Methods for Detecting Genetically Engineered Microorganisms in the Environment

  • Simon Ford
  • Betty H. Olson
Part of the Advances in Microbial Ecology book series (AMIE, volume 10)


The ability to monitor accurately genetically engineered microorganisms (GEMs) is critical in determining their potential impact on a given environment. Many articles have delineated the crucial issues surrounding the release of GEMS (Rissler, 1984; Alexander, 1986; Strauss et al 1985; Gillett et al, 1986; Lenski, 1987). Five major concerns are repeatedly referred to by various authors: (1) incorporation of the novel gene or genes into natural microorganisms, (2) ability of the novel organism to survive in the environment, (3) ability of the novel organism to multiply in the environment, (4) interaction of the novel organism with biological systems that could be injurious to other organisms, and (5) the assessment of harm caused by the organism. The ability to address the first four of these concerns is dependent upon the development of appropriate methodologies. The types of ecological questions that are dependent on adequate methodological techniques for answers are shown in Table I. These questions must be answered before the release of GEMs can become as routine a practice as is now the case for the use of licensed pesticides.


Neisseria Gonorrhoeae Genetic Probe Nick Translation Yersinia Enterocolitica Nucleic Acid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M., 1986, Survival and growth of bacteria. Environ. Manage. 10:464–469.Google Scholar
  2. Alwine, J. C., Kemp, D. J., Parker, B. A., Reiser, J., Renart, J., Stark, G. R., and Wahl, G. M., 1979, Detection of specific RNAs or specific fragments of DNA by fractionation in gels and transfer to diazobenzylmethyl paper, Meth. Enzymol. 68:220–242.PubMedGoogle Scholar
  3. Anderson, G., 1958, Identification of derivatives of deoxyribonucleic acid in humic acid, Soil Sei. 86:169–174.Google Scholar
  4. Anderson, G., 1979, Bacterial DNA in soil. Soil Biol. Biochem. 11:213.Google Scholar
  5. APHA (American Public Health Association), 1985, Standard Methods for the Examination of Water and Wastewater, 16th ed., American Public Health Association.Google Scholar
  6. Aseyeva, I. V., and Samko, O. T., 1984, Nucleic acids and biomass of microcosms in zonal soils, Sov. Soil Sei. 24:84–90.Google Scholar
  7. Atlas, R. M., and Bartha, R., 1981, Microbial Ecology, Fundamentals and Applications, Addison-Wesley, Reading, Massachusetts.Google Scholar
  8. Bakken, L. R., 1985, Separation and purification of bacteria from soil, Appl Environ. Microbiol. 49:1482–1487.PubMedGoogle Scholar
  9. Barkay, T., and Olson, B. H., 1986, Phenotypic and genotypic adaptation of aerobic heterotrophic sediment bacterial communities to mercury stress, Appl. Environ. Microbiol. 52:403–406.PubMedGoogle Scholar
  10. Barkay, T., Fouts, D. L., and Olson, B. H., 1985, Preparation of a DNA gene probe for detection of mercury resistant genes in Gram-negative bacterial communities, Appl. Environ. Microbiol. 49:686–692.PubMedGoogle Scholar
  11. Barnthouse, L. W., and Palumbo, A. V., 1986; Assessing the transport and fate of bioengi- neered microorganisms in the environment. In:Biotechnology Risk Assessment, Issues and Methods for Environmental Introductions, Fiksel, J., and Covello, V. T., eds., Pergamon Press, NY.Google Scholar
  12. Benton, W D., and Davis, R. W., 1977; Screening lambda gt recombinant clones by hybridization to single plaques in situ. Science 196:180–182.PubMedGoogle Scholar
