Properties of Ionic Channels in Excitable Membranes

  • Francisco Bezanilla
  • Michael M. White


Excitable cells respond to appropriate stimuli with changes in their transmembrane potential. We will briefly review the origin of the membrane potential and the ways that it can be modified. Two main classes of excitability will be discussed: chemical excitability, in which the stimulus is a chemical transmitter released by another cell; and electrical excitability, in which the stimulus is a change in the membrane potential itself.


Sodium Channel Voltage Step Channel Gating Slow Step Giant Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein, J. 1902. Untersuchungen zur Thermodynamic der bioelektrischen Ströme. Pfluegers Arch. Gesamte Physiol. 92:521–562.CrossRefGoogle Scholar
  2. 2.
    Goldman, D. E. 1943. Potential, impedance, and rectification in membranes. J. Gen. Physiol. 27:37–60.PubMedCrossRefGoogle Scholar
  3. 3.
    Hodgkin, A. L., and B. Katz. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (London) 108:37–77.Google Scholar
  4. 4.
    Coombs, J. S., J. C. Eccles, and P. Fatt. 1955. The specific ion conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory post-synaptic potential. J. Physiol. (London) 130:326–373.Google Scholar
  5. 5.
    DuBois-Reymond, E. 1843. Untersuchungen über thierische Elec-tricitat, Volume 1. Reimer, Berlin.Google Scholar
  6. 6.
    Loewi, O. 1921. Über humorale Übertragbarkeit der Herznerven-wirkung. Pfluegers Arch. Gesamte Physiol. 189:239–247.CrossRefGoogle Scholar
  7. 7.
    Loewi, O., and E. Navratil. 1926. Über humorale Übertragar-barkeit der Herzenerve Wirkung. X. Mittelung. Über das Schicksal des Vagusstoffs. Pfluegers Arch. Gesamte Physiol. 214:678–688.CrossRefGoogle Scholar
  8. 8.
    Dale, H. H., W. Feldberg, and M. Vogt. 1936. Release of acetylcholine at voluntary motor nerve endings. J. Physiol. (London) 86:353–380.Google Scholar
  9. 9.
    Fatt, P., and B. Katz. 1951. An analysis of the end-plate potential recorded with an intercellular electrode. J. Physiol. (London) 115:320–370.Google Scholar
  10. 10.
    Takeuchi, A., and N. Takeuchi. 1960. On the permeability of the end-plate membrane during the action of transmitter. J. Physiol. (London) 154:52–67.Google Scholar
  11. 11.
    Cole, K. S., and H.J. Curtis. 1939. Electric impedance of the squid axon during activity. J. Gen. Physiol. 22:649–670.PubMedCrossRefGoogle Scholar
  12. 12.
    Cole, K. S. 1949. Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol. 3:253–258.Google Scholar
  13. 13.
    Hodgkin, A. L., and A. F. Huxley. 1951. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (London) 116:449–472.Google Scholar
  14. 14.
    Hodgkin, A. L., and A. F. Huxley. 1951. The components of membrane conductance in the giant axon of Loligo. J. Physiol. (London) 116:473–496.Google Scholar
  15. 15.
    Hodgkin, A. L., and A. F. Huxley. 1951. The dual effect of membrane potential on the sodium conductance of Loligo. J. Physiol. (London) 116:497–506.Google Scholar
  16. 16.
    Hodgkin, A. L., and A. F. Huxley. 1951. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117:500–544.Google Scholar
  17. 17.
    Hamill, O. P., A. Marty, E. Neher, B. Sakmann, and F. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pfluegers Arch. 391:85–100.CrossRefGoogle Scholar
  18. 17a.
    Popot, J. L., and J. P. Changeux. 1984. Nicotinic receptor of acetylcholine: Structure of digomeric integral membrane protein. Physiol. Rev. 64:1162–1239.PubMedGoogle Scholar
  19. 17b.
    Agnew, W. S. 1984. Voltage-regulated sodium channel molecules. Ann. Rev. Physiol. 46:517–530.CrossRefGoogle Scholar
  20. 18.
    Tsien, R. W., and D. Noble. 1969. A transition state theory approach to the kinetics of conductance changes in excitable membranes. J. Membrane Biol. 1:248–273.CrossRefGoogle Scholar
  21. 19.
    Ehrenstein, G., R. Blumenthal, R. Latorre, and H. Lecar. 1974. Kinetics of opening and closing of individual EIM channels in lipid bilayers. J. Gen. Physiol. 63:707–721.PubMedCrossRefGoogle Scholar
  22. 20.
    Larson, H. J. 1974. Introduction to Probability Theory and Statistical Inference. Wiley, New York.Google Scholar
  23. 21.
    Armstrong, C. M., and F. Bezanilla. 1973. Currents relating to movement of the gating particles of the sodium channel. Nature (London) 242:459–461.CrossRefGoogle Scholar
  24. 22.
    Armstrong, C. M., and R. S. Croop. 1982. Simulation of Na channel inactivation by thiazin dyes. J. Gen. Physiol. 80:641–662.PubMedCrossRefGoogle Scholar
  25. 23.
    Taylor, R. E., and F. Bezanilla. 1983. Sodium and gating current time shifts resulting from changes in initial conditions. J. Gen. Physiol. 81:773–784.PubMedCrossRefGoogle Scholar
  26. 24.
    Stimers, J. R., F. Bezanilla, and R. E. Taylor. 1985. Sodium channel activation in squid giant axon: Steady-state properties. J. Gen. Physiol. 85:65–82.PubMedCrossRefGoogle Scholar
