The Involvement of the T-Cell Receptor in Chromosomal Aberrations

  • Ilan R. Kirsch
  • Gregory F. Hollis


It is now clear that the T-cell receptor gene loci are directly involved in some of the most characteristic chromosomal aberrations specifically associated with T-cell disorders. This recent conclusion, however, should be viewed in the general context of the genesis of cell-type-specific chromosomal abnormalities. Over the past 25 years cytogeneticists have been describing an ever-increasing number of distinctive chromosomal abnormalities specifically associated with certain types of cancer (Yunis et al., 1983). We are not speaking of the constitutional syndromes of karyotype abnormality (e.g., trisomy 21) found in every cell of an affected individual, which are believed to predispose the person to the development of certain cancers. Rather we are considering here those chromosomal abnormalities found only in the tumors of an otherwise karyotypically normal person. One of the earliest identified and best known associations is the occurrence of the reciprocal translocation between chromosomes 9 and 22 yielding as one of the derivative partners the so-called “Philadelphia” chromosome seen in over 95% of the tumors of patients with chronic myelogenous leukemia (Noweli and Hungerford, 1960; Rowley, 1980). Other different, but consistent chromosomal aberrations have now been reported for Burkitt’s lymphoma (Zech et al., 1976), a spectrum of additional hematopoietic malignancies (Chaganti, 1983), as well as a number of solid tumors (Yunis et al., 1983).


Chromosomal Aberration Karyotypic Abnormality Immunoglobulin Heavy Chain Gene Prolymphocytic Leukemia Human Lymphocyte Culture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aurias, A., Dutrillaux, B., Buriot, D., and Lejeune, J., 1980, High frequencies of inversions and translocations of chromosomes 7 and 14 in ataxia telangiectasia, Mutat. Res. 69:369–374.PubMedCrossRefGoogle Scholar
  2. Aurias, A., Couturier, J., Dutrillaux, A.-M., Dutrillaux, B., Herpin, F., Lamoliatte, E., Lombard, M., Muleris, M., Paravatou, M., Prieur, M., Prod’homme, M., Sportes, M., Viegas-Pequignot, E., and Volobouev, V. (1985). Inversion 14(q12q ter) or (q11.2q32.3): The most frequently acquired rearrangement in lymphocytes. Hum. Genet. 71:19–21.PubMedCrossRefGoogle Scholar
  3. Adams, J.M., Harris, A.W., Pinkert, C.A., Corcoran, L.M., Alexander, W.S., Cory, S., Palmiter, R.D., and Brinster, R.L., 1985, The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice, Nature 318:533–538.PubMedCrossRefGoogle Scholar
  4. Baer, R., Chen, K.-C., Smith, S.D., and Rabbitts, T.H., 1985, Fusion of an immunoglobulin variable gene and a T cell receptor constant gene in the chromosome 14 inversion associated with T cell tumors, Cell 43:705–713.PubMedCrossRefGoogle Scholar
  5. Bakhshi, A., Jensen, J.P., Goldman, P., Wright, J.J., McBride, O.W., Epstein, A.L., and Korsmeyer, S.J., 1985, Cloning the chromosomal breakpoint of t(14;18) human lymphomas: Clustering around JH on chromosome 14 and near a transcriptional unit on 18, Cell 41:899–906.PubMedCrossRefGoogle Scholar
