Bacteria and Chromium in Marine Sediments

  • Margaret W. Loutit
  • Jacqueline Aislabie
  • Philip Bremer
  • Christopher Pillidge
Part of the Advances in Microbial Ecology book series (AMIE, volume 10)


Chromium (Cr), atomic number 24 and mass 52.01, is one of the most widely used metals in industry (Stern, 1982; Kimbell and Panulas, 1984; Moore and Ramamoorthy, 1984) and its use is increasing (Papp, 1983). Since many Cr-containing effluents are discharged into bodies of water (Moore and Ramamoorthy, 1984), the possibility that the discharged Cr interacts with the biota immediately or subsequently has to be considered. From the literature there is little evidence that consideration has been given to this possibility (Moore and Ramamoorthy, 1984).


Heavy Metal Marine Sediment Overlie Water Interstitial Water Hexavalent Chromium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahsanullah, M., 1982, Acute toxicity of chromium, mercury, molybdenum and nickel to the amphipod Allorchestes compressa, Aust. J. Mar. Freshwater Res. 33:465–474.Google Scholar
  2. Aislabie, J., 1984, Aerobic heterotrophic bacteria in a marine sediment polluted with chromium, Ph.D. Thesis, University of Otago, Dunedin, New Zealand.Google Scholar
  3. Aislabie, J., and Loutit, M. W., 1984, The effect of effluent high in chromium on marine sediment aerobic heterotrophic bacteria, Mar. Environ. Res. 13:69–79.Google Scholar
  4. Aislabie, J., and Loutit, M. W., 1986, Accumulation of Cr(III) by bacteria isolated from polluted sediment.Mar. Environ. Res. 20:221–232.Google Scholar
  5. Ajmal, M., Nomani, A. A., and Ahmad, A., 1984, Acute toxicity of chrome electroplating wastes to microorganisms: Adsorption of Chromate and chromium (VI) on a mixture of clay and sand.Water Air Soil Pollut. 23:119–127.Google Scholar
  6. Albright, L. J., and Wilson, E. M., 1974, Sub-lethal effects of several metallic salts-organic compound combinations upon the heterotrophic microflora of a natural water. Water Res. 8:101–105.Google Scholar
  7. Albright, L. J., Wentworth, J. S., and Wilson, E. M., 1972, Technique for measuring metallic salt effects upon the indigenous heterotrophic microflora of a natural water. Water Res. 6:1589–1596.Google Scholar
  8. Aston, S. R., and Chester, R., 1976, Estuarine sedimentary processes, in: Estuarine Chemistry (J. D. Burton and P. S. Liss, ed.), pp. 37–53, Academic Press, London.Google Scholar
  9. Austin, B., Allen, D. A., Mills, A. L., and Colwell, R. R., 1977, Numerical taxonomy of heavy metal-tolerant bacteria isolated from an estuary, Can. J. Microbiol. 23:1433–1447.PubMedGoogle Scholar
  10. Babich, H., and Stotzky, G., 1980, Environmental factors that influence the toxicity of heavy metal and gaseous pollutants to microorganisms,CRC Crit. Rev. Microbiol. 8:99–145.Google Scholar
  11. Babich, H., and Stotzky, G., 1981, Manganese toxicity to fungi: Influence of pH, Bull. Environ. Contam. Toxicol. 27:474–480.PubMedGoogle Scholar
  12. Babich, H., and Stotzky, G., 1982, Nickel toxicity to fungi: Influence of environmental factors, Ecotoxicol. Environ. Safety 6:577–589.PubMedGoogle Scholar
  13. Babich, H., and Stotzky, G., 1983, Nickel toxicity to estuarine/marine fungi and its amelioration by magnesium in sea water. Water Air Soil Pollut. 19:193–202.Google Scholar
