Advertisement

Abstract

Because of the vast number of cellular processes sensitive to changes in pH, the control of intracellular pH (pHi) is of vital importance both for the individual cell and for the organism as a whole. The fundamental problem that pHiregulating mechanisms must address is the chronic tendency toward intracellular acidification. Depending on the conditions of incubation, a chronic intracellular acid load can be imposed by cellular metabolism. However, a nearly universal source of chronic acid loading are the fluxes across the cell membrane of H+ and of ionized weak acids and bases. Consider a cell having a transmembrane voltage (Vm) of -60 mV (cell negative) and an extracellular pH (pHo) of 7.4. The Nernst equation predicts that pHi would be ∼ 6.4 if H+ were in electrochemical equilibrium across the cell membrane. Because the actual pHi is nearly a full pH unit higher, there is a substantial gradient favoring the influx of H+, and one of equal magnitude favoring the efflux of OH. It can be shown (see Section 4.1) that the anionic, conjugate weak base (e.g., HCO3 ) of any neutral weak acid (e.g., CO2) is influenced by the same electrochemical gradient as that for OH, provided the neutral weak acid is equilibrated across the cell membrane. Similarly, the electrochemical gradient for any cationic conjugate weak acid (e.g., NH4 + ) of a neutral weak base (e.g., NH3) is the same as that for H+, provided the neutral weak base is in equilibrium across the cell membrane. Thus, the passive fluxes of H+, and of ionized weak acids or bases will all produce a chronic intracellular acid load. The gradual fall of pHi toward its equilibrium value (i.e., ∼ 6.4 in this example) can be forestalled only by an active-transport process that extrudes acid from the cell at a rate equal to the total rate of acid accumulation.

Keywords

Acid Load Frog Skeletal Muscle Squid Axon Snail Neurone Buffer Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abercrombie, R. F., R. W. Putnam, and A. Roos. 1983. The intracellular pH of frog skeletal muscle: Its regulation in isotonic solution. J. Physiol. (London) 345:175–187.PubMedGoogle Scholar
  2. 2.
    Abercrombie, R. F., and A. Roos. 1983. The intracellular pH of frog skeletal muscle: Its regulation in hypertonic solutions. J. Physiol (London) 345:189–204.Google Scholar
  3. 3.
    Aickin, C. C., and R. C. Thomas. 1977. Microelectrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres. J. Physiol. (London) 267:791–810.Google Scholar
  4. 4.
    Aickin, C. C., and R. C. Thomas. 1977. An investigation of the ionic mechanism of intracellular pH regulation in mouse soleus muscle fibres. J. Physiol (London) 273:295–316.Google Scholar
  5. 5.
    Ammann, D., F. Lanter, R. A. Steiner, P. Schulthess, Y. Shijo, and W. Simon. 1981. Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies. Anal Chem. 53:2267–2269.PubMedCrossRefGoogle Scholar
  6. 6.
    Aronson, P. S., J. Nee, and M. A. Suhm. 1982. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature (London) 229:161–163.CrossRefGoogle Scholar
  7. 7.
    Aronson, P. A., M. A. Suhm, and J. Nee. 1983. Interaction of external H+ with the Na+-H+ exchanger in renal microvillus membrane vesicles. J. Biol, Chem. 258:6767–6771.Google Scholar
  8. 8.
    Baylor, S. M., W. K. Chandler, and M. W. Marshall. 1982. Optical measurements of intracellular pH and magnesium in frog skeletal muscle fibres. J. Physiol (London) 331:105–137.Google Scholar
  9. 9.
    Biagi, B., and M. Sohtell. 1984. Bicarbonate voltage transients in the rabbit proximal tubule. Kidney Int. 25:271a.Google Scholar
  10. 10.
    Boron, W. F. 1977. Intracellular pH transients in giant barnacle muscle fibers. Am. J. Physiol. 233:C61–C73.PubMedGoogle Scholar
  11. 11.
    Boron, W. F. 1980. Intracellular pH regulation. Curr. Top. Membr. Transp. 13:3–22.CrossRefGoogle Scholar
  12. 12.
