Skip to main content

Dynamics of Interactions between Bacteria and Virulent Bacteriophage

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 10))

Abstract

The interactions of bacteria and their viruses (bacteriophage) are, by and large, ones of trophic exploitation. In fact, “phage” is derived from the Greek word for “devour.” Using the criterion of relative size, the interactions can be defined as parasitism (Bull and Slater, 1982). Because replication by most virulent phage necessarily results in bacterial death, these interactions could also be called predation. Certain interactions could even be termed mutualistic, as some temperate phage encode phenotypic characteristics that are of direct benefit to their hosts. Semantics aside, the fundamental ecological question that I will attempt to address in this chapter is: What role do bacteriophage infections play in limiting the abundance of bacteria?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, M. H., 1959,Bacteriophages, Interscience, New York.

    Google Scholar 

  • Alexander, M., 1981, Why microbial predators and parasites do not eliminate their prey and hosts, Annu. Rev. Microbiol 35:113.

    PubMed  CAS  Google Scholar 

  • Anderson, E. H., 1946, Growth requirements of virus-resistant mutants of Escherichia coli strain "B," Proc, Natl Acad. Sei. USA 32:120.

    CAS  Google Scholar 

  • Anderson, E. S., 1957, The relations of bacteriophages to bacterial ecology, Symp. Soc. Gen. Microbiol. 7:189.

    Google Scholar 

  • Anderson, E. S. 1968, The ecology of transferable drug resistance in the Enterobacteria, Annu. Rev. Microbiol 22:131.

    PubMed  CAS  Google Scholar 

  • Anderson, T. F., 1948, The growth of T2 virus on ultraviolet-killed host cells, J. Bacteriol 56:403.

    Google Scholar 

  • Arber, W., and Linn, S., 1969, DNA modification and restriction, Annu. Rev. Biochem. 38:467.

    PubMed  CAS  Google Scholar 

  • Archibald, A. R., 1980, Phage receptors in Gram-positive bacteria, in:Virus Receptors, Part 1, Bacterial Viruses (h. L. Randall and L. Philipson, eds.), pp. 5–26, Chapman and Hall, London.

    Google Scholar 

  • Bachmann, B. J., and Low, K. B., 1980, Linkage map of Escherichia coli K-12, edition 6, Microbiol. Rev. 44: 1

    PubMed  CAS  Google Scholar 

  • Barksdale, L., and Arden, S. B., 1974, Persisting bacteriophage infections, lysogeny, and phage conversions, Annu. Rev. Microbiol. 28:265.

    PubMed  CAS  Google Scholar 

  • Botstein, D., 1980, A theory of modular evolution for bacteriophages,Ann. N.Y. Acad. Sei. 354:484.

    CAS  Google Scholar 

  • Bradley, D. E., 1967, Ultrastructure of bacteriophages and bacteriocins,Bacteriol. Rev. 31:230.

    PubMed  CAS  Google Scholar 

  • Braun, V., and Hantke, K., 1977, Bacterial receptors for phages and colicins as constituents of specific transport systems, in: Microbial Interactions (J. L. Reissig, ed.), pp. 99–137, Chapman and Hall, London.

    Google Scholar 

  • Brinton, C. C., and Beer, H., 1967, The interaction of male-specific bacteriophages with F pili, in: The Molecular Biology of Viruses (J. S. Colter and W. Paranchych, eds.), pp. 251–289, Academic Press, New York.

    Google Scholar 

  • Bronson, M. J., and Levine, M., 1971, Virulent mutants of bacteriophage P22. L Isolation and genetic analysis, J. Virol. 7:559.

    PubMed  CAS  Google Scholar 

  • Bull, A. T., and Slater, J. H., 1982, Microbial interactions and community structure, in: Microbial Interactions and Communities, Volume 1 (A. T. Bull and J. H. Slater, eds.), pp. 13–44, Academic Press, London.

    Google Scholar 

  • Campbell, A. M., 1961, Conditions for the existence of bacteriophage, Evolution 15:153.