  14. Babich, H., Schiffenbauer, M., and Stotzky, G., 1982, Comparative toxicity of trivalent and hexavalent chromium to fungi. Bull. Environ. Contam. Toxicol. 28:452–459.PubMedGoogle Scholar
  15. Baldry, M. G. C., Hogarth, D. S., and Dean A. C. R., 1977, Chromium and copper sensitivity and tolerance in Klebsiella aerogenes, Microbios Lett., 4:7–16.Google Scholar
  16. Boeye, A., Wayenbergh, M., and Aerts, M., 1975, Density and composition of heterotrophic bacterial populations in north sea sediment, Mar. Biol. 32:263–270.Google Scholar
  17. Bopp, L. H., Chakrabarty, A. M., and Ehrlich, H. L., 1983, Chromate resistance plasmid in Pseudomonas jluorescens, J. Bacteriol. 155:1105–1109.Google Scholar
  18. Bremer, P. J., and Loutit, M. W., 1986a, Bacterial polysaccharide as a vehicle for the entry of Cr(III) to a food chain. Mar. Environ. Res. 20:235–248.Google Scholar
  19. Bremer, P. J., and Loutit, M. W., 1986b, The effect of Cr(III) on the form and degradability of a polysaccharide produced by a bacterium isolated from a marine sediment, Mar. Environ. Res. 20:249–260.Google Scholar
  20. Brkovic-Popovic, L, and Popovic, M., 1977, Effects of heavy metals on survival and respiration rate of tubificid worms: Part II—Effects on respiration rate. Environ. Pollut. 13:93–98.Google Scholar
  21. Buat-Menard, P. E., 1984, Fluxes of metals through the atmosphere and oceans, in: Changing Metal Cycles and Human Health (J. O. Nriagu, ed.), pp. 43–69, Springer-Verlag, New York.Google Scholar
  22. Calabrese, A., Collier, R. W., Nelson, D. A., and Maclnnes, J. R., 1973, The toxicity of heavy metals to embryos of the American oyster Crassostrea virginica, Mar. Biol. 18:162–166.Google Scholar
  23. Capone, D. G., Reese, D. D., and Kiene, R. P., 1983, Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments, Appl. Environ. Microbiol. 45:1586–1591.PubMedGoogle Scholar
  24. Capuzzo, J. D., and Anderson, F. E., 1973, The use of modem chromium accumulations to determine estuarine sedimentation rates. Mar. Geol. 14:225–235.Google Scholar
  25. Gary, E. E., 1982, Chromium in air, soil and natural waters, in Biological and Environmental Aspects of Chromium (S. Langard, ed.), pp. 49–64. Elsevier Biomedical Press, New York.Google Scholar
  26. Costerton, J. W., Irwin, R. T., and Cheng, K. Y., 1981, The bacterial glycocalyx in nature and disease, Annu. Rev. Microbiol 35:299–324.PubMedGoogle Scholar
  27. Cranston, R. E., and Murray, J. W., 1978, The determination of chromium species in natural waters. Anal. Chim. Acta. 99:275–282.Google Scholar
  28. Cranston, R. E., and Murray, J. W., 1980, Chromium species in the Columbia River and Estuary, Limnol. Oceanogr. 25:1104–1112.Google Scholar
  29. Curl, H., Cutshall, N., and Osterberg, C., 1965, Uptake of chromium (III) by particles in sea-water. Nature 205:275–276.Google Scholar
  30. Cutshall, N., Johnson, V., and Osterberg, C, 1966, Chromium-51 in sea water: Chemistry, Science 152:202–203.PubMedGoogle Scholar
  31. Den Dooren De Jong, L. E., 1971, Tolerance ofAzotobacter for metallic and non-metallic ions, Antonie Leeuwenhoek 37:119–124.Google Scholar
  32. Dickert, G., Konheiser, U., Piechulla, K., and Thauer, R. K., 1981, Nickel requirement and factor F430 content of methanogenic bacteria, J. Bacteriol. 148:459–464.Google Scholar
  33. Douglas, G. S., Mills, G. L., and Quinn, J. G., 1986, Organic copper and chromium complexes in the interstitial waters of Narragansett Bay (Rhode Island, USA) sediments. Mar. Chem. 19:161–174.Google Scholar