    Boron, W. F. 1983. Transport of H+ and of ionic weak acids and bases. J. Membr. Biol 72:1–16.PubMedCrossRefGoogle Scholar
  13. 13.
    Boron, W. F. 1984. Control of intracellular pH. In: The Kidney: Physiology and Pathology. D. W. Seldin and G. Giebisch, eds. Raven Press, New York. Pp. 1417–1439.Google Scholar
  14. 14.
    Boron, W. F. 1985. Intracellular pH-regulating mechanism of the squid axon: Relation between the external Na+ and HCO3 + dependencies. J. Gen. Physiol 85:325–345.PubMedCrossRefGoogle Scholar
  15. 15.
    Boron, W. F., and E. L. Boulpaep. 1983. Intracellular pH regulation in salamander proximal tubules: Na-H exchange. J. Gen. Physiol 81:29–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Boron, W. F., and E. L. Boulpaep. 1983. Intracellular pH regulation in salamander proximal tubules: Basolateral HCO3 + transport. J. Gen. Physiol. 81:53–94.PubMedCrossRefGoogle Scholar
  17. 17.
    Boron, W. F., and P. DeWeer. 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3, and metabolic inhibitors. J. Gen. Physiol 67:91–112.PubMedCrossRefGoogle Scholar
  18. 18.
    Boron, W. F., and P. DeWeer. 1976. Active proton transport stimulated by CC2/HCO3, blocked by cyanide. Nature (London) 259:240–241.CrossRefGoogle Scholar
  19. 19.
    Boron, W. F., and P. Fong. 1983. Effect of carbonic anhydrase inhibitors on basolateral HCO3 transport in salamander proximal tubules. Kidney Int. 23:230.Google Scholar
  20. 20.
    Boron, W. F., W. C. McCormick, and A. Roos. 1979. pH regulation in barnacle muscle fibers: Dependence on intracellular and extracellular pH. Am. J. Physiol. 237:C185–C193.PubMedGoogle Scholar
  21. 21.
    Boron, W. F., McCormick, W. C., and A. Roos. 1981. pH regulation in barnacle muscle fibers: Dependence on extracellular sodium and bicarbonate. Am. J. Physiol. 240:C80–C89.PubMedGoogle Scholar
  22. 22.
    Boron, W. F., and A. Roos. 1976. Comparison of microelectrode, DMO, and methylamine methods for measuring intracellular pH. Am. J. Physiol 231:799–809.PubMedGoogle Scholar
  23. 23.
    Boron, W. F., and J. M. Russell. 1983. Stoichiometry and ion dependencies of the intracellular pH-regulating mechanism in squid giant axons. J. Gen. Physiol 81:373–399.PubMedCrossRefGoogle Scholar
  24. 24.
    Boron, W. F., J. M. Russell, M. S. Brodwick, D. W. Keifer, and A. Roos. 1978. Influence of cyclic AMP on intracellular pH regulation and chloride fluxes in barnacle muscle fibres. Nature (London) 276:511–513.CrossRefGoogle Scholar
  25. 25.
    Busa, W. B., and J. H. Crowe. 1983. Intracellular pH regulates transitions between dormancy and development of brine shrimp (Anemia salina) embryos. Science 221:366–368.PubMedCrossRefGoogle Scholar
  26. 26.
    Busa, W. B., and R. Nuccitelli. 1984. Metabolic regulation via intracellular pH. Am. J. Physiol 246:R409–R438.PubMedGoogle Scholar
  27. 27.
    Cabantchik, Z. I., P. A. Knauf, and A. Rothstein. 1978. The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of ‘probes.’ Biochim. Biophys. Acta 515:239–302.PubMedGoogle Scholar
  28. 28.
    Cabantchik, Z. I. and A. Rothstein. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives. J. Membr. Biol. 10:311–328.PubMedCrossRefGoogle Scholar
  29. 29.
