Advertisement

Ion Transport by Gastric Mucosa

  • John G. Forte
  • Terry E. Machen

Abstract

The stomach serves important alimentary functions, as an organ for food storage and in providing the secretory juices that serve to initiate the digestive process. These functions are carefully regulated by neural and hormonal mechanisms to liquify, sterilize, macerate, and partially degrade the components of a meal. The heavy muscular wall of the stomach provides the peristaltic mixing waves, while the epithelial cells of the gastric mucosa supply the secretory products of the juice. Gastric secretory products can conveniently be subdivided into a mucus component, principally serving a lubricating function, an enzyme component, in the form of the enzyme precursor pepsinogen, and an aqueous component, which largely consists of hydrochloric acid. The purpose of this chapter is to review the mechanisms responsible for the secretion of the ions and water that constitute the so-called aqueous component of gastric juice. We will focus our discussion on those ion transport processes that are directly or indirectly related to HCl secretion.

Keywords

Gastric Mucosa Apical Membrane Basolateral Membrane Gastric Gland Frog Skin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berglindh, T. 1977. Absolute dependence on chloride for acid secretion in isolated gastric glands. Gastroenterology 73:874–880.PubMedGoogle Scholar
  2. 2.
    Berglindh, T., D. R. DiBona, S. Ito, and G. Sachs. 1980. Probes of parietal cell function. Am. J. Physiol. 238:G115–G176.Google Scholar
  3. 3.
    Berglindh, T., D. R. DiBona, C. S. Pace, and G. Sachs. 1980. ATP dependence of H+ secretion. J. Cell Biol. 85:392–401.PubMedGoogle Scholar
  4. 4.
    Berglindh, T., H. F. Helander, and K. J. Obrink. 1976. Effects of secretagogues on oxygen consumption, aminopyrine accumulation and morphology in isolated gastric glands. Acta Physiol. Scand. 97:401–414.PubMedGoogle Scholar
  5. 5.
    Berglindh, T., G. Sachs, and N. Takeguchi. 1980. Ca2+-depen-dent secretagogue stimulation in isolated rabbit gastric glands. Am. J. Physiol. 239:G90–G94.PubMedGoogle Scholar
  6. 6.
    Bergqvist, E., and K. J. Obrink. 1979. Gastrin-histamine as a normal sequence in gastric acid stimulation. Upsala J. Med. Sci. 84:145–154.PubMedGoogle Scholar
  7. 7.
    Berridge, M. J. 1975. Interaction of cyclic nucleotides and calcium in the control of cellular activity. Adv. Cyclic Nucleotide Res. 6:1–98.PubMedGoogle Scholar
  8. 8.
    Black, J. A., T. M. Forte, and J. G. Forte. 1981. Inhibition of HCl secretion and the effects on ultrastructure and electrical resistance in isolated piglet gastric mucosa. Gastroenterology 81:509–519.PubMedGoogle Scholar
  9. 9.
    Black, J. A., T. M. Forte, and J. G. Forte. 1982. The effects of microfilament disrupting agents on HCl secretion and ultrastructure of piglet gastric oxyntic cells. Gastroenterology 83:595–604.PubMedGoogle Scholar
  10. 10.
    Black, J. W., W. A. M. Duncan, C. J. Durant, C. R. Ganellin, and E. M. Parsons. 1972. Definition and antagonism of histamine H2 receptors. Nature (London) 236:385–390.Google Scholar
  11. 11.
    Blum, A. L., B. I. Hirschowitz, H. F. Helander, and G. Sachs. 1971. Electrical properties of isolated cells of Necturus gastric mucosa. Biochim. Biophys. Acta 241:261–272.PubMedGoogle Scholar
  12. 12.
    Bonting, S. L., J. J. Schrijen, and J. J. H. H. M. DePont. 1980. Mg2+-induced conformational state of (K+-H+ )-ATPase deduced from chemical modification and substrate binding studies. In: Hydrogen Ion Transport in Epithelia. I. Schultz, G. Sachs, J. Forte, and K. Ullrich, eds. Elsevier, Amsterdam, pp. 185–192.Google Scholar
  13. 13.
    Bornstein, A. M., W. H. Dennis, and W. S. Rehm. 1959. Movement of water, sodium, chloride and hydrogen ions across the resting stomach. Am. J. Physiol. 197:332–336.PubMedGoogle Scholar
  14. 14.
    Canosa, C. A., and W. S. Rehm. 1968. Microelectrode studies of dog’s gastric mucosa. Biophys. J. 8:415–430.PubMedGoogle Scholar
  15. 15.
    Carrasquer, G., T. C. Chu, M. Schwartz, and W. S. Rehm. 1982. Evidence for electrogenic Na-Cl symport in in vitro frog stomach. Am. J. Physiol. 242:G620–G627.PubMedGoogle Scholar
  16. 16.
    Chase, H. S., and Q. Al-Awqati. 1981. Regulation of the sodium permeability of the luminal border of toad bladder by intracellular sodium and calcium. J. Gen. Physiol. 77:693–712.PubMedGoogle Scholar
  17. 17.