  34. Dubinina, G. A., 1976, Ecology of freshwater iron bacteria, Biol. Bull. Acad. Sci. USSR 3:473–488.Google Scholar
  35. Duedall, I. W., Ketchum, B. H., Park, P. K., and Kester, D. R., 1983, in: Global Inputs, Characteristics, and Fates of Ocean-Dumped Industrial and Sewage Wastes: An Overview (I. W. Duedall, P. K. Park, B. H. Ketchum, and D. R. Kester, eds.), pp. 3–46, Wiley, New York.Google Scholar
  36. Duxbury, T., 1981, Toxicity of heavy metals to soil bacteria, FEMS Microbiol. Lett. 11:217–220.Google Scholar
  37. Duxbury, T., 1986, Microbes and heavy metals: An ecological review, Microb. Sci., 3:330–333.Google Scholar
  38. Eisler, R., and Hennekey, R. J., 1977, Acute toxicities of Cd2+, Cr6+, Hg2+, Ni2+ and Zn2+ to estuarine microfauna. Arch. Environ. Contam. Toxicol. 6:315–323.PubMedGoogle Scholar
  39. Elderfield, H., 1970, Chromium speciation in seawater. Earth Planet. Sci. Lett. 9:10–16.Google Scholar
  40. Fargo, L. L., and Fleming, R. W., 1977, Effects of Chromate and cadmium on most probable number estimates of nitrifying bacteria in activated sludge. Bull. Environ. Contam. Toxicol. 18:350–354.PubMedGoogle Scholar
  41. Forstner, U., 1984, Metal pollution of terrestrial waters, in:Changing Metal Cycles and Human Health (J. O. Nriagu, ed.), pp. 71–94, Springer-Vertag, New York.Google Scholar
  42. Forstner, U., and Wittmann, G. T. W., 1981, Metal Pollution in the Aquatic Environment, Springer-Verlag, New York.Google Scholar
  43. Foster, T. J., 1983, Plasmid determined resistance to antimicrobial drugs and toxic metal ions in bacteria,Microbiol. Rev. 47:361–409.PubMedGoogle Scholar
  44. Frey, B. E., Riedel, G. F., Bass, A. E., and Small, L. F., 1983, Sensitivity of estuarine phy-toplankton to hexavalent chromium, Est. Coast. Shelf Sci. 17:181–187.Google Scholar
  45. Fukai, R., 1967, Valency state of chromium in sea water, Nature 213:901–902.Google Scholar
  46. Gadd, G. M., 1981, Mechanisms implicated in the ecological success of polymorphic fungi in metal polluted habitats. Sci. Technol. Lett. 2:531–536.Google Scholar
  47. Gadd, G. M., and Griffiths, A. J., 1978, Microorganisms and heavy metal toxicity,Microb. Ecol. 4:303–317.Google Scholar
  48. Geesey, G. C., 1982, Microbial exopolymer: Ecological and economic considerations,ASM News 48:9–14.Google Scholar
  49. Goulder, R., Blanchard, A. S., Sanderson, P. L., and Wright, B., 1980, Relationships between heterotrophic bacteria and pollution in an industrialized estuary, Water Res. 14:591–601.Google Scholar
  50. Goyne, E. R., and Jones, G. E., 1973, An ecological survey of the open ocean and estuarine microbial populations II. The oligodynamic effect of Ni on marine bacteria, in: Marine Ecology (B. L. Stevenson, ed.), pp. 243–257, University of South Carolina Press.Google Scholar
  51. Gupta, S. K., and Chen, K. Y., 1975, Partitioning of trace metals in selective chemical fractions on nearshore sediments.Environ. Lett. 10:129–158.Google Scholar
  52. Haefeli, C., Franklin, C., and Hardy, K., 1984, Plasmid determined silver resistance in Pseudomonas stutzeri isolated from a silver mine, J. Bacteriol. 158:389–392.PubMedGoogle Scholar
  53. Hauxhurst, J. D., Krichevsky, M. I., and Atlas, R. M. 1980, Numerical taxonomy of bacteria from the Gulf of Alaska, J. Gen. Microbiol. 120:131–148.Google Scholar
