Immunoglobulin-Related Structures Associated with Vertebrate Cell Surfaces

  • A. Neil Barclay
  • Pauline Johnson
  • Geoff W. McCaughan
  • Alan F. Williams


Table I lists structures that can be confidently regarded as being related to Ig in evolution along with the chromosome assignment of their genetic loci in man and mouse. The structures are diverse in their functions and cellular expression and are usually unlinked in the genome despite some notable exceptions. Models for most of the molecules in Table I are given in Fig. 1 in terms of segments that can be considered to be related to Ig domains. In this chapter we will restrict detailed discussion to molecules other than Igs, TcR, and MHC antigens and will consider only protein sequences in assessing relationships. The initial manuscript has been revised to include new sequences.


Versus Domain Folding Pattern Neural Cell Adhesion Mole Murine Major Histocompatibility Complex Cell Antigen Receptor Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acuto, O., Hussey, R.E., Fitzgerald, K.A., Protentis, J.P., Meuer, S.C., Schlossman, S.F., and Reinherz, E.L., 1983, The human T cell receptor: appearance in ontogeny and biochemical relationship of α and β subunits on IL-2 dependent clones and T cell tumors, Cell 34:717–726.PubMedCrossRefGoogle Scholar
  2. Alt, F.W., Blackwell, T.K., Depinho, R.A., Reth, M.G., and Yancopoulos, G.D., 1986, Regulation of genome rearrangement events during lymphocyte differentiation, Immunol. Rev. 89:5–80.PubMedCrossRefGoogle Scholar
  3. Amiot, M., Bernard, A., Raynal, B., Knapp, W., Deschildre, C., and Boumsell, L., 1986, Heterogeneity of the first cluster of differentiation: characterisation and epitopic mapping of three CDI molecules on normal human thymus cells, J. Immunol. 136:1752–1758.PubMedGoogle Scholar
  4. Amzel, L.M., and Poljak, R.J., 1979, Three-dimensional structure of immunoglobulins, Ann. Rev. Biochem. 48:961–997.PubMedCrossRefGoogle Scholar
  5. Bank, I., and Chess, L., 1985, Perturbation of the T4 molecule transmits a negative signal to T cells, J. Exp. Med. 162:1294–1303.PubMedCrossRefGoogle Scholar
  6. Barclay, A.N., and Ward, H.A., 1982, Purification and chemical characterisation of membrane glycoproteins from rat thymocytes and brain, recognized by monoclonal antibody MRC OX-2, Eur. J. Biochem. 129:447–458.PubMedCrossRefGoogle Scholar
  7. Becker, J.W., and Reeke, G.N., Jr., 1985, Three-dimensional structure of β2-microglobulin, Proc. Natl. Acad. Sci. USA 82:4225–4229.PubMedCrossRefGoogle Scholar
  8. Bernard, A., Boumsell, L., Dausset, J., Milstein, C., and Schlossman, S.F., eds., 1984, Leucocyte Typing. Human Leucocyte Differentiation Antigens Detected by Monoclonal Antibodies, Springer-Verlag, Berlin.Google Scholar
  9. Bonnet, F., Perm, J.-P., Lorenzo, F., Jolies, J., and Jolies, P., 1986. An unexpected sequence homology between link proteins of the proteoglycan complex and immunoglobulin-like proteins, Biochim. Biophys. Acta 873:152–155.PubMedCrossRefGoogle Scholar
  10. Bourgois, A., 1975, Evidence for an ancestral immunoglobulin gene coding for half a domain, Immunochemistry 12:873–876.PubMedCrossRefGoogle Scholar
  11. Boyse, E.A., and Old, L.J., 1969, Some aspects of normal and abnormal cell surface genetics, Annu. Rev. Genet. 3:269–290.CrossRefGoogle Scholar