    Cassel, D., P. Rothenberg, Y. Zhuand, T. F. Deuel, and L. Glaser. 1983. Platelet-derived growth factor stimulates Na+ /H+ exchange and induces cytoplasmic alkalinization in NR6 cells. Proc. Natl. Acad. Sci. USA 80:6224–6228.PubMedCrossRefGoogle Scholar
  30. 30.
    Chaillet, J. R., K. Amsler, and W. F. Boron. 1985. Optical measurements of intercellular pH in single PK1 cells: Evidence for Cl-HCO3 exchange. Kidney Int. in press.Google Scholar
  31. 31.
    Chaillet, J. R., and W. F. Boron. 1985. Intracellular calibration of a pH-sensitive dye in isolated perfused salamander proximal tubules. J. Gen Physiol. in press.Google Scholar
  32. 32.
    Chaillet, J. R., A. G. Lopes, and W. F. Boron. 1985. Basolateral Na-H exchange in the rabbit cortical collecting tubule. J. Gen. Physiol. in press.Google Scholar
  33. 33.
    Clancy, R. L., N. C. Gonzales, and R. A. Fenton. 1976. Effect of beta-adrenoreceptor blockade on rat cardiac and skeletal muscle pH. Am. J. Physiol. 230:959–964.PubMedGoogle Scholar
  34. 34.
    Cogan, M. G. 1984. Stimulation of proximal bicarbonate reab-sorption by chronic hypercapnia. Kidney Int. 25:273a.Google Scholar
  35. 35.
    Cohn, D. E., S. Klahr, and M. R. Hammerman. 1983. Metabolic acidosis and parathyroidectomy increase Na+-H+ exchange in brush border vesicles. Am. J. Physiol. 345:F217–F222.Google Scholar
  36. 36.
    DeHemptine, A. 1980. Intracellular pH and surface pH in skeletal and cardiac muscle measured with a double-barrelled pH microelectrode. Pfluegers Arch. 386:121–126.CrossRefGoogle Scholar
  37. 37.
    DeHemptine, A., R. Marranes, and B. Vanheel. 1983. Influence of organic acids on intracellular pH. Am. J. Physiol. 245:C178–C183.Google Scholar
  38. 38.
    Deitmer, J. W., and D. Ellis. 1980. Interactions between the regulation of the intracellular pH and sodium activity of sheep cardiac Purkinje fibres. J. Physiol. (London) 304:471–488.PubMedGoogle Scholar
  39. 39.
    Dennis, V. W. 1976. Influence of bicarbonate on parathyroid-induced changes in fluid absorption by the proximal tubule. Kidney Int. 10:373–380.PubMedCrossRefGoogle Scholar
  40. 40.
    Deutsch, C., J. S. Taylor, and D. F. Wilson. 1982. Regulation of intracellular pH by human peripheral blood lymphocytes as measured by 19F NMR. Proc. Natl. Acad. Sci. USA 79:7944–7948.PubMedCrossRefGoogle Scholar
  41. 41.
    Ellis, D., and R. C. Thomas. 1976. Direct measurement of the intracellular pH of mammalian cardiac muscle. J. Physiol (London) 262:755–761.Google Scholar
  42. 42.
    Evans, M. G., and R. C. Thomas. 1984. Acid influx into snail neurones caused by reversal of the normal pHi-regulating system. J. Physiol (London) 346:143–154.Google Scholar
  43. 43.
    Evans, M. G., and R. C. Thomas. 1984. The effects of acid solutions on intracellular pH and Na in snail neurones. J. Physiol (London) 341:68P.Google Scholar
  44. 44.
    Fenton, R. A., N. C. Gonazalez, and R. L. Clancy. 1978. The effect of dibutyrl cyclic AMP and glucagon on the myocardial cell pH. Respir. Physiol. 32:213–223.PubMedCrossRefGoogle Scholar
  45. 45.
    Folbergrova, J., V. MacMillan, and B. K. Siesjo. 1972. The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain. J. Neurochem. 19:2507–2517.PubMedCrossRefGoogle Scholar
  46. 46.