    Chew, C. S., and S. J. Hersey. 1982. Gastrin stimulation of isolated gastric glands. Am. J. Physiol. 242:G504–G512.PubMedGoogle Scholar
  18. 18.
    Chew, C. S., S. J. Hersey, G. Sachs, and T. Berglindh. 1980. Histamine responsiveness of isolated gastric glands. Am. J. Physiol. 238:G312–G320.PubMedGoogle Scholar
  19. 19.
    Clausen, C., T. E. Machen, and J. M. Diamond. 1983. Use of AC impedance analysis to study membrane changes related to acid secretion in amphibian gastric mucosa. Biophys. J. 41:167–178.PubMedGoogle Scholar
  20. 20.
    Cole, K. S. 1972. Membranes, Ions, and Impulses. University of California Press, Berkeley.Google Scholar
  21. 21.
    Cooperstein, I.L. 1959. The inhibitory effect of strophanthidin on secretion by isolated gastric mucosa. J. Gen. Physiol. 42:1233–1239.PubMedGoogle Scholar
  22. 22.
    Culp, D. J., and J. G. Forte. 1981. An enriched preparation of basolateral plasma membranes from gastric glandular cells. J. Membr.Biol. 59:135–142.PubMedGoogle Scholar
  23. 23.
    Culp, D. J., J. M. Wolosin, A. H. Soil, and J. G. Forte. 1983. Muscarinic receptors and guanylate cyclase in mammalian gastric glandular cells. Am. J. Physiol. 245.G760–G768.Google Scholar
  24. 24.
    Davenport, H. W. 1962. Effect of ouabain on acid secretion and electrolyte content of frog gastric mucosa. Proc. Soc. Exp. Biol. Med. 110:613–615.PubMedGoogle Scholar
  25. 25.
    Davenport, H. W., and F. Alzamora. 1962. Sodium, potassium, chloride and water in frog gastric mucosa. Am. J. Physiol. 202:711–715.PubMedGoogle Scholar
  26. 26.
    Davies, R. E. 1948. Hydrochloric acid production by isolated gastric mucosa. Biochem. J. 42:609–621.Google Scholar
  27. 27.
    Davies, R. E. 1951. The mechanism of hydrochloric acid production by the stomach. Biol. Rev. 26:87–120.Google Scholar
  28. 28.
    Davis, T. L., J. R. Rutledge, and W. S. Rehm. 1963. Effect of potassium on secretion and potential of frog’s gastric mucosa in Cl-free solutions. Am. J. Physiol. 205:873–877.PubMedGoogle Scholar
  29. 29.
    Davis, T. L., J. R. Rutledge, D. C. Keesee, F. J. Bajandes, and W. S. Rehm. 1965. Acid secretion, potential difference and resistance of frog stomach in K+-free solutions. Am. J. Physiol. 209:146–152.Google Scholar
  30. 30.
    Diamond, J. M., and T. E. Machen. 1983. Impedance analysis in epithelia and the problem of gastric acid secretion. J. Membr. Biol. 72:17–41.PubMedGoogle Scholar
  31. 31.
    Durbin, R. P. 1964. Anion requirements for gastric acid secretion. J. Gen. Physiol. 47:735–748.PubMedGoogle Scholar
  32. 32.
    Durbin, R. P. 1967. Electrical potential difference of the gastric mucosa. In: Handbook of Physiology, Section 6, Volume 2. C. F. Code, ed. American Physiological Society, Washington, D.C. pp. 879–888.Google Scholar
  33. 33.
    Durbin, R. P., and E. Heinz. 1958. Electromotive chloride transport and gastric acid secretion in the frog. J. Gen. Physiol. 41:1035–1047.PubMedGoogle Scholar
  34. 34.
    Durbin, R. P., and H. F. Helander. 1978. Distribution of osmotic flow in stomach and gall-bladder. Biochim. Biophys. Acta 513:179–181.PubMedGoogle Scholar
  35. 35.
    Ekblad, E. B. M. 1980. Increase of intracellular pH in secreting frog gastric mucosa. Biochim. Biophys. Acta 632:375–385.PubMedGoogle Scholar
  36. 36.
    Eveloff, J., R. Kinne, E. Kinne-Safran, H. Murer, P. Silver, F. H. Epstein, J. Stoff and W. B. Kinter. 1980. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pfluegers Arch. 378:87–92.Google Scholar
  37. 37.
    Flemstrom, G. 1971. Na+ transport and impedance properties of the isolated frog gastric mucosa at different O2 tensions. Biochim. Biophys. Acta 225:35–45.PubMedGoogle Scholar
  38. 38.
    Flemstrom, G. 1977. Active alkalinization by amphibian gastric fundic mucosa in vitro. Am. J. Physiol. 233:E1–E12.PubMedGoogle Scholar
  39. 39.
    Flemstrom, G., and A. Garner. 1982. Gastroduodenal HCO3 transport: Characteristics and proposed role in acidity regulation and mucosal protection. Am. J. Physiol. 242:G183–G193.PubMedGoogle Scholar
  40. 40.
