizomorph development of Armillaria mellea by Aureobasidium pullulans in artificial culture, Can. J. Microbiol. 11:345–350.PubMedGoogle Scholar
  89. Pentland, G. D., 1967, Ethanol produced by Aureobasidium pullulans and its effect on growth of Armillaria mellea, Can. J. Microbiol. 13:1631–1639.PubMedGoogle Scholar
  90. Piatt, W. D., Cowling, E. B., and Hodges, C. S., 1965, Comparative resistance of coniferous root wood and stem wood to decay by isolates of Fomes annosus, Phytopathology 55:1347–1353.Google Scholar
  91. Pugh, G. J. F., 1980, Strategies in fungal ecology. Trans. Br. Mycol Soc. 75:1–14.Google Scholar
  92. Rayner, A. D. M., 1976, Dematiaceous hyphomycetes and narrow dark zones in decaying wood. Transactions of the British Mycological Society 67:546–549.Google Scholar
  93. Rayner, A. D. M. 1977a, Fungal colonization of hardwood stumps from natural sources, L, Non-basidiomycetes, Trans. Br. MycoL Soc. 69:291–302.Google Scholar
  94. Rayner, A. D. M., 1977b, Fungal colonization of hardwood stumps from natural sources, II., Basidiomycetes,Trans. Br. Mycol. Soc. 69:303–312.Google Scholar
  95. Rayner, A. D. M. 1978, Interactions between fungi colonizing hardwood stumps and their possible role of determining patterns in colonization and succession, Ann. Appl. Biol. 89:131–134.Google Scholar
  96. Rayner, A. D. M., 1979, Internal spread of fungi inoculated into hardwood stumps. New Phytol. 82:505–517.Google Scholar
  97. Rayner, A. D. M., and Hedges, M. J., 1982, Observations on the specificity and ecological role of basidiomycetes colonizing dead elm wood. Trans. Br. Mycol. Soc. 78:370–373.Google Scholar
  98. Rayner, A. D. M., and Todd, N. K., 1979, Population and community structure and dynamics of fungi in decaying wood, Adv. Bot. Res. 7:333–420.Google Scholar
  99. Rayner, A. D. M., and Todd, N. K., 1982, Population structure in wood-decomposing basidiomycetes, in: Decomposer Basidiomycetes: Their Biology and Ecology (J. C. Frank- land, J. N. Hedger, and M. J. Swift, eds.), pp. 109–128, Cambridge University Press, Cambridge.Google Scholar
  100. Rayner, A. D. M., and Turton, M. N., 1982, Mycelial interactions and population structure in the genus Stereum: S. rugosum, S. sanguinolentum and S. rameale, Trans. Br. Mycol. Soc. 78:438–493.Google Scholar
  101. Rayner, A. D. M., and Webber, J. F., 1984, Interspecific mycelial interactions—An overview, in: The Ecology and Physiology of the Fungal Mycelium (D. H. Jennings and A. D. M. Rayner, eds.), pp. 383–417. Cambridge University Press, Cambridge.Google Scholar
  102. Rayner, A. D. M., Boddy, L., and Dowson, C. G., 1987a, Temporary parasitism of Coriolus spp. byLenzites betulina: A strategy for domain capture in wood decay fungi, FEMS Microbiol. Ecol. 45:53–58.Google Scholar
  103. Rayner, A. D. M., Boddy, L., and Dowson, C. G., 1987b, Genetic interactions and developmental versatility during establishment of decomposer basidiomycetes in wood and tree litter. In: Ecology of Microbial Communities (M. Fletcher, T. Gray, and J. G. Jones, eds.), pp. 83–123, Cambridge University Press, Cambridge.Google Scholar
  104. Rayner, A. D. M., Coates, D., Ainsworth, A. M., Adams, T. J. H., Williams, E. N. D., and Todd, N. K., 1984, The biological consequences of the individualistic mycelium, in The Ecology and Physiology of the Fungal Mycelium (D. H. Jennings and A. D. M. Rayner, eds.), pp. 509–540, Cambridge University Press, Cambridge.Google Scholar
  105. Rishbeth, J., 1963, Stump protection againstFomes annosus, III., Inoculation with Penio- phora gigantea, Ann. Appl. Biol. 52:63–77.Google Scholar