  12. Calabi, F., and Milstein, C., 1986, A novel family of human major histocompatiblity complex-related genes not mapping to chromosome 6, Nature 323:540–543.PubMedCrossRefGoogle Scholar
  13. Cantor, H., and Boyse, E.A., 1975. Functional subclasses of T lymphocytes bearing different Ly antigens. I. The generation of functionally distinct T-cell subclasses is a differentiative process independent of antigen, J. Exp. Med. 141:1376–1389.PubMedCrossRefGoogle Scholar
  14. Chatterjee, D., and Maizel, J.V., 1984, Homology of adenoviral E3 glycoprotein with the HLA-DR heavy chain, Proc. Natl. Acad. Sci. USA 81:6039–6043.PubMedCrossRefGoogle Scholar
  15. Chien, Y., Becker, D.M., Lindsten, T., Okamura, M., Cohen, D.I., and Davis, M.M., 1984, A third type of murine T-cell receptor gene, Nature 312:31–35.PubMedCrossRefGoogle Scholar
  16. Clark, S.J., Jefferies W.A., Barclay, A.N., Gagnon, J., and Williams, A.F., 1987, Peptide and nucleotide sequences of rat CD4 (W3/25) antigen: evidence for derivation from a structure with four immunoglobulin-related domains, Proc. Natl. Acad. Sci. USA, 84:1649–1653.PubMedCrossRefGoogle Scholar
  17. Clark, M.J., Gagnon, J., Williams, A.F., and Barclay, A.N., 1985, MRC OX-2 antigen: a lymphoid/neuronal membrane glycoprotein with a structure like a single immunoglobulin light chain, EMBO J. 4:113–118.PubMedGoogle Scholar
  18. Classon, B.J., Tsagarotos, J., Kirszbaum, L., Maddox, J., Mackay, C.R., Brandon, M., McKenzie, I.F.C., and Walker, I.D., 1986a, The L3T4 antigen in mouse and the sheep equivalent are immunoglobulin-like, Immunogenetics 23:129–132.CrossRefGoogle Scholar
  19. Classon, B.J., Tsagaratos, J., McKenzie, I.F.C., and Walker, I.D., 1986b, Partial primary structure of the T4 antigens of mouse and sheep: assignment of intrachain disulfide bonds, Proc. Natl. Acad. Sci. USA 83:4499–4503.CrossRefGoogle Scholar
  20. Conzelmann, A., Spiazzi, A., Hyman, R., and Bron, C., 1986, Anchoring of membrane proteins via phosphatidylinositol is deficient in two classes of Thy-1 negative mutant lymphoma cells, EMBO J. 5:3291–3296.PubMedGoogle Scholar
  21. Coussens, L., Beveren, C.V., Smith, D., Chen, E., Mitchell, R.L., Isacke, C.M., Verma, I.M., and Ullrich, A., 1986, Structural alteration of viral homologue of receptor proto-oncogene fins at carboxyl terminus, Nature 320:277–280.PubMedCrossRefGoogle Scholar
  22. Dalgleish, A.G., Beverley, P.C.L., Clapham, P.D., Crawford, D.H., Greaves, M.F., and Weiss, R.A., 1984, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus, Nature 312:763–767.PubMedCrossRefGoogle Scholar
  23. Dayhoff, M.O., Barker, W.C., and Hunt, L.T., 1983. Establishing homologies in protein sequences, Meths. Enzymol. 91:524–545.CrossRefGoogle Scholar
  24. Deitcher, D.L., and Mostov, K.E., 1986, Alternative splicing of rabbit polymeric immunoglobulin receptor, Molec. Cell. Biol. 6:2712–2715.PubMedGoogle Scholar
  25. Devlin, J.J., Weiss, E.H., Paulson, M., and Flavell, R.A., 1985, Duplicated gene pairs and alleles of class I genes in the Qa 2 region of the murine major histocompatibility complex: a comparison, EMBO J. 4:3203–3207.PubMedGoogle Scholar
  26. Dialynas, D.P., Wilde, D.B., Marrack, P., Pierres, A., Wall, K.A., Havran, W., Otten, G., Loken, M.R., Pierres, M., Kappler, J., and Fitch, F.W., 1983, Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody G.K. 1.5: Expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen reactivity, Immunol. Rev. 74:29–56.PubMedCrossRefGoogle Scholar