    Flemstrom, G., J. R. Heylings, and A. Garner. 1982. Gastric and duodenal HCO3 transport in vitro: Effects of hormones and local transmitters. Am. J. Physiol. 242:G100–G110.PubMedGoogle Scholar
  41. 41.
    Forte, J. G. 1969. Three components of Cl flux across isolated bullfrog gastric mucosa. Am. J. Physiol. 216:167–174.PubMedGoogle Scholar
  42. 42.
    Forte, J. G., P. H. Adams, and R. E. Davies. 1963. The source of the gastric mucosal potential difference. Nature (London) 197:874–876.Google Scholar
  43. 43.
    Forte, J. G., P. H. Adams, and R. E. Davies. 1965. Acid secretion and phosphate metabolism in bullfrog gastric mucosa. Biochim. Biophys. Acta 104:25–38.PubMedGoogle Scholar
  44. 44.
    Forte, J. G., J. A. Black, T. M. Forte, T. E. Machen, and J. M. Wolosin. 1981. Ultrastructural changes related to functional activity in gastric oxyntic cells. Am. J. Physiol. 241:G349–G358.PubMedGoogle Scholar
  45. 45.
    Forte, J. G., T. M. Forte, and P. Saltman. 1967. K+-stimulated phosphatase in microsomes isolated from gastric mucosa. J. Cell. Physiol. 69:293–304.PubMedGoogle Scholar
  46. 46.
    Forte, J. G., A. L. Ganser, R. Beesley, and T. M. Forte. 1975. Unique enzymes of purified microsomes from pig fundic mucosa. Gastroenterology 69:175–189.PubMedGoogle Scholar
  47. 47.
    Forte, J. G., A. L. Ganser, and T. K. Ray. 1976. The K+-stimulated ATPase from oxyntic glands of gastric mucosa. In: Gastric Hydrogen Ion Secretion. D. K. Kasbekar, G. Sachs, and W. Rehm, eds. Dekker, New York. pp. 302–330.Google Scholar
  48. 48.
    Forte, J. G., and H. C. Lee. 1977. Gastric adenosine triphosphatases: A review of their possible role in HCl secretion. Gastroenterology 73:921–926.PubMedGoogle Scholar
  49. 49.
    Forte, J. G., and T. E. Machen. 1975. Transport and electrical phenomena in resting and secreting piglet gastric mucosa. J. Physiol. (London) 244:33–51.Google Scholar
  50. 50.
    Forte, J. G., and L. Solberg. 1973. Pharmacology of isolated amphibian gastric mucosa. In: International Encyclopedia of Pharmacology and Experimental Therapeutics, Section 29A, Volume 1, Pergamon Press, Elmsford, N.Y. pp. 195–260.Google Scholar
  51. 51.
    Forte, T. M., T. E. Machen, and J. G. Forte. 1977. Ultrastructural changes in oxyntic cells associated with secretory function: A membrane recycling hypothesis. Gastroenterology 73:941–955.PubMedGoogle Scholar
  52. 52.
    Frizzell, R. A. 1976. Active chloride transport by rabbit colon: Calcium-dependent stimulation by ionophore A23187. J. Membr. Biol. 35:175–187.Google Scholar
  53. 53.
    Frizzell, R. A., M. Field, and S. G. Schultz. 1979. Sodium-coupled chloride transport in epithelial tissues. Am. J. Phvsiol. 236:F1–F8.Google Scholar
  54. 54.
    Fromter, E., and J. M. Diamond. 1972. Route of passive ion permeation in epithelia. Nature New Biol. 235:9–13.PubMedGoogle Scholar
  55. 55.
    Ganser, A. L., and J. G. Forte. 1973. K+-stimulated ATPase in purified microsomes of bullfrog oxyntic cells. Biochim. Biophvs. Acta 307:169–180.Google Scholar
  56. 56.
    Gibert, A. J., and S. J. Hersey. 1982. Morphometric analysis of parietal cell membrane transformations in isolated gastric glands. J. Membr. Biol. 67:113–124.PubMedGoogle Scholar
  57. 57.
    Grinstein, S., and D. Erlij. 1978. Intracellular calcium and the regulation of sodium transport in frog skin. Proc. R. Soc. London Ser. B 202:353–360.Google Scholar
  58. 58.
    Grossman, M. I., and S. J. Konturek. 1974. Inhibition of acid secretion in dog by metiamide, a histamine antagonist acting on H2 receptors. Gastroenterology 66:517–521.PubMedGoogle Scholar
  59. 59.
    Gutknecht, J., and A. Walter. 1982. SCN and HSCN transport through lipid bilayer membranes: A model for SCN inhibition of gastric acid secretion. Biochim. Biophys. Acta 685:233–240.PubMedGoogle Scholar
  60. 60.
    Haas, M., W. F. Schmidt, and T. J. McManus. 1982. Cate-cholamine-stimulated transport in duck red cells: Gradient effects in electrically neutral [Na + K + 2C1] co-transport. J. Gen. Phvsiol. 80:125–147.Google Scholar
  61. 61.
