Advertisement

Ion Transport through Ligand-Gated Channels

  • Richard W. Aldrich
  • Vincent E. Dionne
  • Edward Hawrot
  • Charles F. Stevens

Abstract

Channels are integral membrane proteins that permit charged species to traverse the lipid bilayers of cells by providing a water-filled pathway through which ions may pass. All cell types face the problem of how to regulate the transport of ions across the inhospitable hydrophobic environment of the cell membrane, and they all solve this problem in part by employing channels of various sorts. Channels generally have several characteristics:
  1. 1.

    Ion flow through channels is a passive—though possibly complex—process that derives the energy for ion flux solely from concentration gradients of the ion species moving through the channel. Ion motion is much like that in free diffusion but may be complicated by ion-ion and ion-protein interactions.

     
  2. 2.

    Channels are selective in that only certain ion species are permitted to pass through. Different types of channels exist, and each channel type generally has its characteristic selectivity. For example, one channel species might allow a Na+ flux and exclude K+ ions whereas another sort of channel would accept K+ ions and not Na+ ions.

     
  3. 3.

    Ion flux is regulated by the channel. A usual form of regulation is termed gating, in which case a pore through which ions can pass is opened and closed by conformational changes in the channel protein. Another form of regulation occurs when a cell controls the number and distribution of channels by metabolic or other means.

     

Keywords

Acetylcholine Receptor Garter Snake Choline Receptor Nicotinic AChR Agonist Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Karlin, A. 1980. Molecular properties of nicotinic acetylcholine receptors. In: The Cell Surface and Neuronal function. C. W. Cotman, G. Poste, and G. L. Nicholson, eds. Elsevier/North-Holland, Amsterdam, pp. 191–260.Google Scholar
  2. 2.
    Conti-Tronconi, B. M., M. W. Hunkapiller, J. M. Lindstrom, and M. A. Raftery. 1982. Subunit structure of the acetylcholine receptor from Electrophorus electricus. Proc. Natl. Acad. Sci. USA 79:6489–6493.PubMedGoogle Scholar
  3. 3.
    Lindstrom, J., S. Tzartos, W. Gullick, S. Hochschwender, L. Swanson, M. Jacob, P. Sargent, and M. Montai. 1983. Use of monoclonal antibodies to study acetylcholine receptors from electric organs, muscles and brain and the autoimmune response to receptor in myasthenia gravis. Cold Spring Harbor Symp. Quant. Biol. 48:89–100.PubMedGoogle Scholar
  4. 4.
    Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, Y. Furutani, T. Hirose, M. Asai, S. Inayama, T. Miyata, and S. Numa. 1982. Primary structure of alpha-subunit precursor of Torpedo califor-nica acetylcholine receptor deduced from cDNA sequence. Nature (London) 299:191–191.Google Scholar
  5. 5.
    Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, T. Hirose, M. Asai, H. Takashima, S. Inayama, T. Miyata, and S. Numa. 1983. Primary structures of beta-and gamma-subunit precursors of Torpedo californica acetylcholine receptor deduced from cDNA sequences. Nature (London) 301:251–255.Google Scholar
  6. 6.
    Noda, M., H. Takahashi, T. Tanabe, M. Toyosato, S. Kikyotani, T. Miyata, and S. Numa. 1983. Structural homology of Torpedo californica acetylcholine receptor subunits. Nature (London) 302:528–532.Google Scholar
  7. 7.
    Claudio, T., M. Ballivet, J. Patrick, and S. Heinemann. 1983. Nucleotide and deduced amino acid sequences of Torpedo californica acetylcholine receptor gamma subunit. Proc. Natl. Acad. Sci. USA 80:1111–1115.PubMedGoogle Scholar
  8. 8.
    Sumikawa, K., M. Houghton, J. C. Smith, L. Bell, B. M. Richards, and E. A. Barnard. 1982. The molecular cloning and characterisation of cDNA coding for the alpha subunit of the acetylcholine receptor. Nucleic Acid Res. 10:5809–5822.PubMedGoogle Scholar
  9. 9.
    Devillers-Thiery, A., J. Giraudat, M. Bentaboulet, and J. P. Changeux. 1983. Complete mRNA coding sequence of the acetylcholine binding alpha-subunit of Torpedo marmorata acetylcholine receptor: A model for the transmembrane organization of the polypeptide chain. Proc. Natl. Acad. Sci. USA 80:2067–2071.PubMedGoogle Scholar
  10. 10.
    Lindstrom, J., J. Merlie, and G. Yogeeswaran. 1979. Biochemical properties of acetylcholine receptor subunits from Torpedo californica. Biochemistry 18:4465–4470.PubMedGoogle Scholar
  11. 11.
    Vandlen, R. L., W. C. S. Wu, J. C. Eisenach, and M. A. Raftery. 1979. Studies of the composition of purified Torpedo californica acetylcholine and of its subunits. Biochemistry 18:1845–1854.PubMedGoogle Scholar
  12. 12.
    Reynolds, J., and A. Karlin. 1978. Molecular weight in detergent solution of acetylcholine receptor in Torpedo californica. Biochemistry 17:2035–2038.PubMedGoogle Scholar
  13. 13.
    Lindstrom, J., R. Anholt, B. Einarson, A. Engel, M. Osame, and M. Montai. 1980. Purification of acetylcholine receptors, reconstitution into lipid vesicles and study of agonist induced cation channel regulation. J. Biol. Chem. 255:8340–8350.PubMedGoogle Scholar
  14. 14.
    Wu, W. C. S., H. P. H. Moore, and M. A. Raftery. 1981. Quantitation of cation transport by reconstituted membrane vesicles containing purified acetylcholine receptor. Proc. Natl. Acad. Sci. USA 78:775–779.PubMedGoogle Scholar
  15. 15.
    Froehner, S. C., and S. Rafto. 1979. Comparison of the subunits of Torpedo californica acetylcholine receptor by peptide mapping. Biochemistry 18:301–307.PubMedGoogle Scholar
  16. 16.
    Raftery, M. A., M. W. Hunkapiller, C. D. Strader, and L. E. Hood. 1980. Acetylcholine receptor: Complex of homologous subunits. Science 208:1454–1457.PubMedGoogle Scholar
  17. 17.
    Lindstrom, J., B. Walter, and B. Einarson, 1979. Immuno-chem-ical similarities between subunits of acetylcholine receptors from Torpedo, Electrophorus, and mammalian muscle. Biochemistry 18:4470–4480.PubMedGoogle Scholar
  18. 18.
    Gullick, W., and J. Lindstrom. 1983. Mapping the binding of monoclonal antibodies to the acetylcholine receptor from Torpedo californica. Biochemistry 22:3312–3320.PubMedGoogle Scholar
  19. 19.
    Karlin, A. 1983. The anatomy of a receptor. Neurosci. Comment. 1:111–123.Google Scholar
  20. 20.