  27. Edelman, G.M., 1985, Cell adhesion and the molecular processes of morphogenesis, Ann. Rev. Biochem. 54:135–169.PubMedCrossRefGoogle Scholar
  28. Edelman, G.M., 1970, The covalent structure of a human γG-immunoglobulin. XI. Functional implications, Biochemistry 9:3197–3205.PubMedCrossRefGoogle Scholar
  29. Eiffert, H., Quentin, E., Decker, J., Hillemeir, S., Hufschmidt, M., Klingmuller, D., Weber, M.H., and Hilschmann, N., 1984, Die primarstruktur der menschlichen freien sekretkomponente und die anordnung der disulfidbrucken, Hoppe-Seyler’s Z. Physiol. Chem. 365:1489–1495.CrossRefGoogle Scholar
  30. Fisher, D.A., Hunt, S.W., III, and Hood, L., 1985, Structure of a gene encoding a murine thymus leukemia antigen, and organization of T1a genes in the Balb/c mouse, J. Exp. Med. 162:528–545.PubMedCrossRefGoogle Scholar
  31. Flaherty, L., 1976, The T1a region of the mouse: identification of a new serologically defined locus, Qa-2, Immunogenetics 3:533–539.CrossRefGoogle Scholar
  32. Gascoigne, N.R.J., Chien, Y., Becker, D.M., Kavaler, J., and Davis, M.M., 1984, Genomic organization and sequence of T cell receptor β constant and joining region genes, Nature 310:387–391.PubMedCrossRefGoogle Scholar
  33. Gay, D., Coeshott, C., Golde, W., Kappler, J., and Marrack, P., 1986, The major histocompatibility complex-restricted antigen receptor on T cells. IX. Role of accessory molecules in recognition of antigen plus isolated IA, J. Immunol. 136:2026–2032.PubMedGoogle Scholar
  34. Giguere, V., Isobe, K., and Grosveld, F., 1985, Structure of the murine Thy-1 gene, EMBO J. 4:2017–2024.PubMedGoogle Scholar
  35. Gold, D., Clevers, H., Alarcon, B., Dunlaps, S., Novotny, J., Williams, A.F., and Terhorst, C., 1987a, Evolutionary relationship between the CD3 chains of the T lymphocyte receptor complex and the neural glycoprotein N-CAM, Proc. Natl. Acad. Sci. USA 84:7649–7653.CrossRefGoogle Scholar
  36. Gold, D.P., van Dongen, J.J.M., Morton, C.C., Bruns, G.A.P., van den Elsen, P., Guerts van Kessel, A.H.M., and Terhorst, C., 1987b, The gene encoding the epsilon subunit of the T3/T-cell receptor complex maps to chromosome 11 in humans and to chromosome 9 in mice, Proc. Natl. Acad. Sci. USA 84:1664–1668.CrossRefGoogle Scholar
  37. Gold, D.P., Puck, J.M., Pettey, O.L., Cho, M., Coligan, J., Woody, J.N., and Terhorst, O., 1986, Isolation of cDNA clones encoding the 20K non-glycosylated polypeptide chain of the human T-cell receptor/T3 complex, Nature 321:431–434.PubMedCrossRefGoogle Scholar
  38. Gottlieb, P.D., 1974, Genetic correlation of a mouse light chain variable region marker with a thymocyte surface antigen, J. Exp. Med. 140:1432–1437.PubMedCrossRefGoogle Scholar
  39. Greenfield, S., Brostoff, S., Eylar, E.H., and Morell, P., 1973, Protein composition of myelin of the peripheral nervous system, J. Neurochem. 20:1207–1216.PubMedCrossRefGoogle Scholar
  40. Hayday, A.C., Saito, H., Gillies, S.D., Kranz, D.M,. Tanigawa, G., Eisen, H.M., and Tonegawa, S., 1985, Structure, organisation and somatic rearrangement of T cell gamma genes, Cell 40:259–269.PubMedCrossRefGoogle Scholar
  41. He, H.-T., Barbet, J., Chaix, J.-O., and Goridis, C., 1986, Phosphaditylinositol is involved in the membrane attachment of NCAM-120, the smallest component of the neural cell adhesion molecule, EMBO J. 5:2489–2494.PubMedGoogle Scholar
  42. Hedgecock, E.M., Sulston, J.E., and Thompson, J.N., 1983, Mutations affecting programmed cell deaths in the nematode caenorhabditis elegans,Science 220:1277–1279.PubMedCrossRefGoogle Scholar
  43. Hemperley, J.J., Murray, B.A., Edelman, G.M., and Cunningham, B.A., 1986, Sequence of a cDNA done encoding the polysialic acid-rich and cytoplasmic domains of the neural cell adhesion molecule N-CAM, Proc. Natl. Acad. Sci. USA 83:3037–3041.CrossRefGoogle Scholar
  44. Hill, R.L., Delaney, R., Fellows, R.E., and Lebovitz, H.E., 1966, The evolutionary origins of the immunoglobulins, Proc. Natl. Acad. Sci. USA 56:1762–1769.PubMedCrossRefGoogle Scholar
  45. Horvitz, H.R., Ellis, H.M., and Sternberg, P.W., 1982, Programmed cell death in nematode development, Neurosci. Comm. 1:56–65.Google Scholar
  46. Howard, F.D., Ledbetter, J.A., Wong, J., Bieber, C.P., Stinson, E.B., and Herzenberg, L.A., 1981, A human T lymphocyte differentiation marker defined by monoclonal antibodies that block E-rosette formation, J. Immunol. 126:2117–2122.PubMedGoogle Scholar
  47. Ishioka, N., Takahashi, N., and Putnam, F.W., 1986, Amino acid sequence of human plasma α1B-glycoprotein: homology to the immunoglobulin supergene family, Proc. Natl. Acad. Sci. USA 83:2363–2367.PubMedCrossRefGoogle Scholar
  48. Jefferies, W.A., Green, J.R., and Williams, A.F., 1985, Authentic T helper CD4 (W3/25) antigen on rat peritoneal macrophages, J. Exp. Med. 162:117–127.PubMedCrossRefGoogle Scholar
  49. Johnson, P., and Williams, A.F., 1986, Striking similarities between antigen receptor J pieces and sequence in the second chain of murine CD8 antigen, Nature 323:74–76.PubMedCrossRefGoogle Scholar
  50. Johnson, P., Gagnon, J., Barclay, A.N., and Williams, A.F., 1985, Purification, chain separation and sequence of the MRC OX-8 antigen, a marker of rat cytotoxic T lymphocytes, EMBO J. 4:2539–2545.PubMedGoogle Scholar
  51. Joho, R., Weissman, I.L., Early, P., Cole, J., and Hood, L., 1980, Organisation of κ light chain genes in germline and somatic tissue, Proc. Natl. Acad. Sci. USA 77:1106–1110.PubMedCrossRefGoogle Scholar
  52. Kabat, E.A., Wu, T.T., Bilofsky, H., Reid-Miller, M., and Perry, H., eds., 1983, Sequences of proteins of immunological interest. U.S. Department of Health and Human Services, National Institutes of Health, Bethesda, Maryland.Google Scholar
  53. Kaufman, J.F., Auffray, C., Korman, A.J., Shackelford, D.A., and Strominger, J., 1984, The class II molecules of the human and murine major histocompatibility complex, Cell 36:1–13.PubMedCrossRefGoogle Scholar
  54. Kranz, D.M., Saito, H., Disteche, C.M., Swisshelm, K., Pravtcheva, D., Ruddle, F.H., Eisen, H.N., and Tonegawa, S., 1985, Chromosomal locations of the murine T cell receptor alpha-chain gene and the T cell gamma gene, Science 227:941–945.PubMedCrossRefGoogle Scholar
  55. Krissansen, G.W., Owen, M.J., Verbi, W., and Crumpton, M.J., 1986, Primary structure of the T3 γ subunit of the T3/T cell antigen receptor complex deduced from cDNA sequences: evolution of the T3 γ and δ subunits, EMBO J. 5:1799–1808.PubMedGoogle Scholar
  56. Kroczek, R.A., Gunter, K.C., Seligmann, B., and Shevach, E.M., 1986, Induction of T cell activation by monoclonal anti-Thy-1 antibodies, J. Immunol. 136:4379–4384.PubMedGoogle Scholar
  57. Lai, C., Brow, M.A., Nave, K.A., Noronha, A.B., Quarles, R.H., Bloom, F.E., Milner, R.J., and Sutcliffe, J.G., 1987, Two forms of lB236/myelin-associated ghycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing, Proc. Natl. Acad. Sci. USA 84:4337–4341.PubMedCrossRefGoogle Scholar
  58. Ledbetter, J.A., Seaman, W.E., Tsu, T.T., and Herzenberg, L.A., 1981, Lyt-2 and Lyt-3 antigens are on two different poly-peptide subunits linked by disulfide bonds, J. Exp. Med. 153:1503–1516.PubMedCrossRefGoogle Scholar
  59. Lemke, G., and Axel, R., 1985, Isolation and sequence of a cDNA encoding the major structural protein of peripheral myelin, Cell 40:501–508.PubMedCrossRefGoogle Scholar
  60. Lew, A.M., Lillehoj, E.P., Cowan, E.P., Maloy, W.L., Van schravendijk, M.R., and Coligan, J.E., 1986, Class I genes and molecules: an update, Immunology 57:3–18.PubMedGoogle Scholar
  61. Lewis, V.A., Koch, T., Plutner, H., and Mellman, I., 1986, A complementary DNA clone for a macrophage-lymphocyte Fc receptor, Nature 324:372–375.PubMedCrossRefGoogle Scholar
  62. Littman, D.R., Thomas, Y., Maddon, P.J., Chess, L., and Axel, R., 1985, The isolation and sequence of the gene encoding T8: a molecule defining functional classes of T lymphocytes, Cell 40:237–246.PubMedCrossRefGoogle Scholar
  63. MacDonald, H.R., Glasebrook, A.L., Bron, C., Kelso, A., and Cerottini, J.-C., 1982, Clonal heterogeneity in the functional requirement for Lyt-2/3 molecules on cytolytic T lymphocytes (CTL): possible implications for the affinity of CTL antigen receptors, Immunol. Rev. 68:89–115.PubMedCrossRefGoogle Scholar
  64. Maddon, P.J., Littman, D.R., Godfrey, M., Maddon, D.E., Chess, L., and Axel, R., 1985, The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family, Cell 42:93–104.PubMedCrossRefGoogle Scholar
  65. Mason, D.W., Arthur, R.P., Dallman, M.J., Green, J.R., Spickett, G.P., and Thomas, M.L., 1983, Functions of rat T-lymphocyte subsets isolated by means of monoclonal antibodies, Immunol. Rev. 74:57–82.PubMedCrossRefGoogle Scholar
  66. McAlpine, P.J., Shows, T.B., Miller, R.L., and Pakstis, A.J., 1985, The 1985 catalog of mapped genes and report of the nomenclature committee cytogenetics and cell genetics, Human Gene Mapping 8 40:8–66.Google Scholar
  67. McCaughan, G.W., Clark, M.J., and Barclay, A.N., 1987a, Characterisation of the human homologue of the rat MRC OX-2 membrane glycoprotein, Immunogenetics 25:329–335.CrossRefGoogle Scholar
  68. McCaughan, G.W., Clark, M.J., Hurst, J., Grosveld, F., and Barclay, A.N., 1987b, The gene for MRC OX-2 membrane glycoprotein is localized on human chromosome 3, Immuno genetics 25:133–135.Google Scholar
  69. McLachlan, A.D., 1980, Early evolution of the antibody domain, in: Protides and Related Subjects ‘Protides of the Biological Fluids’, Volume 28 (H. Peeters, ed.), Pergamon Press, pp. 29–32.Google Scholar
  70. McMichael, A.J., Pilch, J.R., Galfre, G., Mason, D.Y., Fabre, J.W., and Milstein, C., 1979, A human thymocyte antigen defined by a hybrid myeloma monoclonal antibody, Eur. J. Immunol. 9:205–210.PubMedCrossRefGoogle Scholar
  71. Meuer, S.C., Hussey, R.E., Fabbi, M., Fox, D., Acuto, O., Fitzgerald, K.A., Hodgdon, J.C., Protentis, J.P., Schlossman, S.F., and Reinherz, E.L., 1984, An alternative pathway of T-cell activation: a functional role for the 50 Kd T11 sheep erythrocyte receptor protein, Cell 36:897–906.PubMedCrossRefGoogle Scholar
  72. Mostov, K.E., Friedlander, M., and Blobel, G., 1984, The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains, Nature 308:37–43.PubMedCrossRefGoogle Scholar
  73. Murray, B.A., Owens, G.C., Prediger, E.A., Crossin, K.L., Cunningham, B.A., and Edelman, G.M., 1986, Cell surface modulation of the neural cell adhesion molecule resulting from alternative mRNA splicing in a tissue-specific developmental sequence, J. Cell. Biol. 103:1431–1439.PubMedCrossRefGoogle Scholar
  74. Nakauchi, H., Nolan, G.P., Hsu, C., Huang, H.S., Kavathas, P., and Herzenberg, L.A., 1985, Molecular cloning of Lyt-2, a membrane glycoprotein marking a subset of mouse T lymphocytes: molecular homology to its human counterpart, Leu-2/T8, and to immunoglobulin variable regions, Proc. Natl. Acad. Sci. USA 82:5126–5130.PubMedCrossRefGoogle Scholar
  75. Nguyen, C., Mattei, M.-G., Mattei, J.-F., Santoni, M.-J., Goridis, C., and Jordan, B.R., 1986, Localization of the human NCAM gene to band q23 of chromosome 11: the third gene coding for a cell interaction molecule mapped to the distal portion of the long arm of chromosome 11, J. Cell Biol. 102:711–715.PubMedCrossRefGoogle Scholar
  76. Parnes, J.R., Sizer, K.C., Seidman, J.G., Stallings, V., and Hyman, R., 1986, A mutational hot-spot within an intron of the mouse β2-microglobulin gene, EMBO J. 5:103–111.PubMedGoogle Scholar
  77. Ravetch, J.V., Luster, A.D., Weinshank, R., Kochan, J., Pavlovec, A., Portnoy, D.A., Hulmes, J., Pan, Y.-C.E., and Unkeless, J.C., 1986, Structural heterogeneity and functional domains of murine immunoglobulin G Fc receptors, Science 234:718–725.PubMedCrossRefGoogle Scholar
  78. Reif, A.E., and Allen, J.M.V., 1964, the AKR thymic antigen and its distribution in leukemias and nervous tissues, J. Exp. Med. 120:413–433.PubMedCrossRefGoogle Scholar
  79. Reinherz, E.L., Meuer, S.C., and Schlossman, S.F., 1983, The delineation of antigen receptors on human T lymphocytes, Immunol. Today 4:5–8.CrossRefGoogle Scholar
  80. Reinherz, E.L., Kung, P.C., Goldstein, G., and Schlossman, S.F., 1979, Separation of functional subsets of human T cells by a monoclonal antibody, Proc. Natl. Acad. Sci. USA 76:4061–4065.PubMedCrossRefGoogle Scholar
  81. Richardson, J.S., Richardson, D.C., Thomas, K.A., Silverton, E.W., and Davies, D.R., 1976, Similarity of three-dimensional structure between the immunoglobulin domain and the copper, zinc superoxide dismutase subunit, J. Mol. Biol. 102:221–235.PubMedCrossRefGoogle Scholar
  82. Rudikoff, S., and Pumphrey, J.G., 1986, Functional antibody lacking a variable-region disulfide bridge, Proc. Natl. Acad. Sci. USA 83:7875–7878.PubMedCrossRefGoogle Scholar
  83. Rutishauser, U., Hoffman, S., and Edelman, G.M., 1982, Binding properties of a cell adhesion molecule from neural tissue, Proc. Natl. Acad. Sci. USA 79:685–689.PubMedCrossRefGoogle Scholar
  84. Saito, H., Kranz, D.M., Takagaki, Y., Hayday, A.C., Eisen, H.N., and Tonegawa, S., 1984, Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences, Nature 309:757–762.PubMedCrossRefGoogle Scholar
  85. Samelson, L.E., Harford, J.B., and Klausner, R.D., 1985, Identification of the components of the murine T cell antigen receptor complex, Cell 43:223–231.PubMedCrossRefGoogle Scholar
  86. Seki, T., Spurr, N., Obata, F., Goyert, S., Goodfellow, P., and Silver, J., 1985, The human Thy-1 gene: structure and chromosomal location, Proc. Natl. Acad. Sci. USA 82:6657–6661.PubMedCrossRefGoogle Scholar
  87. Sewell, W.A., Brown, M.H., Dunne, J., Owen, M.J., and Crumpton, M.J., 1986, Molecular cloning of the human T-lymphocyte surface CD2 (T11) antigen, Proc. Natl. Acad. Sci. USA 83:8718–8722.PubMedCrossRefGoogle Scholar
  88. Shaw, S., Ginther Luce, G.E., Quinones, R., Gress, R.E., Springer, T.A., and Sander, M.E., 1986, Two antigen-independent adhesion pathways used by human cytotoxic T-cell clones, Nature 323:262–264.PubMedCrossRefGoogle Scholar
  89. Sherr, C.J., Rettenmier, C.W., Sacca, R., Roussel, M.F., Look, A.T., and Stanley, E.R., 1985, The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF-1, Cell 41:665–676.PubMedCrossRefGoogle Scholar
  90. Solari, R., and Kraehenbuhl, J.F., 1985, The biosynthesis of secretory component and its role in the transepithelial transport of IgA dimer, Immunol. Today 6:17–20.CrossRefGoogle Scholar
  91. Steinmetz, M., 1984, Structure, function and evolution of the major histocompatibility complex of the mouse, TIBS 9:224–226.Google Scholar
  92. Sukhatme, V.P., Sizer, K.C., Vollmer, A.C., Hunkapiller, T., and Parnes, J.R., 1985a, The T cell differentiation antigen Leu-2/T8 is homologous to immunoglobulin and T cell receptor variable regions, Cell 40:591–597.CrossRefGoogle Scholar
  93. Sukhatme, V.P., Vollmer, A.C., Erikson, J., Isobe, M., Croce, C., and Parnes, J.R., 1985b, Gene for the human T cell differentiation antigen Leu-2/T8 is closely linked to the κ light chain locus on chromosome 2, J. Exp. Med. 161:429–434.CrossRefGoogle Scholar
  94. Sutcliffe, J.G., Milner, R.J., Shinnick, T.M., and Bloom, F.E., 1983, Identifying the protein products of brain-specific genes with antibodies to chemically synthesised peptides, Cell 33:671–682.PubMedCrossRefGoogle Scholar
  95. Swain, S.L., 1983, T cell subsets and the recognition of MHC class, Immunol. Rev. 74:129–142.PubMedCrossRefGoogle Scholar
  96. Tourvieille, B., Gorman, S.D., Field, E.H., Hunkapiller, T., and Parnes, J.R., 1986, Isolation and sequence of L3T4 complementary DNA clones: expression in T cells and brain, Science 234:610–614.PubMedCrossRefGoogle Scholar
  97. Trowsdale, J., Young, J.A.T., Kelly, A.P., Austin, P.J., Carson, S., Meunier, H., So, A., Erlich, H.A., Spielman, R.S., Bodmer, J., and Bodmer, W.F., 1985, Structure, sequence and polymorphism in the HLA-D region, Immunol. Rev. 85:5–43.PubMedCrossRefGoogle Scholar
  98. Tse, A.G.D., Barclay, A.N., Watts, A., and Williams, A.F., 1985, A glycophospholipid tail at the carboxyl-terminus of the Thy-1 glycoprotein of neurons and thymocytes, Science 230:1003–1008.PubMedCrossRefGoogle Scholar
  99. Unkeless, J.C., 1979, Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors, J. Exp. Med. 150:580–596.PubMedCrossRefGoogle Scholar
  100. van den Elsen, P., Shepley, B.-A., Borst, J., Coligan, J.E., Markham, A.F., Orkin, S., and Terhorst, C., 1984, Isolation of cDNA clones encoding the 20K T3 glycoprotein of human T-cell receptor complex, Nature 312:413–418.PubMedCrossRefGoogle Scholar
  101. van Wauwe, J.P., de Mey, J.R., and Goossens, J.G., 1980, OKT3: a monoclonal anti-human T lymphocyte antibody with potent mitogenic properties, J. Immunol. 124:2708–2713.PubMedGoogle Scholar
  102. Vitetta, E.S., and Capra, J.D., 1978, The protein products of the murine 17th chromosome: Genetics and structure, Adv. Immunol. 26:147–193.PubMedCrossRefGoogle Scholar
  103. Webb, M., and Barclay, A.N., 1984, Localisation of the MRC OX-2 glycoprotein on the surfaces of neurones, J. Neurochem. 43:1061–1067.PubMedCrossRefGoogle Scholar
  104. Webb, M., Mason, D.W., and Williams, A.F., 1979, Inhibition of the mixed lymphocyte response with a monoclonal antibody specific for a rat T lymphocyte subset, Nature 282:841–843.PubMedCrossRefGoogle Scholar
  105. Williams, A.F., 1984, Molecules in the immunoglobulin superfamily, Immunol. Today 5:219–221.CrossRefGoogle Scholar
  106. Williams, A.F., 1982, Surface molecules and cell interactions, J. Theoret. Biol. 98:221–234.CrossRefGoogle Scholar
  107. Williams, A.F., and Barclay, A.N., 1988, The immunoglobulin superfamily domains for cell surface recognition, Annu. Rev. Immunol. 6:381–405.PubMedCrossRefGoogle Scholar
  108. Williams, A.F., and Gagnon, J., 1982, Neuronal cell Thy-1 glycoprotein: homology with immunoglobulin, Science 216:696–703.PubMedCrossRefGoogle Scholar
  109. Williams, A.F., Barclay, A.N., Clark, S.J., Paterson, D.J., and Willis, A.C., 1987, Similarities in sequences and cellular expression between rat CD2 and CD4 antigens, J. Exp. Med. 165:368–380.PubMedCrossRefGoogle Scholar
  110. Williams, A.F., Barclay, A.N., Clark, M., and Gagnon, J., 1985, Cell surface glycoproteins and the origins of immunity, in: Proceedings of the Sigrid Juselius Symposium: gene expression during normal and malignant differentiation (L.C. Anderson, C.G. Gahmberg and P. Ekblom, eds.), Academic Press, pp. 125–138.Google Scholar
  111. Williams, A.F., Galfre, G., and Milstein, C., 1977, Analysis of cell surfaces by xenogeneic myeloma-hybrid antibodies: differentiation antigens of rat lymphocytes, Cell 12:663–673.PubMedCrossRefGoogle Scholar
  112. Yanagi, Y., Yoshikai, Y., Leggett, K., Clark, S.P., Aleksander, I., and Mak, T.W., 1984, A human T cell-specific cDNA clone encodes a protein having extensive homology to immunoglobulin chains, Nature 308:145–149.PubMedCrossRefGoogle Scholar
  113. Yarden, Y., Escobedo, J.A., Kuang, W.-J., Yang-Feng, T.L., Daniel, T.O., Tremble, P.M., Chen, E.Y., Ando, M.E., Harkins, R.N., Francke, U., Fried, V.A., Ullrich, A., and Williams, L.T., 1986, Structure of the receptor for platelet-derived growth factor helps define a family of closely related growth factor receptors, Nature 323:226–232.PubMedCrossRefGoogle Scholar
  114. Yoshikai, Y., Clark, S.P., Taylor, S., Sohn, U., Wilson, B.I., Minden, M.D., and Mak, T.W., 1985, Organisation and sequences of the variable, joining and constant region genes of the human T-cell receptor α-chain, Nature 316:837–840.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • A. Neil Barclay
    • 1
  • Pauline Johnson
    • 1
  • Geoff W. McCaughan
    • 1
  • Alan F. Williams
    • 1
  1. 1.MRC Cellular Immunology Research Unit, Sir William Dunn School of PathologyUniversity of OxfordOxfordUK

Personalised recommendations