    Hansen, T., J. F. G. Siegers, and S. L. Bonting. 1975. Gastric acid secretion in the lizard: Ionic requirements and effects of inhibitors. Biochim. Biophys. Acta 382:590–608.PubMedGoogle Scholar
  62. 62.
    Harris, J. B., and I.S. Edelman. 1964. Chemical concentration gradients and electrical properties of gastric mucosa. Am. J. Phvsiol. 206:769–782.Google Scholar
  63. 63.
    Harris, J. B., K. Nigon, and D. Alonso. 1969. Adenosine 3′, 5′-monophosphate: Intracellular mediator for methylxantine stimulation of gastric secretion. Gastroenterology 57:377–382.PubMedGoogle Scholar
  64. 64.
    Heinz, E., and R. P. Durbin. 1957. Studies of chloride transport in the gastric mucosa of the frog. J. Gen. Physiol. 41:101–117.PubMedGoogle Scholar
  65. 65.
    Heinz, E., and K. J. Obrink. 1954. Acid formation and acidity control in the stomach. Physiol. Rev. 34:643–673.PubMedGoogle Scholar
  66. 66.
    Helander, H. F. 1981. The cells of the gastric mucosa. Int. Rev. Cytol. 70:279–351.Google Scholar
  67. 67.
    Helander, H. F., and R. P. Durbin. 1982. Localization of ouabain binding sites in frog gastric mucosa. Am. J. Physiol. 243:G297–G303.PubMedGoogle Scholar
  68. 68.
    Helander, H. F., and B. I. Hirschowitz. 1972. Quantitative ultra-structural studies on gastric parietal cells. Gastroenterology 63:951–961.PubMedGoogle Scholar
  69. 69.
    Hersey, S. J. 1979. Intracellular pH measurements in gastric mucosa. Am. J. Physiol. 237:E82–E89.PubMedGoogle Scholar
  70. 70.
    Hersey, S. J. 1981. Histamine receptor in bullfrog gastric mucosa. Am. J. Physiol. 241:G93–G97.PubMedGoogle Scholar
  71. 71.
    Hodgkin, A. L. 1951. The ionic basis of electrical activity in nerve and muscle. Biol. Rev. 26:339–409.Google Scholar
  72. 72.
    Hogben, C. A. M. 1955. Active transport of chloride by isolated frog gastric epithelium: Origin of the gastric mucosa potential. Am. J. Physiol. 180:641–649.PubMedGoogle Scholar
  73. 73.
    Hogben, C. A. M. 1967. The chloride effect of carbonic anhydrase inhibitors. Mol. Pharmacol. 3:318–326.PubMedGoogle Scholar
  74. 74.
    Hogben, C. A. M. 1968. Observations on ionic movement through the gastric mucosa. J. Gen. Physiol. 51:2485–2495.Google Scholar
  75. 75.
    Hollander, F. 1954. The two-component mucous barrier. Arch. Intern. Med. 94:107–120.Google Scholar
  76. 76.
    Ito, S. 1967. Anatomic structure of the gastric mucosa. In: Handbook of Physiology, Section 6, Volume 2. C. F. Code, ed. American Psychological Society, Washington, D.C. p. 607.Google Scholar
  77. 77.
    Ito, S., and G. C. Schofield. 1974. Studies on the depletion and accumulation of microvilli and changes in the tubulovesicular compartment of mouse parietal cells in relation to gastric acid secretion. J. Cell Biol. 63:364–382.PubMedGoogle Scholar
  78. 78.
    Jiron, C., M. C. Ruiz, and F. Michelangeli. 1981. Role of Ca2+ in stimulus-secretion coupling in the gastric oxyntic cell: Effect of A23187. Cell Calcium 2:573–585.Google Scholar
  79. 79.
    Kasbekar, D. K., and H. Chugani. 1976. Role of calcium ion in in vitro gastric acid secretion. In: Gastric Hydrogen Ion Secretion. D. K. Kasbekar, G. Sachs, and W. S. Rehm, eds. Dekker, New York. pp. 187–211.Google Scholar
  80. 80.
    Kasbekar, D. K., and R. P. Durbin. 1965. An adenosine triphosphatase from frog gastric mucosa. Biochim. Biophys. Acta 105:472–482.PubMedGoogle Scholar
  81. 81.
    Kasbekar, D. K., and G. S. Gordon. 1979. The effects of colchicine and vinblastine on in vitro gastric secretion. Am. J. Physiol. 236:E550–E555.PubMedGoogle Scholar
  82. 82.
    Kinsella, J. L., and P. S. Aronson. 1981. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 241:F374–F379.PubMedGoogle Scholar
  83. 83.
    Klyce, S. D., and R. K. S. Wong. 1977. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J. Physiol. (London) 266:777–799.Google Scholar
  84. 84.
    Koefoed-Johnsen, V., and H. H. Ussing. 1958. The nature of the frog skin potential. Acta Physiol Scand. 42:298–308.PubMedGoogle Scholar
  85. 85.
    Koelz, H. R., G. Sachs, and T. Berglindh. 1981. Cation effects on acid secretion in rabbit gastric glands. Am. J. Physiol. 241:G431–G442.PubMedGoogle Scholar
  86. 86.