  6. Battey, J., Moulding, C., Taub, R., Murphy, W., Stewart, T., Potter, H., Lenoir, G., and Leder, P., 1983, The human c-myc oncogene: Structural consequences of translocation into the IgH locus in Burkitt lymphoma, Cell 34:779–787.PubMedCrossRefGoogle Scholar
  7. Beatty-DeSana, J.W., Hoggard, M.J., and Cooledge, J.W., 1975, Non-random occurrence of 7–14 translocations in human lymphocyte cultures, Nature 255:243–244.CrossRefGoogle Scholar
  8. Bentley, D.L., Groudine, M., 1986, A block to elongation is largely responsible for decreased transcription of c-myc in differentiated HL-60 cells, Nature 321:702–706.PubMedCrossRefGoogle Scholar
  9. Brack, C., Hirama, M., Lenhard-Schuller, R., and Tonegawa, S., 1978, A complete immunoglobulin gene is created by somatic recombination, Cell 15:1–14.PubMedCrossRefGoogle Scholar
  10. Brito-Babapulle, V., Pomfret, M., Matutes, E., and Catovsky, D., 1987, Cytogenetic studies on prolymphocytic leukemia. II. T cell prolymphocytic leukemia, Blood 70:926–931.PubMedGoogle Scholar
  11. Caccia, N., Bruns, G.A.P., Kirsch, I.R., Hollis, G.F., Bertness, V., and Mak, T.W., 1985, T cell receptor a chain genes are located on chromosome 14 at 14q11–14q12 in humans, J. Exp. Med. 161:1255–1260.PubMedCrossRefGoogle Scholar
  12. Chaganti, R.S.K., 1983, Significance of chromosome change to hematopoietic neoplasms, Blood 62:515–524.PubMedGoogle Scholar
  13. Collins, M.K.L., Goodfellow, P.N., Spurr, N.K., Soloman, E., Tanigawa, G., Tonegawa, S., and Owen, M.J., 1985, The human T-cell receptor α-chain gene maps to chromosome 14, Nature 314:273–274.PubMedCrossRefGoogle Scholar
  14. Croce, C.M., Isobe, M., Palumbo, A., Puck, J., Ming, J., Tweardy, D., Erikson, J., Davis, M., and Rovera, G., 1985, Gene of α-chain of human T-cell receptor: Location on chromosome 14 region involved in T-cell neoplasms, Science 227:104–1047.Google Scholar
  15. Dalla-Favera, R., Bregni, M., Erikson, J., Pattereson, D., Gallo, R.C., and Croce, C.M., 1982, Human c-myc oncogene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells, Proc. Natl. Acad. Sci. USA 79:7824–7827.PubMedCrossRefGoogle Scholar
  16. Davis, M., Calame, K., Early, P., Livant, D., Joho, R., Weissman, I., and Hood, L., 1980, An immunoglobulin heavy chain gene is formed by at least two recombinant events, Nature 283:733–739.PubMedCrossRefGoogle Scholar
  17. de la Chapelle, A., Lenoir, G., Boue, J., Boue, A., Gallano, P., Huerre, C., Szajnert, M.-F., Jeanpierre, M., Lalonel, J.-M., and Kaplan, J.-C., 1983, Lambda Ig constant region genes are translocated to chromosome 8 in Burkitt’s lymphoma t(8;22), Nuc. Acids Res. 11:1133–1142.CrossRefGoogle Scholar
  18. Denny, C.T., Hollis, G.F., Magrath, I.T., and Kirsch, I.R., 1985, Burkitt lymphoma cell line carrying a variant translocation creates new DNA at the breakpoint and violates the hierarchy of immunoglobulin gene rearrangement, Mol. Cell. Biol. 5:3199–3207.PubMedGoogle Scholar
  19. Denny, C.T., Yoshikai, Y., Mak, T.W., Smith, S.D., Hollis, G.F., and Kirsch, I.R., 1986a, A chromosome 14 inversion in a T cell lymphoma is caused by site-specific recombination between immunoglobulin and T cell receptor loci, Nature 320:549–551.PubMedCrossRefGoogle Scholar