    Finer-Moore, J., and R. M. Stroud. 1984. Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc. Natl. Acad. Sci. USA 81:155–159.PubMedGoogle Scholar
  21. 21.
    Cartaud, J. E., L. Bendetti, J. B. Cohen, J. C. Meunier, and J. P. Changeux. 1973. Presence of a lattice structure in membrane fragments rich in nicotinic receptor protein from the electric organ of Torpedo marmorata. FEBS Lett. 33:109–113.PubMedGoogle Scholar
  22. 22.
    Nickel, E., and L. T. Potter. 1973. Ultrastructure of isolated membranes of Torpedo electric tissue. Brain Res. 57:508–517.PubMedGoogle Scholar
  23. 23.
    Klymkowsky, M. W., and R. M. Stroud. 1979. Immunospecific identification and three-dimensional structure of a membrane-bound acetylcholine receptor from Torpedo californica. J. Mol. Biol. 128:319–334.PubMedGoogle Scholar
  24. 24.
    Kistler, J., R. M. Stroud, M. W. Klymkowsky, R. A. Lalancette, and R. H. Fairclough. 1982. Structure and function of an acetylcholine receptor. Biophys. J. 37:371–383.PubMedGoogle Scholar
  25. 25.
    Ross, M. J., M. W. Klymkowsky, D. A. Agard, and R. M. Stroud. 1977. Structural studies of a membrane bound acetylcholine receptor from Torpedo californica. J. Mol. Biol. 116:635–659.PubMedGoogle Scholar
  26. 26.
    St. John, P. A., S. C. Froehner, D. A. Goodenough, and J. B. Cohen. 1982. Nicotinic postsynaptic membranes from Torpedo: Sidedness, permeability to macromolecules, and topography of major polypeptides. J. Cell Biol. 92:333–342.PubMedGoogle Scholar
  27. 27.
    Wennogle, L. P., and J. P. Changeux. 1980. Transmembrane orientation of proteins present in acetylcholine receptor-rich membranes from Torpedo marmorata studied by selective proteolysis. Eur. J. Biochem. 106:381–393.PubMedGoogle Scholar
  28. 28.
    Strader, C. D., and M. A. Raftery. 1980. Topographic studies of Torpedo acetylcholine receptor subunits as a transmembrane complex. Proc. Natl. Acad. Sci. USA 77:5807–5811.PubMedGoogle Scholar
  29. 29.
    Froehner, S. C. 1981. Identification of exposed and buried determinants of the membrane bound acetylcholine receptor from Torpedo californica. Biochemistry 20:4905–4515.PubMedGoogle Scholar
  30. 30.
    Anderson, D., and G. Blobel. 1981. In vitro synthesis, glycosyla-tion and membrane insertion of the four subunits of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 78:5598–5602.PubMedGoogle Scholar
  31. 31.
    Anderson, D., G. Blobel, S. Tzartos, W. Gullick, and J. Lindstrom. 1983. Transmembrane orientation of an early biosyn-thetic form of acetylcholine receptor delta subunit determined by proteolytic dissection in conjunction with monoclonal antibodies. J. Neurosci. 3:1773–1784.PubMedGoogle Scholar
  32. 32.
    Ballivet, M., J. Patrick, J. Lee, and S. Heinemann. 1982. Molecular cloning of cDNA coding for the gamma subunit of Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 79:4466–4470.PubMedGoogle Scholar
  33. 33.
    Holtzman, E., D. Wise, J. Wall, and A. Karlin. 1982. Electron microscopy of complexes of isolated acetylcholine receptor, bio-tinyl-toxin and avidin. Proc. Natl. Acad. Sci. USA 79:310–314.PubMedGoogle Scholar
  34. 34.
    Karlin, A., E. Holtzman, N. Yodh, P. Lobel, J. Wall, and J. Hainfeld. 1983. The arrangement of the subunits of the acetylcholine receptor of Torpedo californica. J. Biol. Chem. 258:6678–6681.PubMedGoogle Scholar
  35. 35.
    Hamilton, S. L., M. McLaughlin, and A. Karlin. 1977. Disulfide bond cross-linked dimer in acetylcholine receptor from Torpedo californica. Biochem. Biophys. Res. Commun. 79:692–699.PubMedGoogle Scholar
  36. 36.
    Hamilton, S. L., M. McLaughlin, and A. Karlin. 1979. Formation of disulfide-linked oligomers of acetylcholine receptor in membrane from Torpedo electric tissue. Biochemistry 18:155–163.PubMedGoogle Scholar
  37. 37.
    Fairclough, R. H., J. Finer-Moore, R. A. Love, D. Kristofferson, P. J. Desmueles, and R. M. Stroud. 1983. Subunit organization and structure of an acetylcholine receptor. Cold Spring Harbor Symp. Quant. Biol. 48:9–20.PubMedGoogle Scholar
  38. 38.
    Reiter, M. J., D. A. Cowburn. J. M. Prives, and A. Karlin. 1972. Affinity labeling of the acetylcholine receptor in the electroplax: Electrophoretic separation in sodium dodecyl sulfate. Proc. Natl. Acad. Sci. USA 69:1168–1172.PubMedGoogle Scholar
  39. 39.
    Karlin, A. 1969. Chemical modification of the active site of the acetylcholine receptor. J. Gen. Physiol. 54:245s-264s.Google Scholar
  40. 40.
    Weill, C. L., M. G. McNamee, and A. Karlin. 1974. Affinity labeling of purified acetylcholine receptor from Torpedo californica. Biochem. Biophys. Res. Commun. 61:997–1003.PubMedGoogle Scholar
  41. 41.
    Dionne, V. E., J. H. Steinbach, and C. F. Stevens. 1978. Voltage dependence of agonist effectiveness at the frog neuromuscular junction. J. Physiol. (London) 281:421–444.Google Scholar
  42. 42.
    Damle, V., and A. Karlin. 1978. Affinity labeling of one of two alpha-neurotoxin binding sites in acetylcholine receptor from Torpedo californica. Biochemistry 17:2039–2045.PubMedGoogle Scholar
  43. 43.
    Neubig, R. R., and J. B. Cohen. 1979. Equilibrium binding of [3H] acetylcholine by Torpedo postsynaptic membranes: Stoichiometry and ligand interactions. Biochemistry 18:5464–5475.PubMedGoogle Scholar
  44. 44.
    Sine, S. M., and P. Taylor. 1981. Relationship between reversible antagonist occupancy and the functional capacity of the acetylcholine receptor. J. Biol. Chem. 256:6692–6699.PubMedGoogle Scholar
  45. 45.
    Dunn, S. M. J., and M. A. Raftery. 1982. Multiple binding sites for agonists on Torpedo californica acetylcholine receptor. Biochemistry 21:6264–6272.PubMedGoogle Scholar
  46. 46.