    Frelin, C., P. Vigne, and M. Lazdunski. 1983. The amiloride-sensitive Na+/H+ antiport in 3T3 fibroblasts. J. Biol. Chem. 258:6272–6276.PubMedGoogle Scholar
  47. 47.
    Fromter, E., K. Sato, and K. Gessner. 1975. Acetazolamide inhibits passive buffer exit from rat kidney proximal tubular cells. Pfluegers Arch. 359:R118.Google Scholar
  48. 48.
    Gadian, D. G., G. K. Radda, M. J. Dawson, and D. R. Wilkie. 1982. pHi measurements of cardiac and skeletal muscle using 31-NMR. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. R. Nuccitelli and D. W. Deamer, eds. Liss, New York. Pp. 61–77.Google Scholar
  49. 49.
    Gilies, R. J., J. R. Alger, J. A. den Hollander, and R. G. Shul-man. 1982. Intracellular pH measured by NMR: Methods and results. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. R. Nuccitelli and D. W. Deamer, eds. Liss, New York. Pp. 79–104.Google Scholar
  50. 50.
    Heiple, J. M., and D. L. Taylor. 1982. An optical technique of measurement of intracellular pH in single living cells. In: Intracellular pH: Its Measurement, Regulation and Utilization in Cellular Functions. R. Nuccitelli and D. W. Deamer, eds. Liss, New York. Pp. 21–54.Google Scholar
  51. 51.
    Hinke, J. A. M. 1967. Cation-selective microelectrodes for intracellular use. In: Glass Electrodes for Hydrogen and Other Cations: Principles and Practice. G. Eisenman, ed. Dekker, New York. pp. 464–477.Google Scholar
  52. 52.
    Jacobs, M. H. 1920. The production of intracellular acidity by neutral and alkaline solutions containing carbon dioxide. Am. J. Physiol. 53:457–463.Google Scholar
  53. 53.
    Jacobs, M. H. 1922. The influence of ammonium salts on reaction. J. Gen. Physiol. 5:181–188.PubMedCrossRefGoogle Scholar
  54. 54.
    Kahn, A. M., G. M. Dolson, S. C. Bennett, and E. J. Weinman. 1984. cAMP and PTH inhibits Na+ /H+ exchange in brush border membrane vesicles (BBM) derived from a suspension of rabbit proximal tubules. Kidney Int. 25:289a.Google Scholar
  55. 55.
    Keifer, D. W., and A. Roos. 1981. Membrane permeability to the molecular and ionic forms of DMO in barnacle muscle. Am. J. Physiol. 240:C73–C79.PubMedGoogle Scholar
  56. 56.
    Kinsella, J. L., and P. S. Aronson. 1980. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 238:F461–F469.PubMedGoogle Scholar
  57. 57.
    Kinsella, J. L., and P. S. Aronson. 1981. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 241:F374–F379.PubMedGoogle Scholar
  58. 58.
    Kinsella, J. L., and P. S. Aronson. 1981. Interaction of NH4 + and Li+ with the renal microvillus membrane Na+-H+ exchanger. Am. J. Physiol. 241:C220–C226.PubMedGoogle Scholar
  59. 59.
    Kinsella, J. L., and P. S. Aronson. 1982. Determination of the coupling ratio for Na+-H+ exchange in renal microvillus membranes vesicles. Biochim. Biophys. Acta 689:161–164.PubMedCrossRefGoogle Scholar
  60. 60.
    Koppel, M., and K. Spiro. 1914. Uber die wirking von moder-atoren (Puffern) bei der Verschiebung des saure-basengleichgewichtes in biologischen flussigkeiten. Biochem. Z. 65:409–439.Google Scholar
  61. 61.
    MacMillan, V., and B. K. Siesjo. 1973. The influence of hypo-capnea upon intracellular pH and upon some carbohydrate substrates, amino acids and organic phosphates in the brain. J. Neu-rochem. 21:1283–1299.Google Scholar
  62. 62.