    Lee, J., G. Simpson, and P. Scholes. 1974. An ATPase from dog gastric mucosa; changes of outer pH in suspensions of membrane vesicles accompanying ATP hydrolysis. Biochem. Biophys. Res. Commun. 60:825–832.PubMedGoogle Scholar
  87. 87.
    Lee, H. C., H. Breitbart, M. Berman, and J. G. Forte. 1979. Potassium-stimulated ATPase activity and H+ transport in gastric microsomal vesicles. Biochim. Biophys. Acta 553:107–131.PubMedGoogle Scholar
  88. 88.
    Lee, H. C., and J. G. Forte. 1978. A study of H+ transport in gastric microsomal vesicles using fluorescent probes. Biochim. Biophys. Acta 508:339–356.PubMedGoogle Scholar
  89. 89.
    Lee, H. C., A. Quintanilha, and J. G. Forte. 1976. Energized gastric microsomal membrane vesicles—An index using metachromatic dyes. Biochem. Biophys. Res. Commun. 72:1179–1186.PubMedGoogle Scholar
  90. 90.
    Liedtke, C. M., and U. Hopfer. 1982. Mechanism of Cl translocation across small intestinal brush-border. I. Absence of Na+-Cl contransport. Am. J. Physiol. 242:G263–G271.PubMedGoogle Scholar
  91. 91.
    Liedtke, C. M., and U. Hopfer. 1982. Mechanism of Cl translocation across small intestinal brush-border. II. Demonstration of Cl-OH exchange and Cl conductance. Am. J. Physiol. 242:G272–G280.PubMedGoogle Scholar
  92. 92.
    Limlomwongse, L., and J. G. Forte. 1970. Developmental changes of ATPase and K+-stimulated phosphatase in microsome of tadpole gastric mucosa. Am. J. Physiol. 219:1717–1722.PubMedGoogle Scholar
  93. 93.
    Lindemann, B., and W. van Driessche. 1977. Sodium-specific channels of frog skin are pores: Current fluctuations reveal high turnover. Science 195:292–294.PubMedGoogle Scholar
  94. 94.
    Logsdon, C.D., and T. E. Machen. 1981. Involvement of extracellular Ca2+ in gastric stimulation. Am. J. Physiol. 241:G365–G375.PubMedGoogle Scholar
  95. 95.
    Logsdon, C.D., and T. E. Machen. 1982. Ionic requirements for H+ secretion and membrane elaboration in frog oxyntic cells. Am. J. Physiol. 242:G388–G399.PubMedGoogle Scholar
  96. 96.
    Machen, T. E., and J. G. Forte. 1978. Gastric secretion. In: Membrane Transport in Biology, Volume IV B. G. Giebisch, D. C Tosteson, and H.H. Ussing, eds. Springer-Verlag, Berlin. pp. 693–747.Google Scholar
  97. 97.
    Machen, T. E., and J. G. Forge. 1983. Anion secretion by gastric mucosa. In: Chloride Transport Coupling in Biological Membranes and Epithelia. G. Gerencser, ed. Elsevier, Amsterdam. pp. 415–446.Google Scholar
  98. 98.
    Machen, T. E., and W. L. McLennan. 1980. Na+-dependent H+ and Cl secretion in in vitro frog gastric mucosa. Am. J. Physiol. 238:G403–G413.PubMedGoogle Scholar
  99. 99.
    Machen, T. E., W. McLennan, and T. Zeuthen. 1980. Elec-trogenic Cl secretion by resting gastric mucosa: Na-Cl co-transport model. In: Hydrogen Ion Transport in Epithelia. I. Schultz, K. J. Ullrich, G. Sachs, and J. Forte, eds. Elsevier, Amsterdam, pp. 379–390.Google Scholar
  100. 100.
    Machen, T. E., M. J. Rutten, and E. B. M. Ekblad. 1982. Histamine, cAMP, and activation of piglet gastric mucosa. Am. J. Physiol. 242:G79–G84.PubMedGoogle Scholar
  101. 101.
    Machen, T. E., W. Silen, and J. G. Forte. 1978. Na+ transport by mammalian stomach. Am. J. Physiol. 234:E228–E235.PubMedGoogle Scholar
  102. 102.
    Machen, T. E., and T. Zeuthen. 1982. Cl transport by gastric mucosa: Cellular Cl activity and membrane permeability. Proc. R. Soc. London Ser. B 299:559–573.Google Scholar
  103. 103.
    Malinowska, D. H., H. R. Koelz, S. J. Hersey, and G. Sachs. 1981. Properties of the gastric proton pump in unstimulated permeable gastric glands. Proc. Natl. Acad. Sci. USA 78:5908–5912.PubMedGoogle Scholar
  104. 104.
    Manning, E. C., and T. E. Machen. 1983. Effects of bicarbonate and pH on chloride transport by gastric mucosa. Am. J. Physiol. 243:G60–G68.Google Scholar
  105. 105.
    McLennan, W. L., T. E. Machen, and T. Zeuthen. 1980. Ba2+ inhibition of electrogenic Cl secretion in in vitro frog and piglet gastric mucosa. Am. J. Physiol. 239:G151–G160.PubMedGoogle Scholar
  106. 106.