  20. Denny, C.T., Hollis, G.F., Hecht, F., Morgan, R., Link, M.P., Smith, S.D., and Kirsch, I.R., 1986b, Common mechanism of chromosomal inversion in B and T cell tumors: Relevance to lymphocyte development, Science 234:197–200.PubMedCrossRefGoogle Scholar
  21. Erikson, J., Finan, J., Noweli, P.C., and Croce, C.M., 1982, Translocation of immunoglobulin VH genes in Burkitt lymphoma, Proc. Natl. Acad. Sci. USA 79:5611–5615.PubMedCrossRefGoogle Scholar
  22. Erikson, J., Williams, D.L., Finan, J., Noweli, P.C., and Croce, C.M., 1985, Locus of the α-chain of the T cell receptor is split by chromosome translocation in T cell leukemias, Science 229:784–786.PubMedCrossRefGoogle Scholar
  23. Erikson, J., Finger, L., Sun, L., ar-Rushdi, A., Nishikura, K., Minowada, J., Finan, J., Emanuel, B.S., Noweli, P.C., and Croce, C.M., 1986, Deregulation of c-myc by translocation of the α-locus of the T cell receptor in T cell leukemias, Science (in press).Google Scholar
  24. Finger, L.R., Harvey, R.C., Moore, R.C.A., Showe, L.C., Croce, C.M., 1986, A common mechanism of chromosomal translocation in T and B cell neoplasia, Science 234:982–985.PubMedCrossRefGoogle Scholar
  25. Fukuhara, S., Hinuma, Y., Gotoh, Y.-I., and Uchino, H., 1983, Chromosome aberrations in T lymphocytes carrying adult T cell leukemia-associated antigens (ATLA) from healthy adults, Blood 61:205–207.PubMedGoogle Scholar
  26. Gale, R.P., and Rai, K., 1987, Chronic lymphocytic leukemia: Recent progress, future directions. Alan R. Liss: New York, N.Y.Google Scholar
  27. Hayward, W.S., Neel, B.G., and Astrin, S.M., 1981, Activation of cellular one gene by promoter insertion in ALV-induced lymphoid leukosis, Nature 290:475–480.PubMedCrossRefGoogle Scholar
  28. Hecht, F., Kaiser McCaw, B., Peakman, D., and Robinson, A., 1975, Non-random occurrence of 7–14 translocations in human lymphocyte cultures, Nature 255:243–244.CrossRefGoogle Scholar
  29. Hecht, F., Morgan, R., Hecht, B.K.-M., and Smith, S.D., 1984, Common region on chromosome 14 in T-cell leukemia and lymphoma, Science 226:1445–1447.PubMedCrossRefGoogle Scholar
  30. Hecht, F., Morgan, R., Gemmill, R.M., Hecht, B.K.-M., and Smith, S.D., 1985, Translocations in T-cell leukemia and lymphoma, N. Engl. J. Med. 313:758–759.PubMedGoogle Scholar
  31. Hershfield, M.S., Kurtzberg, J., Harden, E., Moore, J.O., Whang-Peng, J., and Haynes, B.F., 1984, Conversion of a stem cell leukemia from a T-lymphoid to a myeloid phenotype induced by the adenosine deaminase inhibitor 2’ deoxycoformicin, Proc. Natl. Acad. Sci. USA 81:253–257.PubMedCrossRefGoogle Scholar
  32. Hollis, G.F., Mitchell, K.F., Battey, J., Potter, H., Taub, R.A., Lenoir, G., and Leder, P., 1984, A variant translocation places the lambda immunoglobulin genes 3’ to the c-myc oncogene in Burkitt lymphoma, Nature 307:752–755.PubMedCrossRefGoogle Scholar
  33. Isobe, M., Erikson, J., Emanuel, B.S., Noweli, P.C., and Croce, C.M., 1985, Location of gene for β subunit of human T-cell receptor at band 7q35, a region prone to rearrangements in T cells, Science 228:580–582.PubMedCrossRefGoogle Scholar