    Meech, R. W., and R. C. Thomas. 1977. The effect of calcium injection on the intracellular sodium and pH of snail neurones. J. Physiol. (London) 265:867–879.PubMedGoogle Scholar
  63. 63.
    Meech, R. W., and R. C. Thomas. 1980. Effect of measured calcium chloride injections on the membrane potential and internal pH of snail neurones. J. Physiol. (London) 298:111–129.PubMedGoogle Scholar
  64. 64.
    Michaelis, L. 1922. Die Wasserstoffionenkonzentration. Springer-Verlag, Berlin, pp. 89–93.Google Scholar
  65. 65.
    Moody, W. J., Jr. 1981. The ionic mechanism of intracellular pH regulation in crayfish neurones. J. Physiol. (London) 316:293–308.PubMedGoogle Scholar
  66. 66.
    Moolenaar, W. H., J. Boonstra, P. T. van-der Saag, and S. W. de Laat. 1981. Sodium/proton exchange in mouse neuroblastoma cells. J. Biol. Chem. 256:12883–12887.PubMedGoogle Scholar
  67. 67.
    Moolenaar, W. H., R. W. Tsien, P. T. van der Saag, and S. W. Laat. 1983. Na+/H+ exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature (London) 304:645–648.CrossRefGoogle Scholar
  68. 68.
    Moolenaar, W. H., Y. Yarden, S. W. de Laat, and J. Schlessinger. 1982. Epidermal growth factor induces electrically silent Na+ influx in human fibroblasts. J. Biol. Chem. 257:8502–8506.PubMedGoogle Scholar
  69. 69.
    Moore, R. D. 1979. Elevation of intracellular pH by insulin in frog skeletal muscle. Biochem. Biophys. Res. Commun. 91:900–904.PubMedCrossRefGoogle Scholar
  70. 70.
    Moore, R. D., M. L. Fidelman, and S. H. Seeholzer. 1979. Correlation between insulin action upon glycolysis and change in intracellular pH. Biochem. Biophys. Res. Commun. 91:905–910.PubMedCrossRefGoogle Scholar
  71. 71.
    Murer, H., U. Hopfer, and R. Kinne. 1976. Sodium/proton antiport in brush border membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154:597–604.PubMedGoogle Scholar
  72. 72.
    Piwnica-Worms, D., and M. Lieberman. 1983. Micro-fluorometric monitoring of pH, in cultured heart cells: Na+-H+ exchange. Am. J. Physiol. 244:C442–C448.Google Scholar
  73. 73.
    Riegle, K. M., and R. L. Clancy. 1975. Effect of norepinephrine on myocardial intracellular hydrogen ion concentration. Am. J. Physiol. 229:344–349.PubMedGoogle Scholar
  74. 74.
    Rindler, M. J., and M.H. Saier, Jr. 1981. Evidence for Na+/H+ antiport in cultured dog kidney cells (MDCK). J. Biol. Chem. 256:10820–10825.PubMedGoogle Scholar
  75. 75.
    Rindler, M. J., M. Taub, and M. H. Saier, Jr. 1979. Uptake of 22Na+ by cultured dog kidney cells (MDCK). J. Biol. Chem. 254:11431–11439.PubMedGoogle Scholar
  76. 76.
    Rink, T. J., R. W. Tsien, and T. Pozzan. 1982. Cytoplasmic pH and free Mg2+ in lymphocytes. J. Cell Biol. 95:189–196.PubMedCrossRefGoogle Scholar
  77. 77.
    Roos, A. 1975. Intracellular pH and distribution of weak acids across cell membranes: A study of D-and L-lactate and of DMO in rat diaphragm. J. Physiol. (London) 249:1–25.PubMedGoogle Scholar
  78. 78.
    Roos, A., and W. F. Boron. 1980. The buffer value of weak acids and bases: Origin of the concept, and first mathematical derivation and application to physico-chemical systems. The work of M. Koppel and K. Spiro. Respir. Physiol. 40:1–32.PubMedCrossRefGoogle Scholar
  79. 79.