  54. Hauxhurst, J. D., Kaneko, T., and Atlas, R. M. 1981, Characteristics of bacterial communities in the Gulf of Alaska, Microb. Ecol. 7:167–182.Google Scholar
  55. Hershelman, G. P., Schäfer, H. A., Jan, T. K., and Young, D. R., 1981, Metals in marine sediments near a large California Municipal outfall. Mar. Pollut. Bull. 12:131–134.Google Scholar
  56. Hodgkiss, W., and Shewan, J. M., 1968, Problems and modern principles in taxonomy of marine bacteria, in: Advances in Microbiology of the Sea, Vol. I (M. R. Droop and E. J. Fergusson Wood, eds.), pp. 127–166, Academic Press, London.Google Scholar
  57. Horitsu, H., Nishida, H., Kato, H., and Tomoyeda, M., 1978, Isolation of potassium Chromate tolerant bacterium and Chromate uptake by the bacterium, Agric. Biol. Chem. 42:2037–2043.Google Scholar
  58. Horitsu, H., Futo, S., Ozawa, K., and Kawai, K., 1983, Comparison of characteristics of hexavalent chromium-tolerant bacterium, Pseudomonas ambigua G-1, and its hexav-alent chromium-sensitive mutant, Agric. Biol. Chem. 47:2907–2908.Google Scholar
  59. James, B. R., and Bartlett, R. J., 1984, Nitrification in soil suspensions treated with chromium (III, VI) salts or tannery wastes. Soil Biol. Biochem. 16:293–295.Google Scholar
  60. Jan, T.-K., and Young, D. R., 1978, Chromium speciation in municipal wastewater and seawater, J. Water Pollut. Control. Fed. 50:2327–2336.Google Scholar
  61. Jeandel, C., and Minster, J. F., 1984, Isotope dilution measurements of inorganic chromium (III) and total chromium in seawater, Mar. Chem. 14:347–364.Google Scholar
  62. Jenkins, S. H., 1982, Chromium (VI) reduction in sea water, Mar. Pollut. Bull. 13:77–78.Google Scholar
  63. Jernelov, A., and Martin, A., 1975, Ecological implications of metal metabolism by microorganisms,Annu. Rev. Microbiol. 29:61–77.PubMedGoogle Scholar
  64. Johnson, L, Flower, N., and Loutit, M. W., 1981, Contribution of periphytic bacteria to the concentration of chromium in the crab Helice crassa, Microb. Ecol. 7:245–252.Google Scholar
  65. Katz, A., and Kaplan, I. R., 1981, Heavy metals behavior in coastal sediments of Southern California: A critical review and synthesis. Mar. Chem. 10:261–299.Google Scholar
  66. Kimbell, C. L., and Panulas, J., 1984, Minerals in the world economy, in: Minerals Yearbook, 1982, Vol. III Area Reports: International, pp. 1–35, Bureau of Mines, U. S. Department of the Interior, Washington, D. C.Google Scholar
  67. Knezevic, M. Z., and Chen, K. Y., 1977, Organometallic interactions in recent marine sediments, in: Chemistry of Marine Sediments (T. F. Yen, ed.), pp. 231–241, Ann Arbor Scientific, Ann Arbor, Michigan.Google Scholar
  68. Kurata, A., Yoshida, Y., Kadota, H., and Taguchi, F., 1977, Distribution of Ni tolerant bacteria in water and sediments of the sea of Aso, Bull. Jpn. Soc. Sci. Fish. 43:1203–1208.Google Scholar
  69. Kuwabara, J. S., 1981, Gametophytic growth byMacrocystis pyrifera (Phaeophyta) in response to various iron and zinc concentrations,J. Phycol. 17:417–419.Google Scholar
  70. Kuwabara, J. S., 1982, Micronutrients and kelp cultures: Evidence for cobalt and manganese deficiency in southern California deep sea water, Science 216:1218–1221.Google Scholar
  71. Leland, H. V., Luoma, S. N., Elder, J. F., and Wilkes, D. J., 1978, Heavy metals and related trace elements, J. Water Pollut Control Fed. 50:1469–1514.Google Scholar