    Haggerty, J. G., and S. C. Froehner. 1981. Restoration of 125I-alpha-bungarotoxin binding activity to the alpha subunit of Torpedo acetylcholine receptor isolated by gel electrophoresis in sodium dodecyl sulfate. J. Biol. Chem. 256:8294–8297.PubMedGoogle Scholar
  47. 47.
    Tzartos, S. J., and J. P. Changeux. 1983. High affinity binding of alpha-bungarotoxin to the purified alpha-subunit and to its 27, 000-dalton proteolytic peptide from Torpedo marmorata acetylcholine receptor: Requirement for sodium dodecyl sulfate. EMBO J. 2: 381–387.PubMedGoogle Scholar
  48. 48.
    Gershoni, J. M., E. Hawrot, and T. L. Lentz. 1983. Binding of alpha-bungarotoxin to isolated alpha subunit of the acetylcholine receptor of Torpedo californica: Quantitative analysis with protein blots. Proc. Natl. Acad. Sci. USA 80:4973–4977.PubMedGoogle Scholar
  49. 49.
    Oblas, B., N. D. Boyd, and R. H. Singer. 1983. Analysis of receptor-ligand interactions using nitrocellulose gel transfer: Application to Torpedo acetylcholine receptor and alpha bungarotox-in. Anal. Biochem. 130:1–8.PubMedGoogle Scholar
  50. 50.
    Wilson, P. T., J. M. Gershoni, E. Hawrot, and T. L. Lentz. 1984. Binding of alpha-bungarotoxin to proteolytic fragments of the alpha subunit of Torpedo acetylcholine receptor analyzed by protein transfer on positively charged membrane filters. Proc. Natl. Acad. Sci. USA 81:2553–2557.PubMedGoogle Scholar
  51. 51.
    Oswald, R. E., and J. P. Changeux. 1981. Selective labeling of the delta subunit of the acetylcholine receptor by a covalent local anesthetic. Biochemistry 20:7166–7174.PubMedGoogle Scholar
  52. 52.
    Blanchard, S. G., and M. A. Raftery. 1979. Identification of the polypeptide chains in Torpedo californica electroplax membranes that interact with a local anesthetic analog. Proc. Natl. Acad. Sci. USA 76:81–85.PubMedGoogle Scholar
  53. 53.
    Oswald, R. E., and J. P. Changeux. 1981. Ultraviolet light-induced labeling by noncompetitive blockers of the acetylcholine receptor from Torpedo marmorata. Proc. Natl. Acad. Sci. USA 78:3925–3929.PubMedGoogle Scholar
  54. 54.
    Kaldany, R. R., and A. Karlin. 1983. Reaction of quinacrine mustard with the acetylcholine receptor from Torpedo californica: Functional consequences and sites of labeling. J. Biol. Chem. 258: 6232–6242.PubMedGoogle Scholar
  55. 55.
    Huganir, R. L., and P. Greengard. 1983. cAMP-dependent protein kinase phosphorylates the nicotinic acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80:1130–1134.PubMedGoogle Scholar
  56. 56.
    Tank, D. W., R. L. Huganir, P. Greengard, and W. W. Webb. 1983. Patch-recorded single-channel currents of the purified and reconstituted Torpedo acetylcholine receptor. Proc. Natl. Acad. Sci. USA 80:5129–5133.PubMedGoogle Scholar
  57. 57.
    Patrick, J., and J. Lindstrom. 1973. Autoimmune response to acetylcholine receptors. Science 180:871–872.PubMedGoogle Scholar
  58. 58.
    Lindstrom, J. M., M. E. Seybold, V. A. Lennon, S. Whit-tingham, and D. Duane. 1976. Antibody to acetylcholine receptor in myasthenia gravis: Prevalence, clinical correlates and diagnostic value. Neurology 26:1054–1059.PubMedGoogle Scholar
  59. 59.
    Appel, S. H., R. Anwyl, M. W. McAdams, and S. Elias. 1977. Accelerated degradation of acetylcholine receptor from cultured rat myotubes with myasthenia gravis sera and globulins. Proc. Natl. Acad. Sci. USA 74:2130–2134.PubMedGoogle Scholar
  60. 60.
    Drachman, D. B., C. W. Angus, R. N. Adams, J. D. Michelson, and G.J. Hoffman. 1978. Myasthenic antibodies crosslink acetylcholine receptors to accelerate degradation. N. Engl. J. Med. 298: 1116–1122.PubMedGoogle Scholar
  61. 61.
    Heinemann, S., S. Bevan, R. Kullberg, J. Lindstrom, and J. Rice. 1977. Modulation of the acetylcholine receptor by anti-receptor antibody. Proc. Natl. Acad. Sci. USA 74:3090–3094.PubMedGoogle Scholar
  62. 62.
    Lindstrom, J., and B. Einarson. 1979. Antigenic modulation and receptor loss in EAMG. Muscle Nerve 2:173–179.PubMedGoogle Scholar
  63. 63.
    Engel, A., M. Tsujihata, J. Lindstrom, and V. Lennon. 1976. The motor end-plate in myasthenia gravis and in experimental autoimmune myasthenia gravis: A quantitative ultrastructural study. Ann. N.Y. Acad. Sci. 274:60–79.PubMedGoogle Scholar
  64. 64.
    Engel, A., K. Sahashi, E. Lambert, and F. Howard. 1979. The ultrastructural localization of the acetylcholine receptor, immunoglobulin G, and the third and ninth complement components at the motor endplate and the implications for the pathogenesis of myasthenia gravis. Excerpta Med. Int. Congr. Ser. 455:111–122.Google Scholar
  65. 65.
    Tzartos, S., and J. M. Lindstrom. 1980. Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc. Natl. Acad. Sci. USA 77:755–759.PubMedGoogle Scholar
  66. 66.
    Tzartos, S. J., M. Seybold, and J. Lindstrom. 1982. Specificity of antibodies to acetylcholine receptors in sera from myasthenia gravis patients measured by monoclonal antibodies. Proc. Natl. Acad. Sci. USA 79:188–192.PubMedGoogle Scholar
  67. 67.
    Lennon, V., and E. Lambert. 1980. Myasthenia gravis induced by monoclonal antibodies to acetylcholine receptors. Nature (London) 285:238–240.Google Scholar
  68. 68.
    Mochly-Rosen, C., and S. Fuchs. 1981. Monoclonal anti-acetylcholine receptor antibodies directed against the cholinergic binding site. Biochemistry 20:5920–5924.PubMedGoogle Scholar
  69. 69.
    James, R., A. Kato, M. Rey, and B. Fulpius. 1980. Monoclonal antibodies directed against the neurotransmitter binding site of nicotinic acetylcholine receptor. FEBS Lett. 120:145–148.PubMedGoogle Scholar
  70. 70.
    Gomez, C., D. Richman, P. Berman, S. Burres, B. Arnason, and F. Fitch. 1979. Monoclonal antibodies against purified nicotinic acetylcholine receptor. Biochem. Biophys. Res. Commun. 88:575–582.PubMedGoogle Scholar
  71. 71.