    Means, A. R., J. S. Tash, and J. G. Chafouleas. 1982. Physiological implications of the presence, distribution and regulation of calmodulin in eukaryotic cells. Physiol. Rev. 62:1–39.PubMedGoogle Scholar
  107. 107.
    Musch, M. W., S. A. Orellana, L. S. Kimberg, M. Field, D. R. Halm, E. J. Krasny, and R. A. Frizzell. 1982. Na+-, K+-, Cl and CO-transport in the intestine of a marine teleost. Nature (London) 300:351–353.Google Scholar
  108. 108.
    Nakajima, S., B. I. Hirschowitz, and G. Sachs. 1971. Studies of adenyl cyclase in Necturus gastric mucosa. Arch. Biochem. Biophys. 143:123–126.PubMedGoogle Scholar
  109. 109.
    O’Callaghan, J., S. S. Sanders, R. L. Shoemaker, and W. S. Rehm. 1974. Barium and K+ on surface and tubular cell resistances of frog stomach with microelectrodes. Am. J. Physiol. 227:273–288.PubMedGoogle Scholar
  110. 110.
    Palmer, L. G. 1982. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J. Membr. Biol. 67:91–98.PubMedGoogle Scholar
  111. 111.
    Ray, T. K., and J. G. Forte. 1974. Adenyl cyclase of oxyntic cells. Biochim. Biophys. Acta 363:320–339.PubMedGoogle Scholar
  112. 112.
    Ray, T. K., and J. G. Forte. 1974. Soluble and bound protein kinases of rabbit gastric secretory cells. Biochem. Biophys. Res. Comm. 61:1199–1206.PubMedGoogle Scholar
  113. 113.
    Ray, T. K., and J. G. Forte. 1976. Studies on the phosphorylated intermediate of a K+-stimulated ATPase from rabbit gastric mucosa. Biochim. Biophys. Acta 443:451–467.PubMedGoogle Scholar
  114. 114.
    Reenstra, W. W., and J. G. Forte. 1983. Action of thiocyanate on pH gradient formation by gastric microsomal vesicles. Am. J. Physiol 244:G308–G313.PubMedGoogle Scholar
  115. 115.
    Rehm, W. S. 1945. The effect of electric current on gastric secretion and potential. Am. J. Physiol. 144:115–125.Google Scholar
  116. 116.
    Rehm, W. S. 1950. A theory of the formation of HCl by the stomach. Gastroenterology 14:401–417.Google Scholar
  117. 117.
    Rehm, W. S. 1965. Electrophysiology of the gastric mucosa in chloride-free solutions. Fed. Proc. 24:1387–1395.PubMedGoogle Scholar
  118. 118.
    Rehm, W. S. 1967. Ion permeability and electrical resistance of the frog’s gastric mucosa. Fed. Proc. 26:1303–1313.PubMedGoogle Scholar
  119. 119.
    Rehm, W. S., T. C. Chu, M. Schwartz, and G. Carrasquer. 1983. Mechanism responsible for thiocyanate increase in resistance of in vitro frog gastric mucosa. Am. J. Physiol. 245:G143–G156.PubMedGoogle Scholar
  120. 120.
    Rehm, W. S., and M. E. LeFevre. 1965. Effect of dinitrophenol on potential, resistance, and H+ rate of frog stomach. Am. J. Physiol. 208:922–930.PubMedGoogle Scholar
  121. 121.
    Rehm, W. S., and S. S. Sanders. 1975. Implications of the neutral C1-HCO3 T exchange mechanism in gastric mucosa. Ann. N.Y. Acad. Sci. 264:442–455.PubMedGoogle Scholar
  122. 122.
    Rehm, W. S., and S. S. Sanders. 1977. Electrical event during activation and inhibition of gastric HCl secretion. Gastroenterology 73:959–969.PubMedGoogle Scholar
  123. 123.
    Reimann, E. M., and N. G. Rapino. 1974. Partial purification and characterization of an adenosine 3′, 5′-monophosphate-dependent protein kinase from rabbit mucosa. Biochim. Biophys. Acta 350:201–214.PubMedGoogle Scholar
  124. 124.
    Robinson, G. A., R. W. Butcher, and E. W. Sutherland. 1971. Cyclic AMP. Academic Press, New York.Google Scholar
  125. 125.
    Ross, I. N., H. M. M. Baharai, and L. A. Turnberg. 1981. The pH gradient across mucus adherent to rat fundic mucosa in vivo and the effects of potential damaging agents. Gastroenterology 81:713–718.PubMedGoogle Scholar
  126. 126.
    Rutten, M. J., and T. E. Machen. 1981. Histamine, cyclic AMP and activation events in piglet gastric mucosa. Gastroenterology 80:928-937..Google Scholar
  127. 127.
    Saccomani, G., H. F. Helander, S. Crago, H. H. Chang, and G. Sachs. 1979. Characterization of gastric mucosal membranes. X. Immunological studies of gastric (H+ + K+ )-ATPase. J. Cell Biol. 83:271–283.PubMedGoogle Scholar
  128. 128.