  106. Scheffer, T. C., and Cowling, E. B., 1966, Natural resistance of wood to microbial deterioration, Annu. Rev. Phytopathol. 4:147–170.Google Scholar
  107. Sharland, P. R., and Rayner, A. D. M., 1986, Mycelial interactions in Daldinia concentrica, Trans. Br. Mycol. Soc. 86:643–649.Google Scholar
  108. Shigo, A. L., 1966, Decay and Discoloration following Logging Wounds on Northern Hardwoods, U. S. Department of Agriculture, Forestry Service Research Paper NE-43.Google Scholar
  109. Shigo, A. L., 1979, Tree Decay: An Expanded Concept, U. S. Department of Agriculture, Forestry Service Agricultural Information Bulletin 419.Google Scholar
  110. Shigo, A. L., and Hillis, W. E., 1973, Heartwood, discoloured wood and microorganisms in living trees, Annu. Rev. Phytopathol 11:197–222.Google Scholar
  111. Shortle, W. C., and Cowling, E. B., 1978, Interaction of live sapwood and fungi found in discolored and decayed wood. Phytopathology 68:617–623.Google Scholar
  112. Swift, M. J., 1976, Species diversity and the structure of microbial communities in terrestrial habitats, in: The Role of Terrestrial and Aquatic Organisms in Decomposition Processes (J. M. Anderson and A. Macfadyen, eds.), pp. 185–222, Blackwell, Oxford.Google Scholar
  113. Swift, M. J., 1977, The role of fungi and animals in the immobilization and release of nutrient elements from decomposing branch-wood, in: Soil Organisms as Components of Ecosystems (U. Lohm and T. Persson, eds.), pp. 193–202, Swedish National Science Research Council, Stockholm.Google Scholar
  114. Swift, M. J., and Boddy, L., 1984, Animal-microbial interactions during wood decomposition, in: Invertebrate-Microbial Interactions (J. M. Anderson, A. D. M. Rayner, and D. W. H. Walton, eds.), pp. 89–131, Cambridge University Press, Cambridge.Google Scholar
  115. Theden, G., 1961, Untersuchungen über die Fahighkeit holzzerstorender Pilze zur Trock- enstrarre, Bot. 35:131–145.Google Scholar
  116. Thompson. W., 1982, Biology and ecology of mycelial cord-forming basidiomycetes in deciduous woodlands, Ph.D. Thesis, University of Bath.Google Scholar
  117. Thompson, W., and Boddy, L., 1983, Decomposition of suppressed oak trees in even-aged plantations, II., Colonization of tree roots by cord and rhizomorph producing basidiomycetes, New Phytol. 93:277–291.Google Scholar
  118. Thompson, W., and Rayner, A. D. M., 1983, Extent, development and function of mycelial cord systems in soil, Trans Br. Mycol. Soc. 81:333–345.Google Scholar
  119. Timell, T. E., 1965, Wood and bark polysaccharides, in: Cellular Structure of Woody Plants (W. A. Cote, Jr., ed.), pp. 127–156, Syracuse University Press, Syracuse, New York.Google Scholar
  120. Todd, N. K., and Rayner, A. D. M., 1980, Fungal individualism, Sei. Prog (Oxford) 66:331–354.Google Scholar
  121. Wagener, W. W., and Davidson, R. W., 1954, Heart rots in living trees. Bot. Rev. 20:61–134.Google Scholar
  122. Williams, G. C. (ed.), 1971, Group Selection, Aldine, Atherton, Chicago.Google Scholar
  123. Williams, E. N. D., Todd, N. K., and Rayner, A. D. M., 1981, Spatial development of populations of Coriolus versicolor, New Phytol. 89:307–319.Google Scholar
  124. Wilson, J. M., and Griffin, D. M., 1979, The effect of water potential on the growth of some soil basidiomycetes. Soil Biol. Biochem. 11:211–212.Google Scholar
  125. Wood, T. M., 1969, Relation between cellulolytic and pseudocellulolic microorganisms, Biochim. Biophys. Acta 192:531–534.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. D. M. Rayner
    • 1
  • Lynne Boddy
    • 2
  1. 1.School of Biological SciencesUniversity of BathBathUK
  2. 2.Department of MicrobiologyUniversity CollegeCardiffUnited Kingdom

Personalised recommendations