  27. 25.
    Bezanilla, F., J. M. Fernandez, and R. E. Taylor. 1982. Distribution and kinetics of membrane dielectric polarization. I. Long-term inactivation of gating currents. J. Gen. Physiol. 79:21–40.PubMedCrossRefGoogle Scholar
  28. 26.
    Fernandez, J. M., F. Bezanilla, and R. E. Taylor. 1982. Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents. J. Gen. Physiol. 79:41–67.PubMedCrossRefGoogle Scholar
  29. 27.
    Bezanilla, F., and C. M. Armstrong. 1977. Inactivation of the sodium channel. I. Sodium current experiments. J. Gen. Physiol. 70:549–556.PubMedCrossRefGoogle Scholar
  30. 28.
    Armstrong, C. M., and F. Bezanilla. 1977. Inactivation of the sodium channel. II. Gating current experiments. J. Gen. Physiol. 70:557–590.CrossRefGoogle Scholar
  31. 29.
    Armstrong, C.M., and W. F. Gilly. 1979. Fast and slow steps in the activation of sodium channels. J. Gen. Physiol. 74:691–711.PubMedCrossRefGoogle Scholar
  32. 30.
    Bezanilla, F., and R. E. Taylor. 1982. Voltage-dependent gating of sodium channels. In: Abnormal Nerves and Muscles as Impulse Generators. W. J. Culp and J. Ochoa, eds. Oxford University Press, London, pp. 62–79.Google Scholar
  33. 31.
    Goldman, L., and C. L. Schauf. 1972. Inactivation of the sodium current in Myxicola giant axons: Evidence of coupling to the activation process. J. Gen. Physiol. 59:659–675.PubMedCrossRefGoogle Scholar
  34. 32.
    Bezanilla, F., and C. M. Armstrong. 1974. Gating currents of the sodium channels: Three ways to block them. Science 183:753–754.PubMedCrossRefGoogle Scholar
  35. 33.
    Cahalan, M. D., and W. Aimers. 1979. Block of sodium conductance and gating current in squid axons poisoned with quaternary strychnine. Biophys. J. 27:57–74.PubMedCrossRefGoogle Scholar
  36. 34.
    Yeh, J. Z., and C. M. Armstrong. 1978. Immobilization of gating charge by a substance that simulates inactivation. Nature (London) 273:387–389.CrossRefGoogle Scholar
  37. 35.
    Yeh, J. Z. 1982. A pharmacological approach to the structure of the Na channel in squid axon. In: Proteins in the Nervous System: Structure and function. B. Haber, J. R. Perez-Polo, and J. D. Coulter, eds. Liss, New York. pp. 17–50.Google Scholar
  38. 36.
    DeFelice, L. J. 1981. Introduction to Membrane Noise. Plenum Press, New York.CrossRefGoogle Scholar
  39. 37.
    Conti, F., L. J. DeFelice, and E. Wanke. 1975. Potassium and sodium in current noise in the membrane of the squid giant axon. J. Physiol. (London) 248:45–82.Google Scholar
  40. 38.
    Llano, I., and F. Bezanilla. 1982. Analysis of sodium current fluctuations in the cut-open axon. J. Gen. Physiol. 83:133–142.CrossRefGoogle Scholar
  41. 38a.
    Levis, R. A., F. Bezanilla, and R. M. Torres. 1984. Estimate of the squid axon sodium channel conductance with improved frequency response. Biophys. J. 45:11a.Google Scholar
  42. 39.
    Conti, F., B. Hille, B. Neumke, W. Nonner, and R. Stämpfli. 1976. Measurement of the conductance of the sodium channel from current fluctuations at the node of Ranvier. J. Physiol. (London) 262:699–727.Google Scholar
  43. 40.
    Sigworth, F. J. 1980. The variance of sodium current fluctuations at the node of Ranvier. J. Physiol. (London) 307:97–129.Google Scholar
  44. 41.
    Patlak, J., and R. Horn. 1982. Effect of N-bromoacetamide on single sodium channel currents in excised membrane patches. J. Gen. Physiol. 79:333–351.PubMedCrossRefGoogle Scholar
  45. 42.
    Oxford, G. S., C. H. Wu, and T. Narahashi. 1978. Removal of sodium channel inactivation in squid giant axons by N-bromoacetamide. J. Gen. Physiol. 71:227–247.PubMedCrossRefGoogle Scholar
  46. 43.
    Aldrich, R. W., D. P. Corey, and C. F. Stevens. 1983. A rein-terpretation of mammalian sodium channel gating based on single channel recording. Nature (London) 306:436–441.CrossRefGoogle Scholar
  47. 44.
    Gilly, W. F., and C. M. Armstrong. 1982. Divalent cations and the activation kinetics of potassium channels in squid giant axons. J. Gen. Physiol. 79:965–996.PubMedCrossRefGoogle Scholar
  48. 45.
    Conti, F., and E. Neher. 1980. Single channel recordings of K currents in squid axons. Nature (London) 285:140–143.CrossRefGoogle Scholar
  49. 46.
    White, M. M., and F. Bezanilla. 1985. Activation of squid axon K + channels: Ionic and gating current studies. J. Gen. Physiol. 85:539–554.PubMedCrossRefGoogle Scholar
  50. 47.
    Bezanilla, F., M. M. White, and R. E. Taylor. 1982. Gating currents associated with potassium channel activation. Nature (London) 296:657–659.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Francisco Bezanilla
    • 1
  • Michael M. White
    • 1
  1. 1.Department of Physiology, Ahmanson Laboratory of Neurobiology, and the Jerry Lewis Neuromuscular Research CenterUniversity of California Medical SchoolLos AngelesUSA

Personalised recommendations