    Gomez, C., D. Richman, S. Burres, and B. Arnason. 1981. Monoclonal hybridoma anti-acetylcholine receptor antibodies: Antibody specificity and effect of passive transfer. Ann. N.Y. Acad. Sci. 377:97–109.PubMedGoogle Scholar
  72. 72.
    Watters, D., and A. Maelicke. 1983. Organization of ligand binding sites at the acetylcholine receptor: A study with monoclonal antibodies. Biochemistry 22:1811-1819.Google Scholar
  73. 73.
    Dwyer, D., J. Kearney, R. Bradley, G. Kemp, and S. Oh. 1981. Interaction of human antibody and murine monoclonal antibody with muscle acetylcholine receptor. Ann. N.Y. Acad. Sci. 377:143–157.PubMedGoogle Scholar
  74. 74.
    Tzartos, S.J., D. E. Rand, B. E. Einarson, and J. Lindstrom. 1981. Mapping of surface structures of Electrophorus acetylcholine receptor using monoclonal antibodies. J. Biol. Chem. 256: 8635–8645.PubMedGoogle Scholar
  75. 75.
    Tzartos, S., and J. Lindstrom. 1981. Production and characterization of monoclonal antibodies for use as probes of acetylcholine receptors. In: Monoclonal Antibodies in Endocrine Research. R. Fellows and G. Einsenbarth, eds. Raven Press, New York. pp. 69–86.Google Scholar
  76. 76.
    Tzartos, S., L. Langeberg, S. Hochschwender, and J. Lindstrom. 1983. Demonstration of a main immunogenic region on acetylcholine receptors from human muscle using monoclonal antibodies to human receptor. FEBS Lett. 158:116–118.PubMedGoogle Scholar
  77. 77.
    Garabedian, B., and S. Morel. 1983. Monoclonal antibodies against the human acetylcholine receptor. Biochem. Biophys. Res. Commun. 113:1–9.Google Scholar
  78. 78.
    Froehner, S., K. Douville, S. Klink, and W. Culp. 1983. Monoclonal antibodies to cytoplasmic domains of the acetylcholine receptor. J. Biol. Chem. 258:7112–7120.PubMedGoogle Scholar
  79. 79.
    Mihovilovic, M., and D. Richman. 1983. Monoclonal antibody (mcab) 247G: Example of a functional probe for the acetylcholine receptor (AcChR) molecule. Neurosci. Abstr. 9:158.Google Scholar
  80. 80.
    Roison, M. P., Y. Gu, and Z. W. Hall. 1983. The specificity of a myasthenic serum for developmentally different forms of the acetylcholine receptor. Neurosci. Abstr. 9:580.Google Scholar
  81. 81.
    Gullick, W. J., S. Tzartos, and J. Lindstrom. 1981. Monoclonal antibodies as probes of acetylcholine receptor structure. I. Peptide mapping. Biochemistry 20:2173–2180.PubMedGoogle Scholar
  82. 82.
    Hawrot, E., J. M. Gershoni, T. G. Burrage, G. S. Paladino, T. L. Lentz, and L. L. Y. Chun. 1982. Monoclonal antibodies to nicotinic acetylcholine receptor characterized by electrotransfer techniques. Neurosci. Abstr. 8:335.Google Scholar
  83. 83.
    Sargent, P., B. Hedges, L. Tsavaler, L. Clemmons, S. Tzartos, and J. Lindstrom. 1984. The structure and transmembrane nature of the acetylcholine receptor in amphibian skeletal muscle as revealed by crossreacting monoclonal antibodies. J. Cell Biol. 98:609–618.PubMedGoogle Scholar
  84. 84.
    Souroujon, M., D. Mochly-Rosen, A. Gordon, and S. Fuchs. 1983. Interaction of monoclonal antibodies to Torpedo acetylcholine receptor with the receptor of skeletal muscle. Muscle Nerve 6:303–311.PubMedGoogle Scholar
  85. 85.
    Anderson, D., P. Walter, and G. Blobel. 1982. Signal recognition protein is required for the integration of acetylcholine receptor delta subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane. J. Cell Biol. 93:501–506.PubMedGoogle Scholar
  86. 86.
    Contri-Tronconi, B., S. Tzartos, and J. Lindstrom. 1981. Monoclonal antibodies as probes of acetylcholine receptor structure. II. Binding to native receptor. Biochemistry 20:2181–2191.Google Scholar
  87. 87.
    Lindstrom, J., S. Tzartos, and B. Gullick. 1981. Structure and function of acetylcholine receptors studied using monoclonal antibodies. Ann. N.Y. Acad. Sci. 377:1–19.PubMedGoogle Scholar
  88. 88.
    Suarez-Isla, B. A., K. Wan, J. Lindstrom, and M. Montai. 1983. Single-channel recordings from purified acetylcholine receptors reconstituted in bilayers formed at the tip of patch pipets. Biochemistry 22:2319–2323.PubMedGoogle Scholar
  89. 89.
    Patrick, J., and W. Stallcup. 1977. Immunological distinction between acetylcholine receptor and the alpha bungarotoxin binding component on sympathetic neurons. Proc. Natl. Acad. Sci. USA 76:4689–4692.Google Scholar
  90. 90.
    Swanson, L., J. Lindstrom, L. Schmued, D. O’Leary, and W. Cowan. 1983. Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in the midbrain of the chick. Proc. Natl. Acad. Sci. USA 80:4532–4536.PubMedGoogle Scholar
  91. 91.
    Hawrot, E., J. Holliday, B. Schweitzer, and L. L. Y. Chun. 1983. Monoclonal antibodies to Torpedo nicotinic acetylcholine receptor that cross-react with specific subsets of mammalian peripheral neurons and smooth muscle. Neursci. Abstr. 9:577.Google Scholar
  92. 92.
    Lodish, H. F., and J. E. Rothman. 1978. The assembly of cell membranes. Sci. Am. 240:48–63.Google Scholar
  93. 93.
    Sidman, C., M. J. Potash, and G. Kohler. 1981. Roles of protein and carbohydrate in glycoprotein processing and secretion: Studies using mutants expressing altered IgM mu chains. J. Biol. Chem. 256:13180–13187.PubMedGoogle Scholar
  94. 94.
    Krangel, M. S., H. T. Orr, and J. L. Strominger. 1979. Assembly and maturation of HLA-A and HLA-B antigens in vivo. Cell 18:979–991.PubMedGoogle Scholar
  95. 95.
    Krangel, M. S., D. Pious, and J. L. Strominger. 1982. Human histocompatibility antigen mutants immunoselected in vitro: Biochemical analysis of a mutant which synthesizes an altered HLA-A2 heavy chain. J. Biol. Chem. 257:5296–5305.PubMedGoogle Scholar
  96. 96.