  13. Billing, E., and Garrett, C. M. E., 1980, Phages in the identification of plant pathogenic bacteria, in Microbial Classification and Identification of Plant Pathogenic Bacteria (M. Goodfellow and G. Board, eds.), pp. 319–338, Academic Press, Toronto.Google Scholar
  14. Bohlool, B. B., 1975, Occurrence of Sulfolobus acidocaldarius, an extremely thermophilic bacterium, in New Zealand hot springs: Isolation and immunofluorescence characterization,rca.Microbiol. 106:171–174.Google Scholar
  15. Bohlool, B. B., and Brock, T. D., 1974, Immunofluorescence characterization, Arch. Microbiol. 106:171–174.Google Scholar
  16. Bohlool, B. B., and Schmidt, E. L., 1968, Nonspecific staining: Its control in immunofluorescence examination of soil. Science 162:1012–1014.PubMedGoogle Scholar
  17. Bohlool, B. B., and Schmidt, E. L., 1973, Persistence and competition aspects of Rhizobiurn japanicum in soil, Soil Sei. 110:229–236.Google Scholar
  18. Bohlool, B. B., and Schmidt, E. L., 1980, The immunofluorescence approach in microbial ecology, in Advances in Microbial Ecology, Vol. 4 (M. Alexander, ed.), pp. 203–236, Plenum Press, New York.Google Scholar
  19. Bordner, R., and Winter, J., 1978,Microbiological Methods for Monitoring the Environment, J. Water and Wastes, Environmental Protection Agency, Cincinnati, Ohio.Google Scholar
  20. Britten, R. J., and Kohne, D. E., 1968, Repeated sequences in DNA, Science 161:529–540.PubMedGoogle Scholar
  21. Brown, E. R., and Cherry, W. B., 1955, Specific identification of Bacillus anthracis by means of a varient bacteriophage, J. Infect. Dis. 96:34–39.PubMedGoogle Scholar
  22. Brown, M. R. W., and Williams, P., 1985, The influence of environment on envelope properties affecting survival of bacteria in infections, Annu. Rev. Microbiol. 39:527–556.PubMedGoogle Scholar
  23. Butler, E. T., and Chamberlin, M. J., 1982, Bacteriophage SP-6 RNA polymerase I. Isolation and characterization of the enzyme, J. Biol. Chem. 257:5772–5778.PubMedGoogle Scholar
  24. Carle, G. F., and Olson, M. V., 1986, Elctrophoretic separations of large DNA molecules by periodic inversion of the electric field. Science 232:65–68.PubMedGoogle Scholar
  25. Chai, T.-J., 1983, Characteristics of E. coli grown in bay water as compared with rich medium, Appl. Environ. Microbiol. 45:1316–1323.PubMedGoogle Scholar
  26. Chamberiin, M., McGrath, J., and Waskell, L., 1970, New RNA polymerase from E. coli infected with bacteriophage T7, Nature 228:227–231.Google Scholar
  27. Chandler, M. E., and Yunis, J. J., 1978, A high resolution in situ hybridization technique for the direct visualization of labeled G-banded early metaphase and prophase chromosomes, Cytogenet. Cell Genet. 22:352–356.PubMedGoogle Scholar
  28. Cherry, W. B., Davies, B. R., Edwards, P. R., and Hogan, R. B., 1954, A simple procedure for the identification of the genus Salmonella by means of a specific bacteriophage, J. Lab. Clin. Med. 44:51–55.PubMedGoogle Scholar
  29. Church, G. M., and Gilbert, W., 1984, Genomic sequencing, Proc. Natl. Acad. Sei. USA 81:1991–1995.Google Scholar
  30. Cox, K. H., DeLeon, D. V., Angerer, L. S., and Angerer, R. S., 1984, Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Dev. Biol. 101:485–502.PubMedGoogle Scholar
  31. Cuppels, D. A., 1984, The use of pathovar-indicative bacterophages for rapidly detecting Pseudomonas syringae pv. tomato in tomato leaf and fruit lesions, Phytopathology 74:891–894.Google Scholar
  32. Danso, S. K. A., Habte, M., and Alexander, M., 1973, Estimating the density of individual bacterial populations introduced into natural ecosytems, Can. J. Microbiol. 19:1450- 1451.Google Scholar
  33. Datta, N., 1984, Bacterial resistance to antibiotics, in: Origins and Development of Adaptation, pp. 204–218, Pitman, London.Google Scholar
  34. Datta, N., and Hughes, V. M., 1983, Plasmids of the same Inc groups in enterobacteria before and after the medical use of antibiotics. Nature 306:616–617.PubMedGoogle Scholar
  35. Davanloo, P., Rosenberg, A. H., Dunn, J. J., and Studier, F. W., 1984, Cloning and expression of the gene for bacteriophage T7 RNA polymerase, Proc. Natl. Acad. Sei. USA 81:2035–2039.Google Scholar
  36. Davies, J. E., and Rownd, R., 1972, Transmissible multiple drug resistance in Enterobac- teraiceae. Science 176:758–768.PubMedGoogle Scholar
  37. Diatloff*, A., 1977, Ecological studies of root-nodule bacteria introduced into field environments. 6. Antigenic stability in Lotononis rhizobia over a 12 year period. Soil Biol. Biochem. 9:85–88.Google Scholar
  38. Dudman, W. F., and Heidelberger, M., 1969, Immunochemistry of newly found substi- tuents of polysaccharides of Rhizobium species, Science 164:954–955.PubMedGoogle Scholar
  39. Echeverria, P., Seriwatana, J., Leksomboon, U., Tirapat, C., Chaicumpa, W., and Rowe, B., 1984a, Identification by DNA hybridization of enterotoxigenic Escherichia coli in homes of children with diarrhea. Lancet 1:63–66.PubMedGoogle Scholar
  40. Echeverria, P., Seriwatana, J., Patamaroj, U., Moseley, S. L., MacFarland, A., Chityothin, O., and Chaicumpa, W., 1984b, Prevalence of heat-stable enterotoxigenic Escherichia coli in pigs, water, and people at farms in Thailand as determined by DNA hybridization, J. Clin. Microbiol 19:489–491.PubMedGoogle Scholar
  41. Ellwood, D. C., and Tempest, D. W., 1972, Effects of environment on bacterial wall contents and composition. Adv. Microbiol. Phys. 7:83–117.Google Scholar
  42. Faegri, A., Torsvik, V. L., and Goksoyr, J., 1977, Bacterial and fungal activities in soil: Separation of bacteria and fungi by a rapid fractionated centrifugation technique. Soil Biol. Biochem. 9:105–112.Google Scholar
  43. Farkas-Himsley, D., 1964, Killing of chlorine-resistant bacteria by chlorine-bromine solutions, Appl. Microbiol. 12:1–6.PubMedGoogle Scholar
  44. Farrar, W. E., 1983, Molecular analysis of plasmids in epidemiological investigation, J. Infect. Dis. 148:1–5.PubMedGoogle Scholar
  45. Fliermans, C. B., Bohlool, B. B., and Schmidt, E. L., 1974, Autecological study of the che- moautroph Nitrobacter by immunofluorecence, Appl. Microbiol. 27:124–129.PubMedGoogle Scholar
  46. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bönen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K. N., and Woese, C. R., 1980, The phylogeny of prokaryotes. Science 209:457–463.PubMedGoogle Scholar
  47. Garvey, J. S., Cremer, N. F., and Susdorf, D. H., 1977, Methods in Immunology, 3rd ed., Benjamin, Reading, Massachusetts.Google Scholar
  48. Gillett, J. W., Stem, A. M., Levin, S. A., Harwell, M. A., Alexander, M., and Andow, D. A., 1986, Potential impacts of environmental release of biotechnology products: Assessment, regulation, and research needs, Environ Manage 10:433–563.Google Scholar
  49. Glaser, D., Keith, T., Riley, P., Chambers, A., Manning, J., Hattingh, S. and Evans, R., 1986, Monitoring techniques for genetically engineered microorganisms in biotechnology and the environment, Research Needs. Omenn, A. S. and Teich, A. H., eds.; Noyes Data Corporation, New Jersey.Google Scholar