  72. Lindau, C. W., and Hossner, L. R., 1982, Sediment fraction of copper, nickel, zinc, chromium, molybdenum and iron in 1 experimental and 3 natural marshes,J. Environ. Qual. 11:540–545.Google Scholar
  73. Loring, D. H., 1979, Geochemistry of cobalt, nickel, chromium, and vanadium in the sediments of the estuary and open Gulf of St. Lawrence, Can. J. Earth Sci. 16:1196–1209.Google Scholar
  74. Loutit, M. W., and Pillidge, C. J., 1987, Sediment bacteria and mobilization of Cr (III), in: Proceedings of the 4th International Congress of Microbial Ecology, Ljubljana, Yugoslavia, August 1986, in press.Google Scholar
  75. Lu, J. C. S., and Chen, K. Y., 1977, Migration of trace metals in interfaces of seawater and polluted surficial sediments. Environ. Sci. Technol. 11:174–182.Google Scholar
  76. Luli, G. W., Talnagi, J. W., Strohl, W. R., and Pfister, R. M., 1983, Hexavalent chromium-resistant bacteria isolated from river sediments,Appl. Environ. Microbiol. 46:846–854.PubMedGoogle Scholar
  77. Martin, M., Osbom, K. E., Billig, P., and Glickstein, N., 1981, Toxicities often metals to Crassostrea gigas andMytilus edulis embryos and Cancer magister larvae, Mar. Pollut. Bull. 12:305–308.Google Scholar
  78. Mayer, L. M., and Fink, L. K., 1980, Granulometric dependence of chromium accumulation in estuarine sediments. Mar. Est. Coast. Mar. Sci. 11:491–503.Google Scholar
  79. McDermott, D. J., Alexander, G. V., Young, D. R., and Meams, A. J., 1976, Metal contamination of flatfish around a large submarine outfall, J. Water Pollut. Control Fed. 48:1913–1917.PubMedGoogle Scholar
  80. McFeters, G. A., Bond, P. J., Olson, S. B., and Tchan, Y. T., 1983, A comparison of microbial bioassays for the detection of aquatic toxicants. Water Res. 17:1757–1762.Google Scholar
  81. Mearns, A. J., and Young, D. R., 1977, Chromium in the southern Califomian environment, in: Pollutant Effects on Marine Organisms (C. S. Giam, ed.), pp. 125–142, Lexington Books, D. C. Heath and Company, Lexington.Google Scholar
  82. Mertz, W., 1969, Chromium occurrence and function in biological systems, Physiol Rev. 49:163–172.PubMedGoogle Scholar
  83. Moore, J. W., and Ramamoorthy, S., 1984, Chromium, in: Heavy Metals in Natural Waters: Applied Monitoring and Impact Assessment (J. W. Moore and S. Ramamoorthy, eds.), pp. 58–73, Springer-Verlag, New York.Google Scholar
  84. Mowll, J. L., and Gadd, G. M., 1984, Cadmium uptake byAureobasidium pullulans, J. Gen. Microbiol. 130:279–284.Google Scholar
  85. Nakayama, E., Kuwamoto, T., Tokoro, H., and Fujinaga, T., 1981a, Chemical speciation of chromium in seawater: Part 3. The determination of chromium species. Anal. Chim. Acta 131:247–254.Google Scholar
  86. Nakayama, E., Kuwamoto, T., Tsurubo, A., and Fujinaga, T., 1981b, Chemical speciation of chromium in seawater: Part 2. Effects of manganese oxide and reducible organic materials on the redox processes of chromium. Anal. Chim. Acta 130:401–404.Google Scholar
  87. Nakayama, E., Tokoro, H., Kuwamoto, T., and Fujinaga, T., 1981c, Dissolved state of chromium in seawater. Nature, 290:768–770.Google Scholar
  88. NAS, 1974, Medical and Biological Effects of Environmental Pollutants, Chromium, Committee on the Biologic Effects of Atmospheric Pollutants, Medical Sciences National Research Council, Washington, D. C.Google Scholar