  34. Jones, C., Morse, H.G., Kao, F.-T., Carbone, A., and Palmer, E., 1985, Human T-cell receptor α-chain genes: Location on chromosome 14, Science 228:83–85.PubMedCrossRefGoogle Scholar
  35. Kaiser-McCaw, B., Hecht, F., Harnden, D.G., and Teplitz, R.L., 1975, Somatic rearrangement of chromosome 14 in human lymphocytes, Proc. Natl. Acad. Sci. USA 72:2071–2075.CrossRefGoogle Scholar
  36. Kataoka, T., Kawakami, T., Takahashi, N., and Honjo, T., 1980, Rearrangement of immunoglobulin γl-chain and mechanism for heavy chain class switch, Proc. Natl. Acad. Sci, USA 77:919–923.PubMedCrossRefGoogle Scholar
  37. Kennaugh, A.A., Butterworth, S.V., Hollis, R., Baer, R., Rabbitts, T.H., Taylor, A.M.R., 1986, The chromosome breakpoint at 14q32 in an ataxia-telangiectasia t(14;14) T cell clone is different from the 14q32 breakpoint in Burkitt’s and an inv(14) T cell lymphoma. Hum. Genet. 73:254–259.PubMedCrossRefGoogle Scholar
  38. Kirsch, I.R., Morton, C.C., Nakahara, K., and Leder, P., 1982, Human immunoglobulin heavy chain genes map to a region of translocation in malignant lymphocytes, Science 216:301–303.PubMedCrossRefGoogle Scholar
  39. Kirsch, I.R., Brown, J.A., Lawrence, J., Korsmeyer, S., and Morton, C.C., 1985a, Translocations that highlight chromosomal regions of differentiated activity, Cancer Genet. Cytogenet. 18:159–171.PubMedCrossRefGoogle Scholar
  40. Kirsch, I.R., 1985b, Burkitt’s lymphomas translocate immunoglobulin and c-myc genes, in: Genetic analysis of lymphoid neoplasms, (T.A. Waldmann, ed.), Ann. Int. Med. 102:497–510.Google Scholar
  41. Klein, G., 1983, Specific chromosomal translocations and the genesis of B-cell-derived tumors in mice and men, Cell 32:311–315.PubMedCrossRefGoogle Scholar
  42. Kohn, P.H., Whang-Peng, J., and Levis, W.R., 1982, Chromosomal instability in ataxia telangiectasia, Cancer Genet. Cytogenet. 6:289–302.PubMedCrossRefGoogle Scholar
  43. Kurtzberg, J., Bigner, S.H., and Hershfield, M.S., 1985, Establishment of the DU.528 human lymphohemopoietic stem cell line, J. Exp. Med. 162:1561–1578.PubMedCrossRefGoogle Scholar
  44. Land, H., Parada, L.F., and Weinberg, R.A., 1983, Cellular oncogenes and multistep carcinogenesis, Science 222:771–778.PubMedCrossRefGoogle Scholar
  45. LeBeau, M.M., Diaz, M.O., Rowley, J.D., and Mak, T.W., 1985, Chromosomal localization of the human T cell receptor β-chain genes, Cell 41:335.CrossRefGoogle Scholar
  46. Leder, A., Pattengale, P.K., Kuo, A., Stewart, T.A., and Leder, P., 1986, Consequences of the widespread deregulation of the c-myc gene in transgenic mice: Multiple neoplasms and normal development, Cell 45:485–495.PubMedCrossRefGoogle Scholar
  47. Leder, P., Battey, J., Lenoir, G., Moulding, C., Murphy, W., Potter, H., Stewart, T., and Taub, R., 1983, Translocations among antibody genes in human cancer, Science 222:765–771.PubMedCrossRefGoogle Scholar
  48. Lewis, W.H., Michaelopoulos, E.E., Williams, D.L., Minden, M.D., and Mak, T.W., 1985, Breakpoints in the human T-cell antigen receptor α-chain locus in two T-cell leukemia patients with chromosomal translocations, Nature 317:544–546.PubMedCrossRefGoogle Scholar
  49. Maki, R., Traunecker, A., Sakano, H., Roeder, W., and Tonegawa, S., 1980, Exon shuffling generates an immunoglobulin heavy chain gene, Proc. Natl. Acad. Sci. USA 77:2138–2142.PubMedCrossRefGoogle Scholar