  50. Graham, J. B., and Istock, C. A., 1979, Gene exchange and natural selection cause Bacillus subtilis to evolve in soil culture. Science 204:637–638.PubMedGoogle Scholar
  51. Gray, T. R. G., 1973, The use of the fluorescent-antibody technique to study the ecology of Bacillus subtilis in soil. Bull. Ecol. Res. Commun. (Stockholm) 17:119–122.Google Scholar
  52. Green, M. R., Maniatis, T., and Melton, D. A., 1983, Human betaglobin pre-mRNA synthesized in vitro is accurately spliced inXenopus oocyte nuclei. Cell 32:681–694.PubMedGoogle Scholar
  53. Grosveld, F. G., Dahl, H.-H. M., de Boer, E., and Flavell, R. A., 1981, Isolation of betaglobin related genes from a human cosmid library. Gene 13:227–237.PubMedGoogle Scholar
  54. Grunstein, M., 1983, Methods for Screening, Colony Hybridization, Plaque Hybridization, Schleicher and Schuell, Keene, New Hampshire.Google Scholar
  55. Grunstein, M., and Hogness, D. S., 1975, Colony hybridization: A method for the isolation of cloned DNAs that contain a specific gene, Proc. Natl. Acad. Sei. USA 72(10):3961–3965.Google Scholar
  56. Hanahan, D., and Meselson, M., 1980, Plasmid screening at high colony density. Gene 10:63–67.PubMedGoogle Scholar
  57. Heal, O. W., 1970, Methods of study of soil protozoa, in: Methods of Study in Soil Ecology (J. Phillipson, ed.), pp. 119–126, UNESCO, Paris.Google Scholar
  58. Heidelberger, M., and Elliot, S., 1966, Cross-reactions of Streptococcus (Group N teichoic acid in antipneumonococcal horse sera of type VI, XIV, XVI, XXVII, J. BacterioL 92:281–283.Google Scholar
  59. Hill, W. E., and Payne, W. L., 1984, Genetic methods for the detection of microbial pathogens. Identification of enterotoxigenic Escherichia coli by DNA colony hybridization: Collaborative study, J. Assoc. Off. Anal Chem. 67:801–807.PubMedGoogle Scholar
  60. Hill, W. E., Payne, W. L., and Aulisio, C. C. G., 1983, Detection and enumeration of virulent Yersinia enterocolitica in food by DNA colony hybridization, Appl. Environ. Microbiol. 46:636–641.PubMedGoogle Scholar
  61. Hirsch, D., and Martin, L. D., 1983, Rapid detection of Salmonella spp. by using Felix-01 bacteriophage and high-performance liquid chromatography, Appl. Environ. Microbiol. 45:260–264.Google Scholar
  62. Hofemeister, J., Israeli-Reches, M., and Dubnau, D., 1983, Integration of plasmid pE194 at multiple sites on the Bacillus subtilis chromosome, Mol. Gen. Genet. 189:58–68.Google Scholar
  63. Hughes, V. M., and Datta, N., 1983, Conjugative plasmids in bacteria of the preantibiotic era. Nature, 302:725–726.PubMedGoogle Scholar
  64. Ish-Horowicz, D., and Burke, J. F., 1981, Rapid and efficient cosmid cloning, Nucleic. Acid Res. 13:2989–2998.Google Scholar
  65. Jamieson, A. P., Bremner, D. A., Bergquist, P. L., and Lane, H. E. D., 1979, Characterization of plasmids from antibiotic-resistant Shigella isolates by agarose gel electrophoresis, J. Gen. Microbiol. 113:73–81.PubMedGoogle Scholar
  66. Jensen, V., 1968, The plate count technique, in: The Ecology of Soil Bacteria (T. R. G. Gray and D. Parkinson, eds.), pp. 158–170, University of Toronto Press, Toronto.Google Scholar
  67. Joklik, W. K., and Willett, H. P., 1976, Zinsser’s Microbiology, 16th ed., Appleton-Century- Crofts, New York.Google Scholar