  89. Nedwell, D. B., and Brown, C. M., 1982, Sediment Microbiology, Society of Microbiology, Academic Press, London.Google Scholar
  90. Nelson, D. J., and Colwell, R. R., 1975, The ecology of mercury resistant bacteria in Chesapeake Bay, MicrobEcol. 1:191–218.Google Scholar
  91. Nordgren, A., Baath, E., and Soderstrom, B., 1983, Microfungi and microbial activity along a heavy metal gradient, AppL Environ. Microbiol 45:1829–1837.PubMedGoogle Scholar
  92. Osaki, S., Osaki, T., Nishino, K., and Takashima, Y., 1980, Oxidation and reduction of chromium in natural water I. Oxidation rate of chromium (III) by oxygen in the presence of Mn (II), Nippon Kaguku Kaishi 5:711–716.Google Scholar
  93. Oshida, P. S., and Word, L. S., 1982, Bioaccumulation of chromium and its effects on reproduction in Neanthes arenaceodentata (Polychaeta), Mar. Environ. Res. 7:167–174.Google Scholar
  94. Osterberg, C., Cutshall, N., and Cronin, J., 1965, Chromium-51 as a radioactive tracer of Columbia River water at sea, Science 150:1585–1587.PubMedGoogle Scholar
  95. Pankow, J. F., Leta, D. P., Lin, J. W., Ohl, S. E. Shum, W. P., and Janauer, G. E., 1977, Analysis for chromium traces in the aquatic ecosystem. II. A study of Cr(III) and Cr(VI) in the Susquehanna River basin of New York and Pennsylvania, Sci. Total Environ. 7:17–26.Google Scholar
  96. Papp, J. F., 1983, Chromium, in: Mineral Commodity Profiles, pp. 1–18, United States Department of the Interior, Bureau of Mines, Washington, D. C.Google Scholar
  97. Petrilli, F. L., and de Flora, S., 1977, Toxicity and mutagenicity of hexavalent chromium on Salmonella typhimurium, Appl. Environ. Microbiol., 33:805–809.PubMedGoogle Scholar
  98. Phillips, D. J. H., 1980, Biological indicators: A retrospective summary, in: Quantitative Aquatic Biological Indicators: Their Use to Monitor Trace Metal and Organochlorine Pollution (D. J. H. Phillips, ed.), pp. 377–411, Applied Science Publishers, London.Google Scholar
  99. Pillidge, C. J., 1985, Bacterial mobilization of chromium (III) in a polluted marine sediment, Ph. D. Thesis, University of Otago, Dunedin, New Zealand.Google Scholar
  100. Ramamoorthy, S., and Kushner, D. J., 1975, Binding of mercuric and other metal ions by microbial growth media,Microb Ecol. 2:162–176.Google Scholar
  101. Rao, V. M., and Sastri, M. N., 1982, Determination of chromium in natural waters—A review, J. Sci. Ind. Res. 41:607–615.Google Scholar
  102. Rheinheimer, G., 1980, Aquatic Microbiology, 2nd Ed., Wiley, Chichester.Google Scholar
  103. Ross, D. S. Sjogren, R. E., and Bartlett, R. J., 1981, Behaviour of chromium in soils: IV. Toxicity to microorganisms, J. Environ. Qual. 10:145–148.Google Scholar
  104. Schnitzer, M., and Kerndorff, H., 1981, Reactions of fulvic acid with metal ions. Water Air SoilPollut. 15:97–108.Google Scholar
  105. Schroeder, D. C., and Lee, G. F., 1975, Potential transformations of chromium in natural waters. Water Air Soil Pollut. 4:355–365.Google Scholar
  106. Schulz-Baldes, M., Rehm, E., and Farke, H., 1983, Field experiments on the fate of lead and chromium in an intertidal benthic mesocosm, the Bremerhaven Caisson, Mar. Biol. 75:307–318.Google Scholar
  107. Sieburth, J. M. N., 1967, Seasonal selection of estuarine bacteria by water temperature, J. Exp. Mar. Biol. Ecol. 1:98–121.Google Scholar