    Omary, M. B., and I. S. Trowbridge. 1981. Biosynthesis of the human transferrin receptor in cultured cells. J. Biol. Chem. 256:12888–12892.PubMedGoogle Scholar
  97. 97.
    Owen, M. J., A. M. Kissonerghis, and H. F. Lodish. 1980. Biosynthesis of HLA-A and HLA-B antigens in vivo. J. Biol. Chem. 255:9678–9684.PubMedGoogle Scholar
  98. 98.
    Owen, M. J., A. M. Kissonerghis, H. F. Lodish, and M. J. Crumpton. 1981. Biosynthesis and maturation of HLA-DR antigens in vivo. J. Biol. Chem. 256:8987–8993.PubMedGoogle Scholar
  99. 99.
    Mains, P. E., and C. H. Sibley. 1983. The requirement of light chain for the surface deposition of the heavy chain of immunoglobulin M. J. Biol. Chem. 258:5027–5033.PubMedGoogle Scholar
  100. 100.
    Fambrough, D. 1979. Control of acetylcholine receptors in skeletal muscle. Physiol. Rev. 59:165–227.PubMedGoogle Scholar
  101. 101.
    Patrick, J., J. McMillan, H. Wolfson, and J. C. O’Brien. 1977. Acetylcholine receptor metabolism in a nonfusing muscle cell line. J. Biol. Chem. 252:2143–2153.PubMedGoogle Scholar
  102. 102.
    Fambrough, D. M., and P. N. Devreotes. 1978. Newly synthesized acetylcholine receptors are located in the Golgi apparatus. J. Cell Biol. 76:237–244.PubMedGoogle Scholar
  103. 103.
    Palade, G. 1975. Intracellular aspects of the process of protein synthesis. Science 189:347–358.PubMedGoogle Scholar
  104. 104.
    Farquhar, M. G., and G. E. Palade. 1981. The Golgi apparatus (complex)—(1954–1981)—from artifact to center stage. J. Cell Biol. 91:77s-103s.Google Scholar
  105. 105.
    Sabatini, D. D., G. Kreibich, T. Morimoto, and M. Adesnik. 1982. Mechanisms for the incorporation of proteins in membranes and organelles. J. Cell Biol. 92:1–22.PubMedGoogle Scholar
  106. 106.
    Gardner, J. M., and D. M. Fambrough. 1979. Acetylcholine receptor degradation measured by density labeling: Effects of cholinergic ligands and evidence against recycling. Cell 16:661–674.PubMedGoogle Scholar
  107. 107.
    Mendez, B., P. Valenzuela, J. A. Martial, and J. D. Baxter. 1980. Cell-free synthesis of acetylcholine-receptor polypeptides. Sci-ence 209:695–697.Google Scholar
  108. 108.
    Blobel, G. 1980. Intracellular protein topogenesis. Proc. Natl. Acad. Sci. USA 77:1496–1500.PubMedGoogle Scholar
  109. 109.
    Anderson, D. J., P. Walter, and G. Blobel. 1982. Signal recognition protein is required for the integration of acetylcholine receptor delta subunit, a transmembrane glycoprotein, into the endoplasmic reticulum membrane. J. Cell Biol. 93:501–506.PubMedGoogle Scholar
  110. 110.
    Gilmore, R., P. Walter, and G. Blobel. 1982. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95:470–477.PubMedGoogle Scholar
  111. 111.
    Wennogle, L. P., R. Oswald, T. Saitoh, and J. P. Changeux. 1981. Dissection of the 66, 000-dalton subunit of the acetylcholine receptor. Biochemistry 20:2492–2497.PubMedGoogle Scholar
  112. 112.
    Merlie, J., J. Hofler, and R. Sebbane. 1981. Acetylcholine receptor synthesis from membrane polysomes. J. Biol. Chem. 256:6995–6999.PubMedGoogle Scholar
  113. 113.
    Sebbane, R., G. Clokey, J. Merlie, S. Tzartos, and J. Lindstrom. 1983. Characterization of the mRNA for mouse muscle acetylcholine receptor alpha subunit by quantitative translation in vitro. J. Biol. Chem. 258:3294–3303.PubMedGoogle Scholar
  114. 114.
    Merlie, J., R. Sebbane, S. Gardner, and J. Lindstrom. 1983. A cDNA clone for the alpha subunit of the acetylcholine receptor from the mouse muscle cell line BC3H-1. Proc. Natl. Acad. Sci. USA 80:3845–3849.PubMedGoogle Scholar
  115. 115.
    Boulter, J., and J. Patrick. 1977. Purification of an acetylcholine receptor from a nonfusing muscle cell line. Biochemistry 16:4900–4908.PubMedGoogle Scholar
  116. 116.
    Merlie, J. P., R. Sebbane, S. Tzartos, and J. Lindstrom. 1982. Inhibition of glycosylation with tunicamycin blocks assembly of newly synthesized acetylcholine receptor subunits in muscle cells. J. Biol. Chem. 257:2694–2701.PubMedGoogle Scholar
  117. 117.
    Merlie, J. P., and R. Sebbane. 1981. Acetylcholine receptor sub-units transit a precursor pool before acquiring alpha-bungarotoxin binding activity. J. Biol Chem. 256:3605–3608.PubMedGoogle Scholar
  118. 118.
    Merlie, J. P., and J. Lindstrom. 1983. Assembly in vivo of mouse muscle acetylcholine receptor: Identification of an alpha subunit species that may be an assembly intermediate. Cell 34:747–757.PubMedGoogle Scholar
  119. 119.
    Anderson, D. J., and G. Blobel. 1983. Identification of homo-oligomers as potential intermediates in acetylcholine receptor sub-unit assembly. Proc. Natl. Acad. Sci. USA 80:4359–4363.PubMedGoogle Scholar
  120. 120.
    Prives, J., and D. Bar-Sagi. 1983. Effect of tunicamycin, an inhibitor of protein glycosylation, on the biological properties of acetylcholine receptor in cultured muscle cells. J. Biol Chem. 258: 1775–1780.PubMedGoogle Scholar
  121. 121.
    Barnard, E. A., R. Miledi, and K. Sumikawa. 1982. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors in Xenopus oocytes. Proc. R. Soc. London. Ser. B 215:241–246.Google Scholar
  122. 122.
    Sumikawa, K., M. Houghton, J. S. Emtage, B. M. Richards, and E. A. Barnard. 1981. Active multi-subunit ACh receptor assembled by translation of heterologous mRNA in Xenopus oocytes. Nature (London) 292:862–864.Google Scholar
  123. 123.
    Mishina, M., T. Kurosaki, T. Tobimatsu, Y. Morimoto, M. Noda, T. Yamamoto, M. Terao, J. Lindstrom, T. Takahashi, M. Kuno, and S. Numa. 1984. Expression of functional acetylcholine receptor from cloned cDNAs. Nature (London) 307:604–608.Google Scholar
  124. 124.