    Google Scholar 

  • Campbell, A., and Botstein, D., 1983, Evolution of the lambdoid phages, in: Lambda II (R. W. Hendrix, J. W. Roberts, F. W. Stahl, and R. A. Weisberg, eds.), pp. 365–380, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Chao, L., Levin, B. R., and Stewart, F. M., 1977, A complex community in a simple habitat: An experimental study with bacteria and phage. Ecology 58:369.

    Google Scholar 

  • Crawford, J. T., and Goldberg, E. B., 1977, The effect of baseplate mutations on the requirement for tail-fiber binding for irreversible adsorption of bacteriophage T4, J. Mol. Biol. 111:305.

    PubMed  CAS  Google Scholar 

  • DeBach, P., 1971, The use of imported natural enemies in insect pest management ecology, Proc. Tall Timbers Conf. 3:211.

    Google Scholar 

  • DeBach, P., 1974, Biological Control by Natural Enemies, Cambridge University Press, Cambridge.

    Google Scholar 

  • Delbrück, M., 1940a, Adsorption of bacteriophages under various physiological conditions of the host, J. Gen. Physiol. 23:631.

    PubMed  Google Scholar 

  • Delbrück, M., 1940b, The growth of bacteriophage and lysis of the host, J. Gen. Physiol. 23:643.

    PubMed  Google Scholar 

  • Delbrück, M., and Luria, S. E., 1942, Interference between bacterial viruses. 1. Interference between two bacterial viruses acting upon the same host, and the mechanism of virus growth.Arch. Biochem. 1:111.

    Google Scholar 

  • Demerec, M., and Fano, U., 1945, Bacteriophage-resistant mutants in Escherichia coli. Genetics 30:119.

    PubMed  CAS  Google Scholar 

  • d’Herelle, F., 1922, The Bacteriophage: Its Role in Immunity, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Dhillon, T. S., Chan, Y. S., Sun, S. M., and Chau, W. S., 1970, Distribution of coliphages in Hong Kong sewage, Appl. Microbiol. 20:187.

    PubMed  CAS  Google Scholar 

  • Dhillon, T. S., Dhillon, E. K. S., Chau, H. C, Li, W. K., and Tsang, A. H. C., 1976, Studies on bacteriophage distribution: Virulent and temperate bacteriophage content of mammalian feces, Appl. Environ. Microbiol. 32:68.

    PubMed  CAS  Google Scholar 

  • Doermann, A. H., 1948, Lysis and lysis inhibition with Escherichia coli bacteriophage, J. Bacteriol. 55:257.

    Google Scholar 

  • Duckworth, D. H., 1970, Biological activity of bacteriophage ghosts and "takeover" of host functions by bacteriophage, Bacteriol. Rev. 34:344.

    PubMed  CAS  Google Scholar 

  • Duckworth, D. H., 1976, Who discovered bacteriophage?, Bacteriol Rev. 40:793.

    PubMed  CAS  Google Scholar 

  • Duckworth, D. H., Glenn, J., and McCorquodale, D. J., 1981, Inhibition of bacteriophage replication by extrachromosomal elements, Microbiol. Rev. 45:52.

    PubMed  CAS  Google Scholar 

  • Dunn, G. B., and Duckworth, D. H., 1977, Inactivation of receptors for bacteriophage T5 during infection of Escherichia coli B, J. Virol 24:419.

    PubMed  CAS  Google Scholar 

  • Dykhuizen, D. E., and Hartl, D. L., 1983, Selection in chemostats, Microbiol. Rev. 47:150.

    PubMed  CAS  Google Scholar 

  • Echols, H., 1972, Developmental pathways for the temperate phage: Lysis vs. lysogeny, Annu. Rev. Genet. 6:157.

    PubMed  CAS  Google Scholar 

  • Ellis, E. L., and Delbrück, M., 1939, The growth of bacteriophage, J. Gen. Physiol. 22:365.

    PubMed  CAS  Google Scholar 

  • Emslie-Smith, A. H., 1961, Observations on the secular succession of types of Escherichia coli and related organisms in the faecal flora of an adult human subject, J. Appl. Bacteriol. 24:vii.

    Google Scholar 

  • Falkow, S., 1975, Infectious Multiple Drug Resistance, Pion, London.

    Google Scholar 

  • Eraser, D. K., 1957, Host range mutants and semitemperate mutants of bacteriophage T3, Virology 3:527.

    Google Scholar 

  • Freeman, V. J., 1951, Studies on the virulence of bacteriophage infected strains of Coryne bacterium diphtheriae, J. Bacteriol. 61:675.

    CAS  Google Scholar 

  • Furuse, K., Osawa, S., Kawashiro, J., Tanaka, R., Ozawa, A., Sawamura, S., Yanagawa, Y. Nagao, T., and Watanabe, I., 1983, Bacteriophage distribution in human faeces: Con tinuous survey of healthy subjects and patients with internal and leukaemic diseases J. Gen. Virol. 64:2039.

    Google Scholar 

  • Goldberg, E., 1980, Bacteriophage nucleic acid penetration, in: Virus Receptors, Part 1, Bac terial Viruses (L. L. Randall and L. Philipson, eds.), pp. 115–141, Chapman and Hall London.

    Google Scholar 

  • Hendrix, R. W., Roberts, J. W., Stahl, F. W., and Weisberg, R. A. (eds.), 1983, Lambda II, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

    Google Scholar 

  • Hershey, A. D., 1946, Mutation of bacteriophage with respect to type of plaque,Genetics 31:620.

    Google Scholar 

  • Hershey, A. D., and Rotman, R., 1949, Genetic recombination between host range and plaque-type mutants of bacteriophage in single bacterial cultures. Genetics 34:44.

    Google Scholar 

  • Hofnung, M., Jezierska, A., and Braun-Breton, C., 1976, lamB mutations in E. coli Kl2: Growth of Lambda host range mutants and effect of nonsense suppressors, Mol. Gen. Genet. 145:207.

    PubMed  CAS  Google Scholar 

  • Home, M. T., 1970, Coevolution onEscherichia coli and bacteriophages in chemostat culture, Science 168:992.

    Google Scholar 

  • Howes, W. v., 1965, Effect of glucose on the capacity of Escherichia coli to be infected by a virulent Lambda bacteriophage, J. Bacteriol. 90:1188.

    PubMed  CAS  Google Scholar 

  • Koerner, J. F., and Snustad, D. P., 1979, Shutoff of host macromolecular synthesis after T- even bacteriophage infection,Microbiol. Rev. 43:199.

    PubMed  CAS  Google Scholar 

  • Krueger, A. P., 1931, The sorption of bacteriophage by living and dead susceptible bacteria. 1. Equilibrium conditions, J. Gen. Physiol. 14:493.

    PubMed  CAS  Google Scholar 

  • Kruger, D. H., and Bickle, T. A., 1983, Bacteriophage survival: Multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts, Microbiol. Rev. 47:345.

    PubMed  CAS  Google Scholar 

  • Kruger, D. H., and Schroeder, C., 1981, Bacteriophage T3 and bacteriophage T7 virus-host cell interactions, Microbiol. Rev. 45:9.

    PubMed  CAS  Google Scholar 

  • Kubitschek, H. E., 1970,Introduction to Research with Continuous Cultures, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Lenski, R. E., 1984a, Two-step resistance byEscherichia coli B to bacteriophage T2,Genetics 107:1.

    PubMed  CAS  Google Scholar 

  • Lenski, R. E., 1984b, Coevolution of bacteria and phage: Are there endless cycles of bacterial defenses and phage counterdefenses?, J. Theor. Biol. 108:319.

    PubMed  CAS  Google Scholar 

  • Lenski, R. E., and Levin, B. R., 1985, Constraints on the coevolution of bacteria and virulent phage: A model, some experiments, and predictions for natural communities, Am. Nat 125:585.

    Google Scholar 

  • Lerner, F., 1984, Population biology of male-specific bacteriophage, PhD. Dissertation, University of Massachusetts, Amherst.

    Google Scholar 

  • Levin, B. R., 1981, Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. Genetics 99:1.

    PubMed  CAS  Google Scholar 

  • Levin, B. R., and Lenski, R. E., 1983, Coevolution in bacteria and their viruses and Plasmids, in: Coevolution (D. J. Futuyma and M. Slatkin, eds.), pp. 99–127, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Levin, B. R., and Lenski, R. E., 1985, Bacteria and phage: A model system for the study of the ecology and co-evolution of hosts and parasites, in: Ecology and Genetics of Host- Parasite Interactions (D. Rollinson and R. M. Anderson, eds.), pp. 227–242, Academic Press, London.

    Google Scholar 

  • Levin, B. R., Stewart, F. M., and Chao, L., 1977, Resource-limited growth, competition, and predation: A model and experimental studies with bacteria and bacteriophage, Am. Nat. 111:3.

    Google Scholar 

  • Levins, R., 1966, The strategy of model building in population biology.Am. Sei. 54:421.

    Google Scholar 

  • Lewin, B., 1974, Gene Expression, Volume 1, Bacterial Genomes, Wiley, London.

    Google Scholar 

  • Li, K., Barksdale, L., and Garmise, L., 1961, Phenotypic alterations associated with the bacteriophage carrier state of Shigella dysenteriae, J. Gen. Microbiol. 24:355.

    CAS  Google Scholar 

  • Lotka, A. J., 1925,Elements of Physical Biology, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Luria, S. E., 1945, Mutations of bacterial viruses affecting their host-range. Genetics 30:84.

    PubMed  CAS  Google Scholar 

  • Luria, S. E., 1953, Host-induced modifications of viruses, Cold Spring Harbor Symp. Quant. Biol. 18:237.

    PubMed  CAS  Google Scholar 

  • Luria, S. E., and Delbrück, M., 1943, Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491.

    PubMed  CAS  Google Scholar 

  • Luria, S. E., and Steiner, D. L., 1954, The role of calcium in the penetration of bacteriophage T5 into its host, J. Bacteriol. 67:635.

    PubMed  CAS  Google Scholar 

  • Luria, S. E., Darnell, J. E., Jr., Baltimore, D., and Campbell, A., 1978, General Virology, Wiley, New York.

    Google Scholar 

  • Lwoff, A., 1953, Lysogeny, Bacteriol. Rev. 17:269.

    PubMed  CAS  Google Scholar 

  • Malmberg, R. L., 1977, The evolution of epistasis and the advantage of recombination in populations of bacteriophage T4, Genetics 86:607.

    PubMed  CAS  Google Scholar 

  • Manning, P. A., and Reeves, P., 1978, Outer membrane proteins ofEscherichia coli K-12: Isolation of a common receptor protein for bacteriophage T6 and colicin K, Mol. Gen. Genet. 158:279.

    CAS  Google Scholar 

  • Marvin, D. A., and Hohn, B., 1969, Filamentous bacterial viruses, Bacteriol. Rev. 33:172.

    PubMed  CAS  Google Scholar 

  • Mathews, C. K., Kutter, E. M., Mosig, G., and Berget, P. B. (eds.), 1983, Bacteriophage T4, American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • May, R. M., 1974,Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • May, R. M., and Anderson, R. M., 1983, Parasite-host coevolution, in: Coevolution (D. J. Futuyma and M. Slatkin, eds.), pp. 186–206, Sinauer, Sunderland, Massachusetts.

    Google Scholar 

  • Meselson, M., Yuan, R., and Heywood, J., 1972, Restriction and modification of DNA, Annu. Rev. Biochem. 41:447.

    PubMed  CAS  Google Scholar 

  • Milch, H., 1978, Phage typing ofEscherichia coli, in: Methods in Microbiology, Volume 11 (T. Bergan and J. R. Norris, eds.), pp. 88–155, Academic Press, London.

    Google Scholar 

  • Morona, R., and Henning, U., 1984, Host range mutants of bacteriophage Ox2 can use two different outer membrane proteins ofEscherichia coli K-12 as receptors,J. Bacteriol. 159:579.

    PubMed  CAS  Google Scholar 

  • Morona, R., and Henning, U., 1986. New locus (ttr) inEscherichia coli K-12 affecting sensitivity to bacteriophage T2 and growth on oleate as the sole carbon source, J. Bacteriol. 168:534.

    PubMed  CAS  Google Scholar 

  • Orpin, C. G., and Munn, E. A., 1974, The occurrence of bacteriophage in the rumen and their influence on rumen bacterial populations, Experientia 30:1018.

    PubMed  CAS  Google Scholar 

  • Paynter, M. J. B., and Bungay, H. R., Ill, 1969, Dynamics of coliphage infections, in:Fermentation Advances (D. Perlman, ed.), pp. 323–335, Academic Press, New York.

    Google Scholar 

  • Paynter, M. J. B., and Bungay, H. R., III, 1970, Capsular protection against virulent coliphage infection, BiotechnoL Bioeng. 12:341.

    PubMed  CAS  Google Scholar 

  • Peitzman, S. J., 1969, Felix d’Herelle and bacteriophage therapy. Trans, Stud. Coll. Physicians Phila. 37:115.

    CAS  Google Scholar 

  • Ptashne, M., Jeffrey, A., Johnson, A. D., Maurer, R., Meyer, B. J., Pabo, C. O., Roberts, T. M., and Sauer, R. T., 1980, How the Lambda repressor and Cro work. Cell 19:1.

    PubMed  CAS  Google Scholar 

  • Reanney, D., 1976, Extrachromosomal elements as possible agents of adaptation and development, Bacteriol. Rev. 40:552.

    PubMed  CAS  Google Scholar 

  • Reanney, D. C., and Ackermann, H. W., 1982, Comparative biology and evolution of bacteriophages,Adv. Virol. Res. 27:205.

    CAS  Google Scholar 

  • Reanney, D. C., Gowland, P. C., and Slater, J. H., 1963, Genetic interactions among microbial communities, Symp. Soc. Gen. Microbiol 34:396.

    Google Scholar 

  • Rodin, S. N., and Ratner, V. A., 1983, Some theoretical aspects of protein coevolution in the ecosystem "phage-bacteria." I. The problem. II. The deterministic model of micro- evolution, J. Theor. Biol. 100:185.

    CAS  Google Scholar 

  • Roper, M. M., and Marshall, K. C, 1974, Modification of the interaction betweenEscherichia coli and bacteriophage in saline sediment, Microb. Ecol. 1:1.

    Google Scholar 

  • Ryter, A., Shuman, H., and Schwartz, M., 1975, Integration of the receptor for bacteriophage Lambda in the outer membrane of Escherichia coli: Coupling with cell division, J. Bacteriol. 122:295.

    PubMed  CAS  Google Scholar 

  • Scarpino, P. V., 1978, Bacteriophage indicators, in: Indicators of Viruses in Water and Food (G. Berg, ed.), pp. 201–227, Ann Arbor Science, Ann Arbor, Michigan.

    Google Scholar 

  • Schlesinger, M., 1932, Ueber die Bindung des bakteriophagen an homologe Bakterien. II. Quantitative Untersuchungen ueber die Bindungsgeschwindigkeit und die Saettigung. [English translation in G. S. Stent (ed.). Papers on Bacterial Viruses, Little and Brown, Boston (1960).]

    Google Scholar 

  • Schwartz, M., 1976, The adsorption of coliphage Lambda to its host: Effect of variations in the surface density of receptor and in phage-receptor affinity,J. Mol. Biol. 103:521.

    PubMed  CAS  Google Scholar 

  • Schwartz, M., 1980, Interaction of phages with their receptor proteins, in:Virus Receptors, Part 1, Bacterial Viruses (L. L. Randall and L. Philipson, eds.), pp. 59–94, Chapman and Hall, London.

    Google Scholar 

  • Shera, G., 1970, Phage treatment of severe burns, Br. Med. J. 1:568.

    PubMed  CAS  Google Scholar 

  • Smith, F. E., 1972, Spatial heterogeneity, stability, and diversity in ecosystems, in: Growth by Intussusception (E. S. Deevey, ed.), pp. 307–335, Connecticut Academy of Arts and Sciences, New Haven, Connecticut.

    Google Scholar 

  • Stent, G. S., 1963,Molecular Biology of Bacterial Viruses, Freeman, San Francisco.

    Google Scholar 

  • Stent, G. S., and Wollman, E. L., 1952, On the two-step nature of bacteriophage adsorption, Biochim. Biophys. Acta 8:260.

    PubMed  CAS  Google Scholar 

  • Stewart, F. M., and Levin, B. R., 1973, Partitioning of resources and the outcome of interspecific competition: A model and some general considerations. Am. Nat. 107:171.

    Google Scholar 

  • Stewart, F. M., and Levin, B. R., 1984, The population biology of bacterial viruses: Why be temperate, Theor. Popul. Biol 26:93.

    PubMed  CAS  Google Scholar 

  • Stone, J. C, Smith, R. D., and Miller, R. C., Jr., 1983, A recombinant DNA plasmid which inhibits bacteriophage T7 reproduction in Escherichia coli, J. Gen. Virol. 64:1615.

    CAS  Google Scholar 

  • Szmelcman, S., and Hofnung, M., 1975, Maltose transport in Escherichia coli K-12: Involvement of the bacteriophage Lambda receptor, J. Bacteriol. 124:112.

    PubMed  CAS  Google Scholar 

  • Tan, J. S. H., and Reanney, D. C., 1976, Interactions between bacteriophages and bacteria in soil. Soil Biol. Biochem. 8:145.

    Google Scholar 

  • Vidaver, A. K., 1976, Prospects for control of phytopathogenic bacteria by bacteriophages and bacteriocins, Annu. Rev. Phytopathol. 14:451.

    Google Scholar 

  • Volterra, V., 1926, Fluctuations in the abundance of a species considered mathematically, Nature 118:558.

    Google Scholar 

  • Whitehead, H. R., 1953, Bacteriophage in cheese manufacture, BacterioL Rev. 17:109.

    PubMed  CAS  Google Scholar 

  • Wilkinson, J. F., 1958, The extracellular polysaccharides of bacteria, BacterioL Rev. 22:46.

    PubMed  CAS  Google Scholar 

  • Williams, F. M., 1972, Mathemetics of microbial populations, with emphasis on open systems, in: Growth by Intussusception (E. S. Deevey, ed.), pp. 395–426, Connecticut Academy of Arts and Sciences, New Haven, Connecticut.

    Google Scholar 

  • Williams, F. M., 1980, On understanding predator-prey interactions, in: Contemporary Microbial Ecology (D. C. Ellwood, J. N. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), pp. 349–375, Academic Press, London.

    Google Scholar 

  • Williams smith, H., 1972, Ampicillin resistance in Escherichia coli by phage infection. Nature 238:205.

    Google Scholar 

  • Williams smith, H., and Muggins, M. B., 1980, The association of the 018, K1 and H7 antigens and the ColV plasmid of a strain of Escherichia coli with its virulence and immungenicity,J. Gen. Microbiol. 121:387.

    Google Scholar 

  • Williams smith, H., and Muggins, M. B., 1982, Successful treatment of experimental Escherichia coli infections in mice using phage: Its general superiority over antibiotics, J. Gen. Microbiol. 128:307.

    Google Scholar 

  • Wright, A., McConnell, M., and Kanegasaki, S., 1980, Lipopolysaccharide as a bacteriophage receptor, in: Virus Receptors, Part 1, Bacterial Viruses (L. L. Randall and L. Philipson, eds.), pp. 27–57, Chapman and Mall, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Lenski, R.E. (1988). Dynamics of Interactions between Bacteria and Virulent Bacteriophage. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5409-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5409-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5411-6

  • Online ISBN: 978-1-4684-5409-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics