Advertisement

MHC-Disease Associations and T Cell-Mediated Immunopathology

  • Rolf M. Zinkernagel

Abstract

Major transplantation antigens coded by the major histocompatibility gene complex (MHC) play a key role in lymphocyte interactions and in immunological recognition. It has become clear over the last 10 years that MHC-gene products (i.e., HLA antigens in humans, H-2 in mice) restrict T-cell specificity or guide T-cell function according to well-established rules (Zinkernagel and Doherty, 1979; Paul and Benacerraf, 1977; Townsend and McMichael, 1984; Möller, 1977); T cells recognise foreign antigens only on cell surfaces and only together with self-transplantation antigens. T-cell function is determined and T-cell responsiveness is regulated by the class of MHC antigens recognised as self. Class I MHC genes (HLA-A,B,C, or H-2K,D,L) regulate activities of class I-restricted, cytotoxic T cells; class II MHC genes (i.e., HLA-D or H-2I) regulate class II-restricted, differentiation-promoting T cells such as helper T cells or T cells involved in delayed type hypersensitivity.

Keywords

Celiac Disease Rabies Virus Lepromatous Leprosy Lymphocytic Choriomeningitis Lymphocytic Choriomeningitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, R., Byrne, J.A., and Oldstone, M.B.A., 1984a, Virus specificity of cytotoxic T lymphocytes generated during acute lymphocytic choriomeningitis virus infection: Role of the H-2 region in determining cross-reactivity for different lymphocytic choriomeningitis virus strains, J. Virol. 51:34–41.PubMedGoogle Scholar
  2. Ahmed, R., Salmi, A., Butler, L.D., Chiller, J.M., and Oldstone, M.B.A., 1984b, Selection of genetic variants of lymphocytic choriomeningitis virus in spleens of persistently infected mice, J. Exp. Med. 60:521–540.CrossRefGoogle Scholar
  3. Allan, J.E., and Doherty, P.C., 1985, Consequences of a single Ir-gene defect for the pathogenesis of lymphocytic choriomeningitis, Immunogenetics 21:581–590.PubMedCrossRefGoogle Scholar
  4. Bang, F.B., 1973, Genetics of resistance of animals to viruses, Adv. Virus Res. 23:269–346.CrossRefGoogle Scholar
  5. Benacerraf, B., and McDevitt, H.O., 1972, Histocompatibility-linked immune response genes, Science 175:273–279.PubMedCrossRefGoogle Scholar
  6. Biddison, W.E., Ward, F.E., Shearer, G.M., and Shaw, S., 1980, The self determinants recognized by human virus-immune T cells can be distinguished from the serologically defined HLA antigens, J. Immunol. 124:548–555.PubMedGoogle Scholar
  7. Blanden, R.V., 1974, T cell response to viral and bacterial antigens, Transplant Rev. 19:56–84.PubMedGoogle Scholar
  8. Blank, K.J., and Lilly, F., 1977, Evidence for an H-2 viral protein complex on the cell surface as the basis for the H-2 restriction of cytotoxicity, Nature 269:808–810.PubMedCrossRefGoogle Scholar
  9. Byrne, J.A., Ahmed, R., and Oldstone, M.B.A., 1984, Biology of cloned cytotoxic T lymphocytes specific for lymphocytic choriomeningitis virus. I. Generation and recognition of virus strains and H-2b mutants, J. Immunol. 133:433–440.PubMedGoogle Scholar
  10. Bullock, W.E., 1978, Leprosy: A model of immunological perturbation in chronic infection, J. Inf. Dis. 137:341–353.CrossRefGoogle Scholar
  11. Carpenter, C.B., 1982, Autoimmunity and HLA, J. Clin. Immunol. 2:157–165.PubMedCrossRefGoogle Scholar
  12. Ceppellini, R., 1973, Old and new facts and speculations about transplantation antigens in man, Prog. Immunol. 1:973–978.Google Scholar
  13. Chiller, J.M., Habicht, G.S., and Weigle, W.O., 1971, Kinetic differences in unresponsiveness of thymus and bone marrow cells, Science 171:813–815.PubMedCrossRefGoogle Scholar
  14. Clatch, R.J., Melvold, R.W., Miller, S.D., and Lipton, H.L., 1985, Theiler’s murine encephalomyelitis virus demyelinating disease in mice is influenced by the H-2D region, J. Immunol. 135:1408–1414.PubMedGoogle Scholar
  15. Cohen, D., and Dausset, J., 1983, HLA-gene polymorphism, Prog. Immunol. 5:1–12.CrossRefGoogle Scholar
  16. Cole, G.A., Nathanson, N., and Prendergast, R.A., 1972, Requirement of θ-bearing cells in lymphocytic choriomeningitis virus-infected central nervous system disease, Nature 238:335–337.PubMedCrossRefGoogle Scholar
  17. Dausset, J., and Svejgaard, A., eds., 1977, HLA and disease, pp. 1–310, Munksgaard, Copenhagen.Google Scholar
  18. Doherty, P.C., and Zinkernagel, R.M., 1975, A biological role for the major histocompatibility antigen, Lancet i: 1406–1414.CrossRefGoogle Scholar
  19. Doherty, P.C., and Zinkernagel, R.M., 1975, T cell mediated immunopathology in viral infections, Transplant Rev. 19:89–120.Google Scholar
  20. Dupont, B., Good, R.A., Hauptmann, G., Schreuder, I., and Seligmann, M., 1977, Immunopathology, immunodeficiencies and complement deficiencies, in: HLA and disease, (Dausset J., Svejgaard A., eds.) pp. 233–248, Munksgaard, Copenhagen.Google Scholar
  21. Fenner, F., McAuslan, B.R., Mims, C.A., Sambrook, J.F., and White, D.O., 1974, The Biology of Animal Viruses, Academic Press, New York.Google Scholar
  22. Friedman, R.M., and Vogel, S.N., 1983, Interferons with special emphasis on the immune system, Adv. Immunol. 34:97–140.PubMedCrossRefGoogle Scholar
  23. Geczy, A.F., Alexander, K., Bashir, H.V., Edmonds, J.P., Upfold, L., and Sullivan, J., 1983, HLA-B27, Klebsiella and ankylosing spondylitis, Immunol. Rev. 70:23–50.PubMedCrossRefGoogle Scholar
  24. Goodman, G.T., and Koprowski, H., 1962, Macrophages as a cellular expression of inherited natural resistance, Proc. Natl. Acad. Sci. USA 48:160–165.PubMedCrossRefGoogle Scholar
  25. Grabar, P., 1974, Self and not-self in immunology, Lancet i:1320–1323.CrossRefGoogle Scholar
  26. Hahn, H., and Kaufmann, S.H.E., 1981, The role of cell-mediated immunity in bacterial infections, Ref. Infect. Dis. 3:1221–1250.CrossRefGoogle Scholar
  27. Helenius, A., Morein, B., Fries, E., and Simons, K., 1978, Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus, Proc. Natl. Acad. Sci. USA 75:3846–3850.PubMedCrossRefGoogle Scholar
  28. Hotchin, J., 1971, Persistant and slow virus infections, Mongr. Virol. 3:1–140.Google Scholar
  29. Jeannet, M., and Farquet, J.J., 1974, HLA antigens in asymptomatic chronic HBAg carriers, Lancet ii:1383–1384.CrossRefGoogle Scholar
  30. Jersild, C., Rubinstein, P., and Day, N.K., 1976, The HLA system and inherited deficiencies of the complement system, Immunol. Rev. 32:43–71.CrossRefGoogle Scholar
  31. Kagnoff, M.F., Austin, R.K., Hubert, J.J., Bernardin, J.E., and Kasarda, D.D., 1984, Possible role for a human adenovirus in the pathogenesis of celiac disease, J. Exp. Med. 160:1544–1557.PubMedCrossRefGoogle Scholar
  32. Kvist, S., Oesterberg, L., Persson, H., Philipson, L., and Peterson, P.A., 1978, Molecular association between transplantation antigens and cell surface antigen in adenovirus-transformed cell-line, Proc. Natl. Acad. Sci. USA 75:5674–5678.PubMedCrossRefGoogle Scholar
  33. Lehmann-Grube, F., 1971, Lymphocytic choriomeningitis virus, Virol. Monogr. 10:1–173.Google Scholar
  34. Mackaness, G.B., 1964, The immunological basis of acquired cellular resistance, J. Exp. Med. 120:105–120.PubMedCrossRefGoogle Scholar
  35. Mackay, I.R., 1976, The concept of autoimmune liver disease, Bull. NY Acad. Med. Scil. 52:433–447.Google Scholar
  36. Maynard, J.E., 1976, Hepatitis A., Yale J. Biol. Med. 49:227–248.PubMedGoogle Scholar
  37. McDevitt, H.O., and Bodmer, W.F., 1974, HLA immune response genes and disease, Lancet i:1269–1275.CrossRefGoogle Scholar
  38. Mims, C.A., 1982, Pathogenesis of infectious disease (2nd ed.), pp. 1–297, Academic Press, London.Google Scholar
  39. Möller, G., (ed.), 1977, Ir-genes and T lymphocytes, Immunol. Rev. 38:1–162.Google Scholar
  40. Möller, G., (ed.), 1983, HLA and disease susceptibility, Immunol. Rev. 70:1–180.Google Scholar
  41. Oldstone, M.B.A., Dixon, F., Mitchell, G., and McDevitt, H.O., 1973, Histocompatibility linked genetic control of disease susceptibility: Murine lymphocytic choriomeningitis virus infection, J. Exp. Med. 137:1201–1212.PubMedCrossRefGoogle Scholar
  42. Parker, K.L., Roos, M.H., and Shreffler, D.C., 1979, Structural characterization of the murine fourth component of complement and sex-limited protein and their precursors: Evidence for two loci in the S region of the H-2 complex, Proc. Natl. Acad. Sci. USA 76:5853–5857.PubMedCrossRefGoogle Scholar
  43. Paul, W.E., and Benacerraf, B., 1977, Functional specificity of thymus-dependent lymphocytes, Science 195:1293–1299.PubMedCrossRefGoogle Scholar
  44. Pfau, C.J., Valenti, J.K., Pevear, D.C., and Hunt, K.D., 1982, Lymphocytic choriomeningitis virus killer T cells are lethal only in weakly disseminated infections, J. Exp. Med. 156:79–89.PubMedCrossRefGoogle Scholar
  45. Rees, A.J., Peters, D.K., Campston, D.A.S., and Batchelor, J.R., 1978, Strong association between HLA-DRW2 and antibody-mediated Goodpasture’s syndrome, Lancet i:966–970.CrossRefGoogle Scholar
  46. Salk, J.E., 1955, A concept of the mechanism of immunity for preventing poliomyelitis, Ann. NY Acad. Sci. 61:1023–1030.PubMedCrossRefGoogle Scholar
  47. Serjentson, S.W., 1983, HLA and susceptibility to leprosy, Immunol. Rev. 70:89–112.CrossRefGoogle Scholar
  48. Simons, M.J., and Amiel, J.L., 1977, HLA and malignant diseases, in: HLA and disease, (Dausset, J., Svejgaard, A., eds.) pp. 212–232, Munksgaard, Copenhagen.Google Scholar
  49. Townsend, A.R.M., and McMichael, A.J., 1984, The specificity of cytotoxic T lymphocytes stimulated with influenza virus; studies in mice and humans, Progress in Allergy 36:10–97.Google Scholar
  50. de Vries, R.R.D., Mehra, N.K., Vaidya, M.L., Gupte, M.D., Khan, P.M., and van Rood, J.J., 1980, HLA-linked control of susceptibility to tuberculoid leprosy and association with HLA-DR types, Tissue Antigens 16:294–304.PubMedCrossRefGoogle Scholar
  51. Vladutiu, A., and Rose, N., 1971, Autoimmune murine thyroiditis. Relation to histocompatibility (H-2) type, Science 174:1137–1139.PubMedCrossRefGoogle Scholar
  52. Weigle, W.O., 1961, The immune response of rabbits tolerant to bovine serum albumin to the injection of other heterologous serum albumins, J. Exp. Med. 114:111–124.PubMedCrossRefGoogle Scholar
  53. White, P.C., New H.I., and Dupont, B., 1984, HLA-linked congenital adrenal hyperplasia results from a defective gene encoding a cytochrome P-45 specific steroid 21-hydroxylation, Proc. Natl. Acad. Sci. USA 81:7505–7509.PubMedCrossRefGoogle Scholar
  54. Wiktor, T.J., and Koprowski, H., 1978, Monoclonal antibodies against rabies virus produced by somatic cell hybridization, detection of antigenic variants, Proc. Natl. Acad. Sci. USA 75:3938–3943.PubMedCrossRefGoogle Scholar
  55. Zinkernagel, R.M., and Doherty, P.C., 1979, MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T cell restriction-specificity, function and responsiveness, Adv. Immunol. 27:51–177.PubMedCrossRefGoogle Scholar
  56. Zinkernagel, R.M., Pfau, C.J., Hengartner, H., and Althage, A., 1985, A model for MHC disease associations: susceptibility to murine lymphocytic choriomeningitis maps to class I MHC genes and correlates with LCMV-specific cytotoxic T cell activity, Nature 316:814–817.PubMedCrossRefGoogle Scholar
  57. Zinkernagel, R.M., and Althage, A., 1977, Antiviral protection by virusimmune cytotoxic T cells: Infected target cells are lysed before infectious virus progeny is assembled, J. Exp. Med. 145:644–651.PubMedCrossRefGoogle Scholar
  58. Zinkernagel, R.M., 1979, Associations between major histocompatibility antigens and susceptibility to disease, Ann. Rev. Microbiol. 33:201–213.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Rolf M. Zinkernagel
    • 1
  1. 1.Institute for PathologyUniversity Hospital ZurichZurichSwitzerland

Personalised recommendations