    Burden, S. 1977. Development of the neuromuscular junction in the chick embryo: The number, distribution, and stability of acetylcholine receptors. Dev. Biol. 57:317–329.PubMedGoogle Scholar
  125. 125.
    Ferruck, H. C., and M. M. Salpeter. 1976. Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J. Cell Biol. 69:144–158.Google Scholar
  126. 126.
    Salpeter, M. M., and R. Harris. 1983. Distribution and turnover rate of acetylcholine receptors throughout the junction folds at a vertebrate neuromuscular junction. J. Cell Biol. 96:1781–1785.PubMedGoogle Scholar
  127. 127.
    Frank, E., and G. D. Fischbach. 1979. Early events in neuromuscular junction formation in vitro. J. Cell Biol 83:143–158.PubMedGoogle Scholar
  128. 128.
    Jessell, T., R. E. Siegel, and G. D. Fischbach. 1979. Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc. Natl. Acad. Sci. USA 76:5397–5401.PubMedGoogle Scholar
  129. 129.
    Nitkin, M., E. W. Godfrey, B. G. Wallace, and U. J. McMahan. 1983. Characterization of the AChR aggregating molecules in extracellular matrix fractions from electric organ and muscle. Neu-rosci. Abstr. 9:1179.Google Scholar
  130. 130.
    Hasegawa, S., H. Kuromi, and Y. Hagihara. 1982. Neuronal regulation of muscle properties and the trophic substances. Trends Pharmacol Sci. August:340–342.Google Scholar
  131. 131.
    Burden, S. 1977. Acetylcholine receptors at the neuromuscular junction: Developmental change in receptor turnover. Dev. Biol 61:79–85.PubMedGoogle Scholar
  132. 132.
    Brockes, J. P., and Z. W. Hall. 1975. Acetylcholine receptors in normal and denervated rat diaphragm muscle. II. Comparison of junctional and extrajunctional receptors. Biochemistry 14:2100–2106.PubMedGoogle Scholar
  133. 133.
    Weinberg, C. B., and Z. W. Hall. 1979. Antibodies from patients with myasthenia gravis recognize determinants unique to extrajunctional acetylcholine receptors. Proc. Natl. Acad. Sci. USA 76:504–508.PubMedGoogle Scholar
  134. 134.
    Reiness, C. G., and Z. W. Hall. 1981. The developmental change in immunological properties of the acetylcholine receptor in rat muscle. Dev. Biol. 81:324–331.PubMedGoogle Scholar
  135. 135.
    Fishbach, G. D., and S. M. Schuetze. 1980. A post-natal decrease in acetylcholine channel open time at rat end-plates. J. Physiol. (London) 303:125–137.Google Scholar
  136. 136.
    Schuetze, S. M. 1980. The acetylcholine channel open time in chick muscle is not decreased following innervation. J. Physiol (London) 303:111–124.Google Scholar
  137. 137.
    Patrick, J., and S. Heinemann. 1982. Outstanding problems in acetylcholine receptor structure and regulation. Trends Neurosci. 5:300–302.Google Scholar
  138. 138.
    Hall, Z. W., B. W. Lubit, and J. H. Schwartz. 1981. Cytoplasmic actin in postsynaptic structures at the neuromuscular junction. J. Cell Biol. 90:789–792.PubMedGoogle Scholar
  139. 139.
    Bloch, R. J., and Z. W. Hall. 1983. Cytoskeletal components of the vertebrate neuromuscular junction: Vinculin, alpha-actinin, and filamin. J. Cell Biol 97:217–223.PubMedGoogle Scholar
  140. 140.
    Bloch, R. J. 1983. Acetylcholine receptor clustering in rat myo-tubes: Requirment for Ca2+ and effects of drugs which de-polymerize microtubules. J. Neurosci. 3:2670–2680.PubMedGoogle Scholar
  141. 141.
    Porter, S., and S. C. Froehner. 1983. Characterization and localization of the Mr = 43, 000 proteins associated with acetylcholine receptor-rich membranes. J. Biol Chem. 258:10034–10040.PubMedGoogle Scholar
  142. 142.
    Froehner, S. C., V. Gulbrandsen, C. Hyman, A. Y. Jeng, R. R. Neubig, and J. B. Cohen. 1981. Immunofluorescence localization at the mammalian neuromuscular junction of the Mr 43, 000 protein of Torpedo postsynaptic membranes. Proc. Natl. Acad. Sci. USA 78:5230–5234.PubMedGoogle Scholar
  143. 143.
    Sealock, R. 1982. Cytoplasmic surface structure in postsynaptic membranes from electric tissue visualized by tannic acid-mediated negative contrasting. J. Cell Biol. 92:514–522.PubMedGoogle Scholar
  144. 144.
    Burden, S. J., R. L. DePalma, and G. S. Gottesman. 1983. Crosslinking of proteins in acetylcholine receptor-rich membranes: Association between the beta-subunit and the 43 kd sub-synaptic protein. Cell 35:687–692.PubMedGoogle Scholar
  145. 145.
    Sanes, J. R., L. M. Marshall, and U. J. McMahan. 1978. Reinnervation of muscle fiber basal lamina after removal of myofibers: Differentiation of regenerating axons at original synaptic sites. J. Cell Biol. 78:176–198.PubMedGoogle Scholar
  146. 146.
    Burden, S. J., P. B. Sargent, and U. J. McMahan. 1979. Acetylcholine receptors in regenerating muscle accumulate at original synaptic sites in the absence of the nerve. J. Cell Biol 82:412–425.PubMedGoogle Scholar
  147. 147.
    Carlson, S. S., K. M. Buckley, P. Caroni, and R. B. Kelly. 1983. Synaptic vesicles and the synaptic cleft contain an identical proteoglycan. Neurosci. Abstr. 9(part 2): 1028.Google Scholar
  148. 148.
    Katz, B., and S. Thesleff. 1957. A study of the “desensitization” produced by acetylcholine at the motor end-plate. J. Physiol (London) 138:63–80.Google Scholar
  149. 149.
    Lester, H. A., J. P. Changeux, and R. E. Sheridan. 1975. Conductance increases produced by bath application of cholinergic agonists to Electrophorus electroplaques. J. Gen. Phvsiol. 65:797–816.Google Scholar
  150. 150.
    Sheridan, R. E., and H. A. Lester. 1977. Rates and equilibria at the acetylcholine receptor of Electrophorus electroplaques. J. Gen. Physiol. 70:187–219.PubMedGoogle Scholar
  151. 151.
    Adams, P. R. 1975. An analysis of the dose-response curve at voltage-clamped frog-endplates. Pfluegers Arch. 360:145–153.Google Scholar
  152. 152.
    Adams, P. R. 1977. Relaxation experiments using bath-applied suberyldicholine. J. Physiol. (London) 268:271–289.Google Scholar
  153. 153.
    Neubig, R. R., and J. B. Cohen. 1980. Permeability control by cholinergic receptors in Torpedo postsynaptic membranes: Agonist dose-response relations measured at second and millisecond times. Biochemistry 19:2770–2779.PubMedGoogle Scholar
  154. 154.
    Hartzell, H. C., S. W. Kuffler, and D. Yoshikami. 1975. Postsynaptic potentiation: Interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. J. Physiol. (London) 251:427–464.Google Scholar
  155. 155.
    Dreyer, F., and K. Peper. 1975. Density and dose-response curve of acetylcholine receptors in frog neuromuscular junction. Nature (London) 253:641–643.Google Scholar
  156. 156.
    Dreyer, F., K. Peper, and R. Sterz. 1978. Determination of dose-response curves by quantitative iontophoresis at the frog neuromuscular junction. J. Physiol. (London) 281:395–419.Google Scholar
  157. 157.
    Hoffman, H. M., and V. E. Dionne. 1980. The Hill coefficient of the acetylcholine receptor dose-response relation is independent of membrane voltage and temperature. Soc. Neurosci. Abstr. 6:753.Google Scholar
  158. 158.
    Land, B. R., E. E. Salpeter, and M. M. Salpeter. 1980. Acetylcholine receptor site density affects the rising phase of miniature endplate currents. Proc. Natl Acad. Sci. USA 77:3736–3740.PubMedGoogle Scholar
  159. 159.
    Magleby, K. L., and C. F. Stevens. 1972. A quantitative description of endplate currents. J. Physiol. (London) 223:173–197.Google Scholar
  160. 160.
    Sakmann, B., and E. Neher, eds. 1983. Single-Channel Recording. Plenum Press, New York.Google Scholar
  161. 161.
    Corey, D. P., and C. F. Stevens. 1983. Science and technology of patch-recording electrodes. In: Single-Channel Recording. B. 68.Google Scholar
  162. 162.
    Lester, H. A., and H. W. Chang. 1977. Response of acetylcholine receptors to rapid photochemically produced increases in agonist concentration. Nature (London) 266:373–374.Google Scholar
  163. 163.
    Nass, M. M., H. A. Lester, and M. E. Krouse. 1978. Response of acetylcholine receptors to photoisomerizations of bound agonist molecules. Biophys. J. 24:153–160.Google Scholar
  164. 164.
    Dionne, V. E., and C. F. Stevens. 1975. Voltage dependence of agonist effectiveness at the frog neuromuscular junction: Resolution of a paradox. J. Physiol. (London) 251:245–270.Google Scholar
  165. 165.
    Adams, P. R. 1975. Kinetics of agonist conductance changes during hyperpolarization at frog endplates. Br. J. Pharmacol. 53:308–310.PubMedGoogle Scholar
  166. 166.
    Sheridan, R. E., and H. A. Lester. 1975. Relaxation measurements on the acetylcholine receptor. Proc. Natl. Acad. Sci. USA 72:3496–3500.PubMedGoogle Scholar
  167. 167.
    Katz, B., and R. Miledi. 1970. Membrane noise produced by acetylcholine. Nature (London) 226:962–963.Google Scholar
  168. 168.
    Katz, B., and R. Miledi. 1972. The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (London) 224:665–699.Google Scholar
  169. 169.
    Anderson, C.R., and C. F. Stevens. 1973. Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. (London) 235:655–691.Google Scholar
  170. 170.
    Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from membrane of denervated frog muscle fibers. Nature (London) 260:799–802.Google Scholar
  171. 171.
    Colquhoun, D., and A. G. Hawkes. 1981. On the stochastic properties of single ion channels. Proc. R. Soc. London Ser. B 211:205–235.Google Scholar
  172. 172.
    Dionne, V. E., and M. D. Leibowitz. 1982. Acetylcholine receptor kinetics: A description from single channel currents at snake neuromuscular junctions. Biophys. J. 39:253–261.PubMedGoogle Scholar
  173. 173.
    Gage, P. W., and R. N. McBurney. 1975. Effects of membrane potential, temperature and neostigmine on the conductance change caused by a quantum of acetylcholine at the toad neuromuscular junction. J. Physiol. (London) 244:385–407.Google Scholar
  174. 174.
    Nelson, D. J., and F. Sachs. 1979. Single ionic channels observed in tissue-cultured muscle. Nature (London) 282:861–863.Google Scholar
  175. 175.
    Dionne, V. E., and R. L. Parsons. 1981. Characteristics of the acetylcholine-operated channel at twitch and slow fiber neuromuscular junctions of the garter snake. J. Physiol. (London) 310:145–158.Google Scholar
  176. 176.
    Dionne, V. E. 1981. The kinetics of slow muscle acetylcholine-operated channels in the garter snake. J. Physiol. (London) 310:159–190.Google Scholar
  177. 177.
    Colquhoun, D., and B. Sakmann. 1981. Fluctuations in the microsecond time range of the current through single acetylcholine receptor ion channels. Nature (London) 294:464–466.Google Scholar
  178. 178.
    Sine, S. M., and J. H. Steinbach. 1984. Activation of a nicotinic acetylcholine receptor. Biophys. J. 45:175–185.PubMedGoogle Scholar
  179. 179.
    Leibowitz, M. D., and V. E. Dionne. 1984. Single-channel acetylcholine receptor kinetics. Biophys. J. 45:153–163.PubMedGoogle Scholar
  180. 180.
    Horn, R., and J. Patlak. 1980. Single channel currents from excised patches of muscle membrane. Proc. Natl. Acad. Sci. USA 77: 6930–6934.PubMedGoogle Scholar
  181. 181.
    Fenwick, E. M., A. Marty, and E. Neher. 1982. A patch-clamp study of bovine chromaffin cells and of their sensitivity to acetylcholine. J. Physiol. (London) 333:577–597.Google Scholar
  182. 182.
    Hamill, O. P., and B. Sakmann. 1981. Multiple conductance states of single acetylcholine receptor channels in embryonic muscle cells. Nature (London) 294:962–963.Google Scholar
  183. 183.
    Trautmann, A. 1982. Curare can open and block ionic channels associated with cholinergic receptors. Nature (London) 298:272–275.Google Scholar
  184. 184.
    Auerbach, A., and F. Sachs. 1982. Flickering of a nicotinic ion channel to a subconductance state. Biophys. J. 42:1–10.Google Scholar
  185. 185.
    Auerbach, A., and F. Sachs. 1984. Single-channel currents from acetylcholine receptors in embryonic chick muscle. Biophys. J. 45:187–198.PubMedGoogle Scholar
  186. 186.
    Brehm, P., R. Kullberg, and F. Moody-Corbett. 1984. Properties of non-junctional acetylcholine receptor channels on innervated muscle of Xenopus laevis. J. Physiol. (London) 350:631–648.Google Scholar
  187. 187.
    Kullberg, R. W., P. Brehm, and J. H. Steinbach. 1981. Nonjunc-tional acetylcholine receptor channel open time decreases during development of Xenopus muscle. Nature (London) 289:411–413.Google Scholar
  188. 188.
    Brehm, P., J. H. Steinbach, and Y. Kidokoro. 1982. Channel open time of acetylcholine receptors on Xenopus muscle cells in dissociated cell culture. Dev. Biol. 91:93–102.PubMedGoogle Scholar
  189. 189.
    Sakmann, B., J. Patlak, and E. Neher. 1980. Single acetylcholine-activated channels show burst-kinetics in presence of desensitizing concentrations of agonist. Nature (London) 286:71–73.Google Scholar
  190. 190.
    Adams, P. R., and B. Sakmann. 1978. Decamethionium both opens and blocks end-plate channels. Proc. Natl. Acad. Sci. USA 75:2994–2998.PubMedGoogle Scholar
  191. 191.
    Huang. L. Y., W. A. Catterall, and G. Ehrenstein. 1978. Selectivity of cations and nonelectrolytes for acetylcholine-activated channels in cultured muscle cells. J. Gen. Physiol. 71:397–410.PubMedGoogle Scholar
  192. 192.
    Gage, P. W., and D. Van Helden. 1979. Effects of permeant monovalent cations on end-plate channels. J. Physiol. (London) 288:509–528.Google Scholar
  193. 193.
    Adams, D. J., T. M. Dwyer, and B. Hille. 1980. The permeability of endplate channels to monovalent and divalent metal cations. J. Gen. Physiol. 75:493–510.PubMedGoogle Scholar
  194. 194.
    Lewis, C. A., and C. F. Stevens. 1983. Acetylcholine receptor channel ionic selectivity: Ions experience an aqueous environment. Proc. Natl. Acad. Sci. USA 80:6110–6113.PubMedGoogle Scholar
  195. 195.
    Lewis, C. A., and C. F. Stevens. 1979. Mechanism of ion permeation through channels in a postsynaptic membrane. In: Membrane Transport Processes, Volume 3. Stevens, C. F. and R. W. Tsien, eds. Raven Press, New York. pp. 133–151.Google Scholar
  196. 196.
    Lewis, C.A. 1979. The ion concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. (London) 286: 417–445.Google Scholar
  197. 197.
    Patlak, J. B., K. A. F. Gration, and P. N. R. Usherwood. 1979. Single glutamate-activated channels in locust muscle. Nature (London) 278:643–645.Google Scholar
  198. 198.
    Cull-Candy, S. G., R. Miledi, and I. Parker. 1980. Single glutamate-activated channels recorded from locust muscle fibres with perfused patch-clamp electrodes. J. Physiol. (London) 321:195–210.Google Scholar
  199. 199.
    Gration, K. A. F., J. J. Lampert, R. L. Ramsey, R. P. Rand, and P. N. R. Usherwood. 1981. Agonist potency determination by patch clamp analysis of single glutamate receptors. Brain Res. 230:400–405.PubMedGoogle Scholar
  200. 200.
    Gration, K. A. F., J. J. Lambert, R. Ramsey, and P. N. R. Usherwood. 1981. Non-random openings and concentration-dependent lifetimes of glutamate-gated channels in muscle membrane. Nature (London) 291:423–425.Google Scholar
  201. 201.
    Gration, K. A. F., R. L. Ramsey, and P. N. R. Usherwood. 1983. Analysis of single-channel data from glutamate receptor-channel complexes on locust muscle. In: Single-Channel Recording. B. Sakmann and E. Neher, eds. Plenum Press, New York. pp. 377–388.Google Scholar
  202. 202.
    Cull-Candy, S. G., and I. Parker. 1982. Rapid kinetics of single glutamate-receptor channels. Nature (London) 295:410–412.Google Scholar
  203. 203.
    Gration, K. A. F., J. J. Lambert, R. L. Ramsey, R. P. Rand, and P. N. R. Usherwood. 1982. Closure of membrane channels gated by glutamate receptors may be a two-step process. Nature (London) 295:599–601.Google Scholar
  204. 204.
    Nowak, L., P. Bregestovski, P. Ascher, A. Herbet, and A. Pro-chiantz. 1984. Magnesium gates glutamate-activated channels in mouse central neurones. Nature (London) 307:462–465.Google Scholar
  205. 205.
    Jackson, M. B., H. Lecar, D. A. Mathers, and J. L. Barker. 1982. Single channel currents activated by gamma-aminobutyric acid, muscimol, and (—)pentobarbital in cultured mouse spinal neurons. J. Neurosci. 2:889–894.PubMedGoogle Scholar
  206. 206.
    Redmann, G. A., J. L. Barker, and H. Lecar. 1983. Single mus-cimol-activated ion channels show voltage-sensitive kinetics in cultured mouse spinal cord neurons. Soc. Neurosci. Abstr. 9:507.Google Scholar
  207. 207.
    Sakmann, B., O. P. Hamill, and J. Bormann. 1983. Patch-clamp measurements of elementary chloride currents activated by the putative inhibitory transmitters GABA and glycine in mammalian spinal neurons. J. Neural Trans. Suppl. 18:83–95.Google Scholar
  208. 208.
    Bormann, J., B. Sakmann, and W. Seifert. 1983. Isolation of GABA-activated single-channel Cl~ currents in the soma membrane of rat hippocampal neurones. J. Physiol. (London) 341:9P-10P.Google Scholar
  209. 209.
    Hamill, O. P., J. Bormann, and B. Sakmann. 1983. Activation of multiple-conductance state chloride channels in spinal neurons by glycine and GABA. Nature (London) 305:805–808.Google Scholar
  210. 210.
    Sakmann, B., A. Noma, and W. Trautwein. 1983. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature (London) 303:250–253.Google Scholar
  211. 211.
    Kehoe, J., and A. Marty. 1980. Certain slow synaptic responses: Their properties and possible underlying mechanisms. Annu. Rev. Biophys. Bioeng. 9:437–465.PubMedGoogle Scholar
  212. 212.
    Hartzell, H. C. 1981. Mechanisms of slow postsynaptic potentials. Nature (London) 291:539–544.Google Scholar
  213. 213.
    Siegelbaum, S. A., J. S. Camardo, and E. R. Kandel. 1982. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature (London) 299:413–417.Google Scholar
  214. 214.
    Miledi, R., I. Parker, and K. Sumikawa. 1983. Recording of single gamma-aminobutyrate and acetylcholine activated receptor channels translated by exogenous mRNA in Xenopus oocytes. Proc. R. Soc. London Ser. B 218:481–484.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Richard W. Aldrich
    • 1
  • Vincent E. Dionne
    • 2
  • Edward Hawrot
    • 3
  • Charles F. Stevens
    • 1
  1. 1.Section of Molecular NeurobiologyYale University School of MedicineNew HavenUSA
  2. 2.Division of Pharmacology, Department of MedicineUniversity of California at San DiegoLa JollaUSA
  3. 3.Department of PharmacologyYale University School of MedicineNew HavenUSA

Personalised recommendations