  68. Jones, K., and Murray, K., 1975, A procedure for detection of heterologous DNA sequences in lambdoid phage by in situ hybridization, J. Mol. Biol. 51:393–409.Google Scholar
  69. Kassavetis, G. A., Butler, E. T., Roulland, D., and Chamberiin, M. J., 1982, Bacteriophage SP6-specific RNA polymerase, J. Biol. Chem. 257:5779–5788.PubMedGoogle Scholar
  70. Kelly, R. B., Cozzarelli, N. R., Deutscher, M. P., Lehman, I. R., and Romberg, A., 1970, Enzymatic synthesis of deoxyribonucleic acid, J. Biol. Chem. 245:39.PubMedGoogle Scholar
  71. Landegent, J. E., Jansen IN de Wal, N., van Ommen, G.-J., Baas, F., de Vijlder, J. J. M., van Duijn, P., and van der Ploeg, M., 1985, Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization. Nature 317:175–177.PubMedGoogle Scholar
  72. Langer, P. R., Waldrop, A. A., and Ward, D. C., 1981, Enzymatic synthesis of biotin-labeled polynucleotides: Novel nucleic acid affinity probes, Proc. Natl. Acad. Sei. USA 78:6633–6637.Google Scholar
  73. Langner, K., and Girton, J., 1985, DNA detection spot plaque hybridization. Focus (BRL) 7(2):11.Google Scholar
  74. Leary, J. J., Brigati, D. J., and Ward, D. C., 1983, Rapid and sensitive colorimetric method for visualizing biotin-labeled DNA probes hybridized to DNA or RNA immobilized on nitrocellulose: Bio-blots, Proc. Natl. Acad Sei. USA 80:4045–4049.Google Scholar
  75. Lenski, R. E., 1984, Releasing "ice-minus" bacteria, Nature Google Scholar
  76. Lenski, R. E., 1987, The infectious spread of engineered genes. In: Application of biotechnology: Environmental and policy issues. In press.Google Scholar
  77. Levin, B. R., 1986, The maintenance of plasmids and transposons in natural populations of bacteria, In: Banbury Report 24, Antibiotic Resistance Genes: Ecology, Transfer and Expression, Cold Spring Habor Laboratory, NY, 57–70.Google Scholar
  78. Litchfield, C. D., Raker, J. B., Zindulis, J., Esysnsbe, R. T., and Stein, D. J., 1975, Optimization of procedures for the recovery of heterotrophic bacteria from marine sediments, Microb. Ecol. 1:219–233.Google Scholar
  79. Lugtenberg, B., Peters, R., Bemheimen, H., Beraheimen, W., and Berendsen, W., 1976, Influence of cultural conditions and mutations on the composition of the outer membrane properties of E. coli, Mol Gen. Genet. 147:251–262.Google Scholar
  80. Mallory, L. M., Sinclair, J. L., Liang, L. N., and Alexander, M., 1982, A simple and sensitive method for assessing the survival in environmental samples of species used in recombinant DNA research, Recomb. DNA Tech. Bull 5:5–6.PubMedGoogle Scholar
  81. Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning, A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  82. Mark, L. G., Sigmund, C. D., and Morgan, E. A., 1983, Spectinomycin resistance due to a mutation in an rRNA operon of Escherichia coli, J. Bacteriol 155(3): 989–994.Google Scholar
  83. Marmur, J., 1961, A procedure for the isolation of deoxyribonucleic acid from microorganisms, Mol Biol 3:208–218.Google Scholar
  84. McCoy, W., and Olson, B. H., 1985, Fluorometric determination of the DNA concentration in municipal drinking water, Appl Environ. Microbiol 49:811–817.PubMedGoogle Scholar
  85. Melton, D. A., Krieg, P. A., Rebagliati, M. R., Maniatis, T., Zinn, K., and Green, M. R., 1984, Efficientin vitro synthesis of biologically active RNA and RNA hybridization probes containing a bacteriophage SP6 promoter. Nucleic Acids Res. 12:7035–7056.PubMedGoogle Scholar
  86. Moseley, S. L., Echeverria, P., Seriwatana, J., Tirapat, C., Chaicumpa, W., Sakuldaipaera, T., and Falkow, S., 1982, Identification of enterotoxigenic Escherichia coli by colony hybridization using three enterotoxin gene probes, J. Infect. Dis. 145:863–869.PubMedGoogle Scholar
  87. Nannipieri, P., Ciardi, C, Badalucco, L., and Casella, S., 1986, A method to determine soil DNA and RNA, Soil Biol Biochem. 18:275–281.Google Scholar
  88. Niaudet, B., and Ehrlich, D. S., 1979, In vitro genetic labeling of Bacillus subtilis cryptic Plasmid pHV400,Plasmid Google Scholar
  89. O’Brien, T. F., Hopkins, J. D., and Gilleece, E. S., 1982, Molecular epidemiology of antibiotic resistance in Salmonella from animals and human beings in the United States, N. Engl J. Med 307:1–6.PubMedGoogle Scholar
  90. Page, A. L., 1985, Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, American Society of Agronomy, Madison, Wisconsin.Google Scholar
  91. Pettigrew, C. A., and Sayler, G. S., 1986, The use of DNA:DNA colony hybridization in the rapid isolation of 4-chlorobiphenyl degradative bacterial phenotypes, J. Microbiol Meth. 5:205–213.Google Scholar
  92. Portnoy, D. A., and Flakow, S., 1981, Virulence-associated plasmids from Yersinia entero- colitica and Yersinia pestis, J. Bacteriol 148:877–883.Google Scholar
  93. Pramer, D., and Bartha, R., 1972, Preparation and processing of soil samples for biodegra- dation studies. Environ. Lett. 2:217–224.Google Scholar
  94. Reanney, D., 1976, Extrachromosomal elements as possible agents of adaptation and development, Bacteriol Rev. 40:552–590.PubMedGoogle Scholar
  95. Reanney, D., 1977, Gene transfer as a mechanism of microbial evolution, Bioscience 27:340–344.Google Scholar
  96. Rennie, R. J., and Schmidt, E. L., 1977, Immunofluorescence studies of popu lations in soils, Can. J. Microbiol 23:1011–1017.PubMedGoogle Scholar
  97. Rigby, P. W. J., Dieckmann, M., Rhodes, C., and Berg, P., 1977, Labeling deoxyribonucleic acid to high specific activity in vitro by nick-translation with DNA polymerase I, J. Mol Biol 113:237–251.PubMedGoogle Scholar
  98. Rissler, J. F., 1984, Research needs for biotic environmental effects of genetically-engineered microorganisms, Recomb. DNA Tech. Bull 7:20–30.PubMedGoogle Scholar
  99. Saunders, V. A., and Saunders, J. R., 1987, Environmental biotechnology in microbial genetics applied to biotechnology, Macmillan, New York, 384–406.Google Scholar
  100. Sayler, G. S., Shields, M. S., Tedford, E. T., Breen, A., Hooper, S. W., Sirotkin, K. M., and Davis, J. W., 1985, Application of DNA-DNA colony hybridization to the detection of catabolic genotypes in environmental samples. Appl Environ. Microbiol 49(5): 1295–1303.Google Scholar
  101. Sayler, G., and Stacey, G., 1986, Methods for evaluation of microorganism properties, In: Biotechnology Risk Assessment Issues and Methods for Environmental Introductions (Fiskel, J., and porello, V. T., eds.), Pergamon Press, NY.Google Scholar
  102. Schaberg, D. R., Tomkins, L. S., and Falkow, S., 1981, Use of agarose gel electrophoresis of Plasmid deoxyridonucleic acid to fingerprint Gram-negative bacilli, J. Clin. Microbiol 13:1105–1108.PubMedGoogle Scholar
  103. Schmidt, E. L., 1973, Fluorescent antibody technique for the study of microbial ecology. Bull Ecol Res. Commun. (Stockholm) 17:67–76.Google Scholar
  104. Schmidt, E. L., 1974, Quantitative autecological study of microorganisms in soil by immunofluorescence. SoilScL 118:141–149.Google Scholar