  50. Malcolm, S., Barton, P., Bentley, D.L., Ferguson-Smith, M.A., Murphy, C.S., and Rabbitts, T.H., 1982, Assignment of IgKV locus for immunoglobulin light chains to the short arm of chromosome 2 (2pl3-cen) by in situ hybridization using a cRNA probe of HK101 γ Ch4A, Cytogenet. Cell Genet. 32:296.Google Scholar
  51. Mathieu-Mahul, D., Caubet, J.F., Bernheim, A., Mauchauffe, M., Palmer, E., Berger, R., and Larsen, C-J., 1985, Molecular cloning of a DNA fragment from human chromosome 14 (14q11) involved in T cell malignancies, EMBO J. 4:3427–3433.PubMedGoogle Scholar
  52. McBride, O., Hieter, P., Hollis, G., Swan, D., Otey, M., and Leder, P., 1982, Chromosomal location of human kappa and lambda immunoglobulin light chain constant region genes, J. Exp. Med. 155:1480–1491.PubMedCrossRefGoogle Scholar
  53. McFarlin, D.E., Strober, W., and Waldmann, T.A., 1972, Ataxia-telangiectasia, Medicine 51:281–314.PubMedCrossRefGoogle Scholar
  54. Mengele, L., Willard, H.F., Smith, C.I.E., Hammerstrom, L., Fischer, P., Sherrington, P., Lucas, G., Thompson, P.W., Baer, R., and Rabbitts, T.H., 1987. Human T-cell tumors containing chromosome 14 inversion or translocation with breakpoints proximal to immunoglobulin joining regions at 14q32, EMBO J. 6:2273–2280.Google Scholar
  55. Miyamoto, K., Sato, J., Kitajima, K.-I., Togawa, A., Suemaru, S., Sanada, H., and Tanaka, T., 1983, Adult T-cell leukemia. Chromosome analysis of 15 cases, Cancer 52:471–477.PubMedCrossRefGoogle Scholar
  56. Morton, C.C., Duby, A.D., Eddy, R.L., Shows, T.B., and Seidman, J.G., 1985, Genes for β chain of human T cell antigen receptor map to regions of chromosomal rearrangements in T cells, Science 228:582–585.PubMedCrossRefGoogle Scholar
  57. Murre, C., Waldmann, R.A., Morton, C.C., Bongiavanni, K.F., Waldmann, T.A., Shows, T.B., and Seidman, J.G., 1985, Human γ-chain genes are rearranged in leukaemic T cells and map to the short arm of chromosome 7, Nature 316:549–552.PubMedCrossRefGoogle Scholar
  58. Nepveu, A., Marcu, K.B., 1986, Intragenic pausing and anti-sense transcription within the murine c-myc locus, EMBO J. 5:2859–2865.PubMedGoogle Scholar
  59. Neri, A., Barriga, P., Magrath, I.T., Knowles, D.M., and Dalla-Favera, R., 1988, Different regions of the immunoglobulin heavy chain locus are involved in chromosomal translocations in endemic and sporadic forms of Burkitt lymphoma. Proc. Natl. Acad. Sci. USA (in press).Google Scholar
  60. Noweli, P.C., and Hungerford, D.A., 1960, A minute chromosome in human chronic granulocytic leukemia, Science 132:1197.Google Scholar
  61. Ravetch, J.V., Kirsch, I.R., and Leder, P., 1980, Evolutionary approach to the question of immunoglobulin heavy chain switching: Evidence from cloned human and mouse genes, Proc. Natl. Acad. Sci. USA 77:6734–6738.PubMedCrossRefGoogle Scholar
  62. Ravetch, J.V., Siebenlist, U., Korsmeyer, S., Waldmann, T., and Leder, P., 1981, Structure of the human immunoglobulin μ locus: Characertization of embryonic and rearranged J and D genes, Cell 27:583–591.Google Scholar
  63. Rowley, J.D., 1980, Ph1-positive leukaemia, including chronic myelogenous leukemia, Clin. Haematol. 9:55–86.PubMedGoogle Scholar
  64. Sadamori, N., Kusano, M., Nishino, K., Tagawa, M., Yao, E.-I., Yamada, Y., Amagasaki, T., Kinoshita, K.-I., and Ichimaru, M., 1985, Abnormalities of chromosome 14 at band 14q11 in Japanese patients with adult T-cell leukemia, Cancer Genet. Cytogenet. 17:279–282.PubMedCrossRefGoogle Scholar
  65. Scheres, J.M.J.C., Hustinx, T.W.J., and Weemaes, C.M.R., 1980, Chromosome 7 in ataxia-telangiectasia, J. Pediatr. 97:440–441.PubMedCrossRefGoogle Scholar
  66. Seidman, J.G., and Leder, P., 1978, The arrangement and rearrangement of antibody genes, Nature 276:790–795.PubMedCrossRefGoogle Scholar
  67. Shah-Reddy, L, Mayeda, K., Mirchandani, I., and Koppitch, F.C., 1982, Sezary syndrome with a 14:14 (q12:p31) translocation, Cancer 49:75–79.PubMedCrossRefGoogle Scholar
  68. Shen-Ong, G.L.C., Keath, E.J., Piccoli, S.P., and Cole, M.D., 1982, Novel myc oncogene RNA from abortive immunoglobulin gene recombination in mouse plasma-cytomas, Cell 31:443–452.PubMedCrossRefGoogle Scholar
  69. Showe, L.C., and Croce, C.M., 1987, The role of chromosomal translocations in B- and T-cell neoplasia, Ann. Rev. Immunol. 5:253–277.CrossRefGoogle Scholar
  70. Smith, S.D., Morgan, R., Link, M.P., McFall, P., and Hecht, F., 1986, Cytogenetic and immunophenotypic analysis of cell lines established from patients with T-cell leukemia/lymphoma, Blood 67:650–656.PubMedGoogle Scholar
  71. Shimizu, A., and Honjo, T., 1984, Immunoglobulin class switching, Cell 36:801–809.PubMedCrossRefGoogle Scholar
  72. Stewart, T.A., Pattengale, P.K., and Leder, P., 1984, Spontaneous mammary adenocarcinoma in transgenic mice that carry and express MTV/myc fusion genes, Cell 38:627–637.PubMedCrossRefGoogle Scholar
  73. Taub, R., Kirsch, I., Morton, C., Lenoir, G., Swan, D., Tronick, S., Aaronson, S., and Leder, P., 1982, Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells, Proc. Natl. Acad. Sci. USA 79:7837–7841.PubMedCrossRefGoogle Scholar
  74. Taub, R., Moulding, C., Battey, J., Murphy, W., Vasicek, T., Lenoir, G., and Leder, P., 1984, Activation and somatic mutation of the translocated c-myc gene in Burkitt lymphoma cells; Cell 36:339–348.Google Scholar
  75. Taylor, A.M.R., 1982, Cytogenetics of ataxia-telangiectasia, in: A cellular link between cancer, neuropathology, and immunodeficiency (B.A. Bridges and D.G. Harnden, eds.) pp. 53–81, John Wiley and Sons, New York.Google Scholar
  76. Tsujimoto, Y., Finger, L.R., Yunis, J.J., Noweli, P., and Croce, C.M., 1984a, Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation, Science 226:1097–1099.PubMedCrossRefGoogle Scholar
  77. Tsujimoto, Y., Yunis, J.J., Onorato-Showe, L., Erikson, J., Noweli, P.C., and Croce, C.M., 1984b, Molecular cloning of the chromosomal breakpoints of B cell leukemias and lymphomas with the t(11;14) chromosome translocation, Science 224:2403–2406.CrossRefGoogle Scholar
  78. Tsujimoto, Y., Jaffe, E., Cossman, J., Gorham, J., Noweli, P.C., and Croce, C.M., 1985, Clustering of breakpoints on chromosome 11 in human B-cell neoplasms with the t(11;14) chromosome translocation, Nature 315:340–343.PubMedCrossRefGoogle Scholar