    Sachs, G., H. Chang, E. Rabon, R. Schackmann, M. Lewin, and G. Saccomani. 1976. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J. Biol. Chem. 251:7690–7698.PubMedGoogle Scholar
  129. 129.
    Sachs, G., H. Chang, E. Rabon, R. Schackmann, H. M. Saran, and G. Saccomani. 1977. Metabolic and membrane aspects of gastric H+ transport. Gastroenterology 73:931–940.PubMedGoogle Scholar
  130. 130.
    Sachs, G., L. D. Faller, and E. Rabon. 1982. Proton, hydroxyl transport in gastric and intestinal epithelia. J. Membr. Biol. 64:123–135.PubMedGoogle Scholar
  131. 131.
    Sanders, S. S., V. B. Haynes, and W. S. Rehm. 1973. Normal H+ rate in frog stomach in absence of exogenous CO2 and a note on pH stat method. Am. J. Physiol. 225:1311–1321.PubMedGoogle Scholar
  132. 132.
    Sanders, S. S., J. A. Pirkle, R. L. Shoemaker, and W. S. Rehm. 1978. Effects of inhibitors and weak bases on electrophysiology and secretion in frog stomach. Am. J. Physiol. 234:E120–E128.PubMedGoogle Scholar
  133. 133.
    Schackmann, R., A. Schwartz, G. Saccomani, and G. Sachs. 1977. Cation transport by gastric H+ — K+ ATPase. J. Membr. Biol. 32:361–381.PubMedGoogle Scholar
  134. 134.
    Schaltz, L. J., C. Bool, and E. M. Reimann. 1981. Phosphorylation of membranes from the rat gastric mucosa. Biochim. Biophys. Acta 673:539–551.Google Scholar
  135. 135.
    Schettino, T., and S. Curci. 1980. Intracellular potassium activity in epithelial cells of frog fundic gastric mucosa. Pfluegers Arch. 383:99–103.Google Scholar
  136. 136.
    Schiessel, R., A. Merhav, J. B. Matthews, L. A. Fleisher, A. Barzilai, and W. Silen. 1980. Role of nutrient HCO3 in protection of amphibian gastric mucosa. Am. J. Physiol. 239:G536–G542.PubMedGoogle Scholar
  137. 137.
    Schoffeniels, E. 1955. Enfluence du pH sur le transport actif de sodium a travers la peau de grenouille. Arch. Int. Physiol. Bio-chem. 63:513–530.Google Scholar
  138. 138.
    Schultz, S. G. 1981. Homocellular regulation mechanism in sodium-transporting epithelia: Avoidance of extinction by “flush-through.” Am. J. Physiol. 241:F579–F590.PubMedGoogle Scholar
  139. 139.
    Sedar, A. W., and J. G. Forte. 1964. Effects of calcium depletion on the junctional complex between oxyntic cells of gastric glands. J. Cell Biol. 22:173–188.PubMedGoogle Scholar
  140. 140.
    Silen, W., T. E. Machen, and J. G. Forte. 1975. Acid-base balance in amphibian gastric mucosa. Am. J. Physiol. 229:721–730.PubMedGoogle Scholar
  141. 141.
    Smolka, A., H. F. Helander, and G. Sachs. 1984. Monoclonal antibodies against the gastric (H+ — K+ )-ATPase. Am. J. Physiol. 245:G589–G596.Google Scholar
  142. 142.
    Soll, A. H. 1978. The actions of secretagogues on oxygen uptake by isolated mammalian parietal cells. J. Clin. Invest. 61:370–380.PubMedGoogle Scholar
  143. 143.
    Soll, A. H. 1978. The interactions of histamine with gastrin and carbamylcholine on oxygen uptake by isolated mammalian parietal cells. J. Clin. Invest. 61:381–389.PubMedGoogle Scholar
  144. 144.
    Soll, A. H. 1981. Extracellular calcium and cholinergic stimulation of isolated canine parietal cells. J. Clin. Invest. 68:270–278.PubMedGoogle Scholar
  145. 145.
    Soll, A. H. 1982. Potentiating interactions of gastric stimulants on [14C]aminopyrine accumulation by isolated canine parietal cells. Gastroenterology 83:216–223.PubMedGoogle Scholar
  146. 146.
    Soll, A. H., and A. Wollin. 1979. Histamine and cyclic AMP in isolated canine parietal cells. Am. J. Physiol. 237:E444–E450.PubMedGoogle Scholar
  147. 147.
    Spenney, J. G., R. L. Shoemaker, and G. Sachs. 1974. Micro-electrode studies of fundic gastric mucosa: Cellular coupling and shunt conductance. J. Membr. Biol. 15:105–128.Google Scholar
  148. 148.
    Takeuchi, K., A. Merhav, and W. Silen. 1982. Mechanism of luminal alkalinization by frog fundic mucosa. Am. J. Physiol. 243:G377–G388.PubMedGoogle Scholar
  149. 149.