  105. Schmidt, E. L., Biesbrock, J. A., Bohlool, B. B., and Marx, D. H., 1974, Study of Mycorrhi- zae by means of fluoroscent-antibody technique, J. Gen. Microbiol 20:137–139.Google Scholar
  106. Schwartz, D. C., and Cantor, C. R., 1984, Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75.PubMedGoogle Scholar
  107. Shapton, D. A., and Board, R. G., 1971, Isolation of Anaerobes (Society for AppHed Bacteriology Technical Series No. 5), Academic Press, London.Google Scholar
  108. Southern E., 1975, Detection of specific sequences among DNA fragments separated by gel electrophoresis, Mol Biol 98:503–517.Google Scholar
  109. Stotzky, G., and Babich, H., 1984, Fate of genetically-engineered microbes in natural environments, Recomb. UNA Tech. Bull 7:163–188.Google Scholar
  110. Stotzky, G., and Babich, H., 1986, Survival of and genetic transfer by genetically engineered bacteria in natural environments. Adv. Appl Microbiol 31:93–165.PubMedGoogle Scholar
  111. Strauss, H., Hattis, D., Page, G. S., Harrison, K., Vogel, S. R., and Caldart, C. C., 1985, Direct release of genetically-engineered microorganisms: A preliminary framework for risk evaluation under TSCA, Center for Technology, Policy and Industrial Development, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  112. Taub, F., and Thompson, E. B., 1982, An improved method for preparing large arrays of bacterial colonies containing plasmids for hybridization: In situ purification and stable binding of DNA on paper filters. Anal Biochem. 126:222–230.PubMedGoogle Scholar
  113. Torsvik, V. L., 1980, Isolation of bacterial DNA from soil. Soil Biol Biochem. 12:15–21.Google Scholar
  114. Torsvik, V. L., and Goksoyr, J., 1978, Determination of bacterial DNA in soil, Soil Biol Biochem. 10:7–12.Google Scholar
  115. Totten, P. A., Holmes, K. K., Handesfield, J. S., Knapp, P. L., Perine, P. L., and Falkow, S., 1983; DNA hybridization technique for the detection of Neisseria gonorrhoeae in men with urethritis, J. Infect. Dis. 148:462–471.PubMedGoogle Scholar
  116. Trevors, J. T., Barkay, T., and Bourquin, A. W., 1987, Gene transfer among bacteria in soil and aquatic environments: A review. Can. J. Microbiology 33:191–198.Google Scholar
  117. Tsernoglou, D., and Anthony, E. H., 1971, Particle size, water-stable aggregates, and bacterial populations in lake sediments. Can. J. Microbiol 17:217–227.PubMedGoogle Scholar
  118. Ursing, J., 1986, Similarities of genome deoxyribonucleic acids of Pseudomonas strains isolated from meat, Curr. Microbiol 13:7–10.Google Scholar
  119. Vidor, C., and Miller, R. H., 1980, Relative saprophyte competence of Rhizobium japoni- cum strains in soils as determined by quantitative fluorescent antibody technique. Soil Biol Biochem. 12:483–487.Google Scholar
  120. Williams smith, H., and Huggins, M. B., 1980, The association of the 018, K1 and K7 antigens and the ColV plasmid of a strain ofE. coli with its virulence and immunoge- nicity, J. Gen. Microbiol 121:387–400.Google Scholar
  121. Williams smith, H., and Huggins, M. B., 1982, Successful treatment of experimental Escherichia coli infection in mice using phage: Its general superiority over antibiotics, J. Gen. Microbiol. 128:307.Google Scholar
  122. Zinn, K., DiMaio, D., and Maniatis, T., 1983, Identification of two distinct regulatory regions adjacent to the human beta-interferon gene. Cell 34:865–879.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Simon Ford
    • 1
  • Betty H. Olson
    • 1
  1. 1.Program in Social EcologyUniversity of CaliforniaIrvineUSA

Personalised recommendations