  79. Ueshima, Y., Fukuhara, S., Hattori, T., Uchiyama, T., Takatsuki, K., and Uchino, H., 1981, Chromosome studies in adult T-cell leukemia in Japan: Significance of trisomy 7, Blood 58:420–425.PubMedGoogle Scholar
  80. Ueshima, Y., Rowley, J.D., Variakojis, D., Winter, J., and Gordon, L., 1984, Cytogenetic studies on patients with chronic T cell leukemia/lymphoma, Blood 63:1028–1038.PubMedGoogle Scholar
  81. Wake, N., Minowada, J., Park, B., Sandberg, A.A., 1982, Chromosomes and causation of human cancer and leukemia XLVII. T-cell acute leukemia in ataxia-telangiectasia, Cancer Genet. Cytogenet. 6:345–357.PubMedCrossRefGoogle Scholar
  82. Welch, J.P., and Lee, C.L.Y., 1985, Non-random occurrence of 7–14 translocations in human lymphocyte cultures, Nature 255:241–242.CrossRefGoogle Scholar
  83. Westbrook, C.A., Rubin, C.M., LeBeau, M.M., Kaminer, L.S., Smith, S.D., Rowley, J.D., Diag, M.O., 1987, Molecular analysis of TCR B and ABL in a t(7;9) containing cell lines (SUP-T3) from a human T cell leukemia, Proc. Natl. Acad. Sci. USA 84:251–255.PubMedCrossRefGoogle Scholar
  84. Whang-Peng, J., Bunn, P.A., Knutsen, T., Kao-Shan, C.S., Broder, S., Jaffe, E.S., Gelmann, E., Blattner, W., Lofters, W., Young, R.C., and Gallo, R.C., 1985, Cytogenetic studies in human T-cell lymphoma virus (HTLV)-positive leukemia-lymphoma in the United States, J. Natl. Cancer Inst. 74:357–369.PubMedGoogle Scholar
  85. Williams, D.L., Look, A.T., Melvin, S.L., Roberson, P.K., Dahl, G., Flake, T., and Stass, S., 1984, New chromosomal translocations correlate with specific immunophenotypes of childhood acute lymphoblastic leukemia, Cell 36:101–109.PubMedCrossRefGoogle Scholar
  86. Yoshikai, Y., Clark, S.P., Taylor, S., Sohn, U., Wilson, B., Minden, M.D., and Mak, T., 1985, Organization and sequences of the variable, joining, and constant region genes of the human T-cell receptor α-chain, Nature 316:837–840.PubMedCrossRefGoogle Scholar
  87. Yunis, J.J., and Chandler (Harper), M.E., 1977, High-resolution chromosome analysis in clinical medicine, in: Progress in Clinical Pathology, Vol. 7 (M. Stefanini, A.A. Hossaini, and H.D. Isenberg, eds.), pp. 267–288, Grune and Stratton, New York.Google Scholar
  88. Yunis, J.J., 1983, The chromosomal basis of human neoplasia, Science 221:227–236.PubMedCrossRefGoogle Scholar
  89. Zech, L., Haglund, U., Nilsson, K., and Klein, G., 1976, Characteristic chromosomal abnormalities in biopsies and lymphoid-cell lines from patients with Burkitt and non-Burkitt lymphomas, Int. J. Cancer 17:47–56.PubMedCrossRefGoogle Scholar
  90. Zech, L., Gahrton, G., Hammarstrom, L., Juliusson, G., Mellstedt, H., Robert, K.H., and Smith, C.I.E., 1984, Inversion of chromosome 14 marks human T-cell chronic lymphocytic leukaemia, Nature 308:858–860.PubMedCrossRefGoogle Scholar
  91. Ziegler, J.L., 1981, Burkitt’s lymphoma, N. Engl. J. Med. 305:735–745.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Ilan R. Kirsch
    • 1
  • Gregory F. Hollis
    • 2
  1. 1.National Cancer Institute-Navy Medical Oncology Branch, National Cancer InstituteNational Institutes of HealthBethesdaUSA
  2. 2.Monsanto Co.St. LouisUSA

Personalised recommendations