    Tanaka, Y., P. De Camilli, and J. Meldolesi. 1980. Membrane interactions between secretion granules and plasmalemma in three exocrine glands. J. Cell Biol. 84:438–453.PubMedGoogle Scholar
  150. 150.
    Teorell, T. 1951. The acid-base balance of the secreting isolated gastric mucosa. J. Physiol. (London) 114:267–276.Google Scholar
  151. 151.
    Thompson, W. J., L. K. Chang, and G. C. Rosenfeld. 1980. Histamine regulation of adenylyl cyclase of enriched rat gastric parietal cells. Am. J. Physiol. 240:G76–G84.Google Scholar
  152. 152.
    Tripathi, S., and P. K. Rangachari. 1980. In vitro primate gastric mucosa: Electrical characteristics. Am. J. Physiol. 239:G77–G82.PubMedGoogle Scholar
  153. 153.
    Turnheim, K., R. A. Frizzell, and S. G. Schultz. 1978. Interaction between cell sodium and the amiloride-sensitive sodium entry step in the rabbit colon. J. Membr. Biol. 39:233–256.PubMedGoogle Scholar
  154. 154.
    Ussing, H. H. 1949. The distinction by means of tracers between active transport and diffusion: The transfer of iodide across the isolated frog skin. Acta Physiol. Scand. 19:43–56.Google Scholar
  155. 155.
    Villegas, L. 1962. Cellular location of the electrical potential difference in frog gastric mucosa. Biochim. Biophys. Acta 64:359–367.PubMedGoogle Scholar
  156. 156.
    Walderhaug, M. O., G. Saccomani, G. Sachs, and R. L. Post. 1982. The active site of phosphorylation of hog gastric adenosine triphosphatase. Fed. Proc. 41:1369a.Google Scholar
  157. 157.
    Wallmark, B., H. B. Stewart, E. Rabon, G. Saccomani, and G. Sachs. 1980. The catalytic cycle of gastric (H+ — K+ )-ATPase. J. Biol. Chem. 255:5313–5319.PubMedGoogle Scholar
  158. 158.
    Warnock, D. G., and J. Eveloff. 1982. NaCl entry mechanisms in the luminal membrane of the renal tubule. Am. J. Physiol. 242:F561–F574.PubMedGoogle Scholar
  159. 159.
    Weinman, S. A., and L. Reuss. 1982. Na+-H+ exchange at the apical membrane of Necturus gallbladder: Extracellular and intracellular pH studies. J. Gen. Physiol. 80:299–321.PubMedGoogle Scholar
  160. 160.
    Williams, J. A. 1980. Regulation of pancreatic acinar cell function by intracellular calcium. Am. J. Physiol. 238:G269–G279.PubMedGoogle Scholar
  161. 161.
    Williams, S. E., and L. A. Turnberg. 1981. Demonstration of a pH gradient across mucus adherent to rabbit gastric mucosa: Evidence for a mucus-bicarbonate barrier. Gut 22:94–96.PubMedGoogle Scholar
  162. 162.
    Wolosin, J. M., and J. G. Forte. 1981. Functional differences between K+-ATPase membranes isolated from resting or stimulated rabbit fundic mucosa. FEBS Lett. 125:208–212.PubMedGoogle Scholar
  163. 163.
    Wolosin, J. M., and J. G. Forte. 1981. Changes in the membrane environment of the (K+ + H+ )-ATPase following stimulation of the gastric oxyntic cell. J. Biol. Chem. 256:3149–3152.PubMedGoogle Scholar
  164. 164.
    Wolosin, J. M., and J. G. Forte. 1981. Isolation of the secreting oxyntic cell apical membrane: Identification of an electroneutral KCl symport. In Membrane Biophysics: Structures and Function inEpithelia. M. Dinno and A. Callahan, eds. Liss, New York. pp. 189–204.Google Scholar
  165. 165.
    Wolosin, J. M., and J. G. Forte. 1983. Kinetic properties of KCl transport at the secreting apical membrane of the oxyntic cell. J. Membr.Biol. 71:195–207.PubMedGoogle Scholar
  166. 166.
    Wolosin, J. M., and J. G. Forte. 1983. Anion exchange in oxyntic cell apical membrane; relationship to thiocyanate inhibition of acid secretion. J. Membr. Biol. in press.Google Scholar
  167. 167.
    Wolosin, J. M., and J. G. Forte. 1984. Stimulation of oxyntic cell triggers K+ and Cl conductances in apical (H+ + K+ )-ATPase membrane. Am. J. Physiol. 246:C537–C545.PubMedGoogle Scholar
  168. 168.
    Wright, G. H. 1962. Net transfers of water, sodium, chloride and hydrogen ions across the gastric mucosa of the rabbit foetus. J. Physiol. (London) 163:281–293.Google Scholar
  169. 169.
    Zeiske, W., T. E. Machen, and W. van Driessche. 1983. Cl-and K+-related fluctuations of the ionic current through oxyntic cells in frog gastric mucosa. Am. J. Physiol. 245:G797–G807.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • John G. Forte
    • 1
  • Terry E. Machen
    • 1
  1. 1.Department of Physiology-AnatomyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations