Advertisement

Role of the T3/T-Cell Antigen Receptor Complex in T-Cell Activation

  • Bernard Manger
  • John Imboden
  • Arthur Weiss

Abstract

Interactions that occur at the interface of the plasma membranes of T cells and antigen-presenting cells (or target cells) initiate events that culminate in T-cell activation. Activation may be manifested by the production of lymphokines, appearance of new cell surface antigens (such as the IL-2 receptor) and, ultimately, in T-cell proliferation. The T-cell antigen receptor (Ti) plays a central role in this interaction and has two functions: First, it must subserve a cognitive function, recognizing antigen in the context of the major histocompatibility complex (MHC). Secondly, it must convert such a recognition event into a transmembrane signal which can initiate T-cell activation. This chapter will focus on this second role of Ti in initiating human T-cell activation.

Keywords

Jurkat Cell Phorbol Myristate Acetate Antigen Receptor Calcium Ionophore Phorbol Myristate Acetate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, J.P., and Lanier, L.L., 1985, Identification of antigen receptor-associated structures on murine T cells, Nature 314:107.PubMedCrossRefGoogle Scholar
  2. Allison, J., McIntyre, B., and Bloch, D., 1982, Tumor-specific antigen of murine T-lymphoma defined with monoclonal antibody, J. Immunol. 129:2293.PubMedGoogle Scholar
  3. Bernde, M.J., 1984, Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345.Google Scholar
  4. Borst, J., Alexander, S., Elder, J., and Terhorst, C., 1983, The T3 complex on human T lymphocytes involves four structurally distinct glycoproteins, J. Biol. Chem. 258:5135.PubMedGoogle Scholar
  5. Brenner, M.B., Trowbridge, I.S., and Strominger, J.L., 1985, Cross-linking of human T cell receptor proteins: Association between the T cell idiotype β subunit and the T3 glycoprotein heavy subunit, Cell 40:183.PubMedCrossRefGoogle Scholar
  6. Clark, E.A., Martin, P.J., Hansen, J.A., and Ledbetter, J.A., 1983, Evolution of epitopes on human and non human primate lymphocyte cell surface antigens, Immunogenet. 18:599.CrossRefGoogle Scholar
  7. Dower, S.K., Kronheim, S.R., March, C.J., Conlon, P.J., Hopp, T.P., Gillis, S., and Urdal, D.L., 1985, Detection and characterization of high affinity plasma receptors for human interleukin 1, J. Exp. Med. 162:501.PubMedCrossRefGoogle Scholar
  8. Farrar, W.L., and Anderson, W.B., 1985, Interleukin-2 stimulates association of protein kinase C with plasma membrane, Nature 315:233.PubMedCrossRefGoogle Scholar
  9. Farrar, W.L., and Ruiscetti, F.W., 1986, Association of protein kinase C activation with IL-2 receptor expression, J. Immunol. 136:1266.PubMedGoogle Scholar
  10. Farrar, J., Mizel, S., Fuller-Farrar, J., Farrar, W., and Hilfiker, M., 1980, Macrophage-independent activation of helper T cells, J. Immunol. 125:793.PubMedGoogle Scholar
  11. Gold, D.P., Puck, J.M., Pettey, C.L., Cho, M., Coligan, J., Woody, J.N., and Terhorst, C., 1986, Isolation of cDNA clones encoding the 20K non-glycosylated polypeptide chain of the human T-cell receptor/T3 complex, Nature 321:431.PubMedCrossRefGoogle Scholar
  12. Hansen, J.A., Martin, P.J., and Nowinski, C., 1980, Monoclonal antibodies identifying a novel T-cell antigen and Ia antigens of human lymphocytes, Immunogenet. 10:247.CrossRefGoogle Scholar
  13. Hara, T., and Fu, S.M., 1985, Human T cell activation. I. Monocyte-independent activation and proliferation induced by anti-T3 monoclonal antibodies in the presence of tumor promoter 12–0-tetradecanoyl phorbol-13-acetate, J. Exp. Med. 161:641.PubMedCrossRefGoogle Scholar
  14. Hardy, K.J., Manger, B., Newton, M., and Stobo, J.D., 1987, Molecular events involved in regulating human interferon-γ gene expression during T cell activation, J. Immunol. 138:2353.PubMedGoogle Scholar
  15. Haskins, K., Kubo, R., White, J., Pigeon, M., Kappler, J., and Marrack, P., 1983, The major histocompatibility complex-restricted antigen receptor on T cells, J. Exp. Med. 157:1149.PubMedCrossRefGoogle Scholar
  16. Imboden, J.B., and Stobo, J.D., 1985, Transmembrane signaling by the T cell antigen receptor, J. Exp. Med. 161:446.PubMedCrossRefGoogle Scholar
  17. Imboden, J., Weiss, A., and Stobo, J.D., 1985a, The antigen receptor on a human T cell line initiates activation by increasing cytoplasmic free calcium, J. Immunol. 134:663.PubMedGoogle Scholar
  18. Imboden, J.B., Weiss, A., and Stobo, J.D., 1985b, Transmembrane signaling by the T3-antigen receptor complex, Immunol. Today 6:328.CrossRefGoogle Scholar
  19. Imboden, J.B., Shoback, D.M., Pattison, G., and Stobo, J.D., 1986, Cholera toxin inhibits the T cell antigen receptor-mediated increases in inositol trisphosphate and cytoplasmic free calcium, Proc. Natl. Acad. Sci. USA (in press).Google Scholar
  20. Imboden, J., Weyand, C., and Goronzy, J., 1987, Antigen recognition by a human T cell clone leads to increases in inositol trisphosphate, J. Immunol. 138:1322.PubMedGoogle Scholar
  21. Joseph, S.K., Thomas, A.P., Williams, R.J., Irvine, R.F., and Williamson, J.R., 1984, Myoinositol-1,4,5-trisphosphate. A second messenger for the hormonal mobilization of intracellular Ca2+ in liver, J. Biol. Chem. 259:3077.PubMedGoogle Scholar
  22. Kaneoka, H., Perez-Rojas, G., Sasasuki, T., Benike, C.J., and Engelman, E.G., 1983, Human T lymphocyte proliferation induced by a pan-T monoclonal antibody (anti-Leu 4): heterogeneity of response is a function of monocytes, J. Immunol. 131:158.PubMedGoogle Scholar
  23. Kaye, J., Porcelli, S., Tite, J., Jones, B., and Janeway, Jr., C., 1983, Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells, J. Exp. Med. 158:836.PubMedCrossRefGoogle Scholar
  24. Kishomoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y., 1980, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relation to phosphatidylinositol turnover, J. Biol. Chem. 255:2273.Google Scholar
  25. Kraft, A.S., and Anderson, W.B., 1983, Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with plasma membrane, Nature (Lond.) 301:621.CrossRefGoogle Scholar
  26. Kraft, A.S., Anderson, W.B., Cooper, H.L., and Sando, J.J., 1982, Decrease in cytosolic calcium/ phospholipid-dependent protein kinase activity following phorbol ester treatment of EL4 thymoma cells, J. Biol. Chem. 257:13193.PubMedGoogle Scholar
  27. Krissansen, G.W., Owen, M.J., Verbi, W., and Crumpton, M.J., 1986, Primary structure of the T3γ subunit of the T3/T cell antigen receptor complex deduced from cDNA sequences: evolution of the T3γ and δ subunits, EMBO J. 5:1799.PubMedGoogle Scholar
  28. Ledbetter, J.A., Martin, P.J., Spooner, C.E., Wofsy, D., Tsu, T.T., Beatty, P.G., and Gladstone, P., 1985, Antibodies to Tp67 and Tp44 augment and sustain proliferative response of activated T cells, J. Immunol. 135:2331.PubMedGoogle Scholar
  29. Luckasen, J.R., White, J.G., and Kersey, J.H., 1974, Mitogenic properties of a calcium ionophore, A23187, Proc. Natl. Acad. Sci. USA 71:5088.PubMedCrossRefGoogle Scholar
  30. Majerus, P.W., Neufeld, E.J., and Wilson, D.B., 1984, Production of phosphoinositide-derived messengers, Cell 37:701.PubMedCrossRefGoogle Scholar
  31. Manger, B., Weiss, A., Weyland, C., Goronzy, J., and Stobo, J.D., 1985, T cell activation: differences in the signals required for IL 2 production by nonactivated and activated T cells, J. Immunol. 135:3669.PubMedGoogle Scholar
  32. Manger, B., Weiss, A., Imboden, J., Laing, T., and Stobo, J., 1987, The role of protein kinase C in transmembrane signaling by the T cell antigen receptor complex. Effects of stimulation with soluble or immobilized CD3 antibodies, J. Immunol. 139:2755.PubMedGoogle Scholar
  33. May, W.S., Lapetina, E.G., and Cuatrecasas, P., 1986, Intracellular activation of protein kinase C and regulation of the surface transferrin receptor by diacylglycerol is a spontaneously reversible process that is associated with rapid formation of phosphatidic acid, Proc. Natl. Acad. Sci. USA 83:1281.PubMedCrossRefGoogle Scholar
  34. Meuer, S., Fitzgerald, K., Hussey, R., Hodgdon, J., Schlossman, S., and Reinherz, E., 1983a, Clonotypic structures involved in antigen-specific human T cell function, J. Exp. Med. 157:705.PubMedCrossRefGoogle Scholar
  35. Meuer, S., Hodgdon, J., Hussey, R., Protentis, J., Schlossman, S., and Reinherz, E., 1983b, Antigen-like effects of monoclonal antibodies directed at receptors on human T cell clones, J. Exp. Med. 158:988.PubMedCrossRefGoogle Scholar
  36. Meuer, S.C., Hussey, R.E., Cantrell, D.A., Hodgdon, J.C., Schlossman, S.F., Smith, K.A., and Reinherz, E.L., 1984, Triggering of the T3-Ti antigen receptor complex results in clonal T-cell proliferation through an interleukin-2 dependent autocrine pathway, Proc. Natl. Acad. Sci. USA 81:1509.PubMedCrossRefGoogle Scholar
  37. Michell, B., 1983, Ca2+ and protein kinase C: two synergistic cellular signals, Trends Biochem. Sci. 8:263.CrossRefGoogle Scholar
  38. Mitchell, R.H., 1975, Inositol phospholipids and cell surface receptor function, Biochem. Biophys. Acta. 415:81.Google Scholar
  39. Mizel, S.B., 1982, Interleukin 1 and T cell activation, Immunol. Rev. 63:51.PubMedCrossRefGoogle Scholar
  40. Nishizuka, Y., 1984a, Turnover of inositol phospholipids and signal transduction, Science 225:1365.PubMedCrossRefGoogle Scholar
  41. Nishizuka, Y., 1984b, The role of protein kinase C in cell surface signal transduction and tumor promotion, Nature (Lond.) 308:693.CrossRefGoogle Scholar
  42. O’Flynn, K., Zanders, E., Lamb, J., Beverley, P., Wallace, D., Tatham, P., Tax, W., and Linch, D., 1985, Investigation of early T cell activation: Analysis of the effect of specific antigen, interleukin 2 and monoclonal antibodies on intracellular free calcium concentration, Eur. J. Immunol. 15:7.PubMedCrossRefGoogle Scholar
  43. Oettgen, J., Terhorst, C., Cantley, L., and Rosoff, P., 1985, Stimulation of the T3-T cell receptor complex induces a membrane-potential-sensitive calcium influx, Cell 40:583.PubMedCrossRefGoogle Scholar
  44. Ohashi, P.S., Mak, T.W., Van den Elsen, P., Yanagi, Y., Yoshikai, Y., Caiman, A., Terhorst, C., Stobo, J.D., and Weiss, A., 1985, Reconstitution of an active surface T3/T-cell antigen receptor by DNA transfer, Nature 316:606.PubMedCrossRefGoogle Scholar
  45. Palacios, R., 1985, Mechanisms by which accessory cells contribute in growth of resting T lymphocytes by OKT3 antibody, Eur. J. Immunol. 15:645.PubMedCrossRefGoogle Scholar
  46. Prpic, V., Blackmore, P.F., and Exton, J.H., 1982, Phosphatidylinositol breakdown induced by vasopressin and epinephrine in hepatocytes is calcium dependent, J. Biol. Chem. 257:11323.PubMedGoogle Scholar
  47. Reinherz, E., Meuer, S., Fitzgerald, K., Hussey, R., Hodgdon, J., Acuto, O., and Schlossman, S., 1983, Comparison of T3-associated 49- and 42-kilodalton cell surface molecules on individual human T-cell clones: Evidence for peptide variability in T-cell receptor structures, Proc. Natl. Acad. Sci. USA 80:4104.PubMedCrossRefGoogle Scholar
  48. Rosenstreich, D., and Mizel, S., 1979, Signal requirements for T lymphocyte activation. I. Replacement of macrophage function with phorbol myristate acetate, J. Immunol. 123:1749.PubMedGoogle Scholar
  49. Samelson, L., Germain, R., and Schwartz, R., 1983, Monoclonal antibodies against the antigen receptor on a cloned T-cell hybrid, Proc. Natl. Acad. Sci. USA 80:6972.PubMedCrossRefGoogle Scholar
  50. Samelson, L.E., Harford, J.B., and Klausner, R.D., 1985, Identification of the components of the murine T cell antigen receptor complex, Cell 43:223.PubMedCrossRefGoogle Scholar
  51. Samelson, L.E., Patel, M.D., Weissman, A.M., Harford, J.B., and Klausner, R.D., 1986, Antigen activation of murine T cells induces tyrosine phosphorylation of a polypeptide associated with the T cell antigen receptor, Cell 46:1083.PubMedCrossRefGoogle Scholar
  52. Scheurich, P., Ucer, U., Wrann, M., and Pfizenmaier, K., 1985, Early events during primary activation of T cells: antigen receptor cross-linking and interleukin 1 initiate proliferative response of human T cells, Eur. J. Immunol. 15:1091.PubMedCrossRefGoogle Scholar
  53. Schwab, R., Crow, M.K., Russo, C., and Weksler, M.E., 1985, Requirements for T cell activation by OKT3 monoclonal antibody: Role of modulation of T3 molecules and interleukin-1, J. Immunol. 135:1714.PubMedGoogle Scholar
  54. Streb, H., Irvine, R.F., Berride, M.J., and Schulz, J., 1983, Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-tris-phosphate, Nature 306:67.PubMedCrossRefGoogle Scholar
  55. Tax, W.J.M., Willems, H.W., Reekers, P.P.M., Capel, P.J.A., and Koene, R.A.P., 1983, Polymorphisms in mitogenic effect of IgG1 monoclonal antibodies against T3 antigen on human T cells, Nature (Lond.) 304:445.CrossRefGoogle Scholar
  56. Thomas, A.P., Alexander, J., and Williamson, J.R., 1984, Relationship between inositol polyphosphate production and the increase of cytosolic free Ca2+ induced by vasopressin in isolated hepatocytes, J. Biol. Chem. 259:5574.PubMedGoogle Scholar
  57. Tsien, R.Y., Pozzan, T., and Rink, T.J., 1982, T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes, Nature 295:68.PubMedCrossRefGoogle Scholar
  58. Van den Elsen, P., Shepley, B.-A., Borst, J., Coligan, J.E., Markham, A.F., Orkin, S., and Terhorst, C., 1984, Isolation of cDNA clones encoding the 20K T3 glycoprotein of human T-cell receptor complex, Nature 312:413.PubMedCrossRefGoogle Scholar
  59. Van Wauwe, J.P., DeMey, J.R., and Goossens, J.G., 1980, OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties, J. Immunol. 124:2708.PubMedGoogle Scholar
  60. Van Wauwe, J.P., and Goossens, J.G., 1981, Mitogenic actions of orthoclone OKT3 on human peripheral blood lymphocytes: effects of monocytes and serum components, Int. J. Immunopharmacol. 3:203.PubMedCrossRefGoogle Scholar
  61. Weiss, A., and Stobo, J.D., 1984, Requirement for the coexpression of T3 and the T cell antigen receptor on a malignant human T cell line, J. Exp. Med. 160:1284.PubMedCrossRefGoogle Scholar
  62. Weiss, A., Imboden, J., Shoback, D., and Stobo, J., 1984a, Role of T3 surface molecules in human T cell activation: T3 dependent activation results in a rise in cytoplasmic free calcium, Proc. Natl. Acad. Sci. USA 81:4169.PubMedCrossRefGoogle Scholar
  63. Weiss, A., Imboden, J., Wiskocil, R., and Stobo, J., 1984b, The role of T3 in the activation of human T cells, J. Clin. Immunol. 4:165.PubMedCrossRefGoogle Scholar
  64. Weiss, A., Wiskocil, R.L., and Stobo, J.D., 1984c, The role of T3 surface molecules in the activation of human T cells: a stimulus requirement for IL 2 production reflects events occurring at a pretranslational level, J. Immunol. 133:123.PubMedGoogle Scholar
  65. Weiss, A., Manger, B., and Imboden, J., 1986, Synergy between the T3/antigen receptor complex and Tp44 in the activation of human T cells, J. Immunol. 137:819.PubMedGoogle Scholar
  66. Weiss, A., Shields, R., Newton, M., Manger, B., and Imboden, J., 1987, Ligand-receptor interactions required for commitment to the activation of the interleukin 2 gene, J. Immunol. 138:2169.PubMedGoogle Scholar
  67. Williams, J.M., Deloria, D., Hansen, J.A., Dinarello, C.A., Loertscher, R., Shapiro, H.M., and Strom, T.B., 1985, The events of primary T cell activation can be staged by use of Sepharose-bound anti-T3 (64.1) monoclonal antibody and purified IL-1, J. Immunol. 135:2249.PubMedGoogle Scholar
  68. Wiskocil, R., Weiss, A., Imboden, J., Kamin-Lewis, R., and Stobo, J., 1985, Activation of a human T cell line: a two-stimulus requirement in the pretranslational events involved in the coordinate expression of interleukin 2 and γ-interferon genes, J. Immunol. 134:1599.PubMedGoogle Scholar
  69. Yamamoto, S., Gotoh, H., Aizu, E., and Kato, R., 1985, Failure of l-oleoyl-2-acetylglycerol to mimic the cell-differentiating action of 12–0-tetradecanoylphorbol 13-acetate in HL-60 cells, J. Biol. Chem. 260:14230.PubMedGoogle Scholar
  70. Yanagi, Y., Yoshikai, Y., Leggett, K., Clark, S.P., Aleksander, I., and Mak, T.W., 1984, A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains, Nature 308:145.PubMedCrossRefGoogle Scholar
  71. Yanagi, Y., Chan, A., Chin, B., Minden, M., and Mak, T.W., 1985, Analysis of cDNA clones specific for human T cells and the α and β chains of the T-cell receptor heterodimer from a human T-cell line, Proc. Natl. Acad. Sci. USA 82:3430.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Bernard Manger
    • 1
  • John Imboden
    • 1
  • Arthur Weiss
    • 1
  1. 1.Howard Hughes Medical Institute and Department of MedicineUniversity of California, San FranciscoSan FranciscoUSA

Personalised recommendations