  108. Sieburth, J. M. N., 1979, Sea Microbes, Oxford University Press, New York.Google Scholar
  109. Simon-Pujol, M. D., Marques, A. M., Ribera, M., and Congregado, F., 1979, Drug resistance of chromium tolerant Gram-negative bacteria isolated from a river, Microbios Lett. 7:139–144.Google Scholar
  110. Smillie, R. H., 1980, Metals in wastewater. Ph. D. Thesis, University of Otago, Dunedin, New Zealand.Google Scholar
  111. Thompson, G. A., and Watling, R. J., 1984, A simple method for the determination of bacterial resistance to metals. Bull. Environ. Contam. Toxicol. 31:705–711.Google Scholar
  112. Timoney, J. F., Port, J., Giles, J., and Spanier, J., 1978, Heavy-metal and antibiotic resistance in the bacterial flora of sediments of New York Bight, Appl. Environ. Microbiol. 36:465–472.PubMedGoogle Scholar
  113. Traxler, R. W., and Wood, E. M., 1981, Multiple metal tolerance of bacterial isolates, Dev. Ind. Microbiol. 22:521–528.Google Scholar
  114. Trevors, J. T., Oddie, K. M., and Belliveau, B. H., 1985, Metal resistance in bacteria, FEMS Microbiol Rev. 32:39–54.Google Scholar
  115. Trevors, J. T. Stratton, G. W., and Gadd, G. M., 1986, Cadmium, transport, resistance and toxicity in bacteria, algae and fungi. Can. J. Microbiol. 32:447–464.PubMedGoogle Scholar
  116. Van der Weijden, C. H., and Reith, M., 1982, Chromium (III)-chromium (VI) intercon-versions in seawater. Mar. Chem. 11:565–572.Google Scholar
  117. Walker, J. D., and Colwell, R. R., 1975, Factors affecting enumeration and isolation of Acti-nomycetes from Chesapeake Bay and South East Atlantic Ocean sediments. Mar. Biol. 30:193–201.Google Scholar
  118. Washington, J. A. L.L., Snyder, R. J., Kohner, P. C., Curtis, G., Wilt, S. E., Ilstrup, D. M., and McCall, J. T., 1978, Effect of cation content of agar on the activity of gentamicin, jobramycin and amikacin against Pseudomonas aeruginosa, J. Infect. Dis. 1 137:103–111.Google Scholar
  119. Wood, E. F. G., 1967, Marine Microbial Ecology, Reinhold, New York.Google Scholar
  120. Young, L. Y., and Mitchell, R., 1973, Negative Chemotaxis of marine bacteria to toxic chemicals,Appl. Environ. Microbiol. 25:972–976.Google Scholar
  121. Zajic, J. E., 1969, Microbial Biogeochemistry, Academic Press, New York.Google Scholar
  122. Zhou, J., Wanying, C., Ming, K., Wang, L., Yuting, W., and Kueichu, L., 1979, Marine geochemistry I. The valence state of chromium in sea water and the sea water-sediment chromium interchange. Paper presented at International Association on Physical Sciences of the Ocean—Symposium on Marine Pollution Transfer Processes, Canberra, Australia.Google Scholar
  123. ZoBell, C. E., 1946, Marine Microbiology, A Monograph on Hydrobacteriology, Chronica Botanica, Waltham, Mass.Google Scholar
  124. ZoBell, C. E., 1973, Microbial and Environmental Transitions in Estuaries, Belle W. Baruch Coastal Research Institute, University of South Carolina Press, Columbia, South Carolina.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Margaret W. Loutit
    • 1
  • Jacqueline Aislabie
    • 2
  • Philip Bremer
    • 1
  • Christopher Pillidge
    • 3
  1. 1.Microbiology DepartmentUniversity of OtagoDunedinNew Zealand
  2. 2.Department of BiologyUniversity of LouisvilleLouisvilleUSA
  3. 3.Department of MicrobiologyUniversity of MarylandCollege ParkUSA

Personalised recommendations