    Roos, A., and W. F. Boron. 1981. Intracellular pH. Physiol. Rev. 61:296–434.Google Scholar
  80. 80.
    Rothenberg, P., L. Glaser, P. Schlesinger, and D. Cassel. 1983. Activation of Na+/H+ exchange by epidermal growth factor elevates intracellular pH in A431 cells. J. Biol Chem. 258:12644–12653.PubMedGoogle Scholar
  81. 81.
    Russell, J. M., and W. F. Boron. 1976. Role of chloride transport in regulation of intracellular pH. Nature (London) 264:73–74.CrossRefGoogle Scholar
  82. 82.
    Russell, J. M., W. F. Boron, and M. S. Brodwick. 1983. Intracellular pH and Na fluxes in barnacle muscle with evidence for reversal of the ionic mechanism of intracellular pH regulation. J. Gen. Physiol. 82:47–78.PubMedCrossRefGoogle Scholar
  83. 83.
    Sachs, G., J. G. Spenney, and M. Lewin. 1978. H+ transport: Regulation and mechanism in gastric mucosa and membrane vesicles. Physiol. Rev. 58:106–173.PubMedGoogle Scholar
  84. 84.
    Seifter, J. L., and R. C. Harris. 1984. Chronic K depletion Na-H exchange in rat renal cortical brush border membrane vesicles. Kidney Int. 25:282a.Google Scholar
  85. 85.
    Shuldiner, S., and E. Rozengurt. 1982. Na+/H+ antiport in Swiss 3T3 cells: Mitogenic stimulation leads to cytoplasmic al-kalinization. Proc. Natl. Acad. Sci. USA 79:7778–7782.CrossRefGoogle Scholar
  86. 86.
    Siesjo, B. K., and K. Messeter. 1971. Factors determining intracellular pH. In: Ion Homeostasis of the Brain. B. K. Siesjo and S. C. Sorensen, eds. Munksgaard, Copenhagen, pp. 244–262.Google Scholar
  87. 87.
    Steinmetz, P. A., and O. S. Andersen. 1982. Electogenic proton transport in epithelial membranes. J. Membr. Biol. 65:155–174.PubMedCrossRefGoogle Scholar
  88. 88.
    Thomas, J. A., R. N. Buchsbaum, A. Zimniak, and E. Racker. 1979. Intracellular pH measements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry 18:2210–2218.PubMedCrossRefGoogle Scholar
  89. 89.
    Thomas, R. C. 1974. Intracellular pH of snail neurones measured with a new pH-sensitive glass microelectrode. J. Physiol. (London) 238:159–180.PubMedGoogle Scholar
  90. 90.
    Thomas, R. C. 1976. Ionic mechanism of the H+ pump in a snail neurone. Nature (London) 262:54–55.CrossRefGoogle Scholar
  91. 91.
    Thomas, R. C. 1976. The effect of carbon dioxide on the intracellular pH and buffering power of snail neurones. J. Physiol. (London) 255:715–735.Google Scholar
  92. 92.
    Thomas, R. C. 1977. The role of bicarbonate, chloride and sodium ions in the regulation of intracellular pH in snail neurones. J. Physiol. (London) 273:317–338.PubMedGoogle Scholar
  93. 93.
    Trivedi, B., and H. Danforth. 1966. Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241:4110–4112.PubMedGoogle Scholar
  94. 94.
    Tsai. C. J., H. E. Ives, R. J. Alpern, V. J. Yee, D. G. Warnock, and F. C. Rector, Jr. 1984. The Vmax for Na+/H+ antiporter activity in rabbit brush border vesicles (BBV) is increased in metabolic acidosis. Kidney Int. 25:284a.Google Scholar
  95. 95.
    Van Slyke, D. 1922. On the measurement of buffer values and on the relationship of buffer value to the dissociation constant of the buffer and the concentration and reaction of the buffer solution. J. Biol. Chem. 52:525–570.Google Scholar
  96. 96.
    Vaughan-Jones, R. D. 1979. Regulation of chloride in quiescent sheep heart Purkinje fibres studied using intracellular chloride and pH-sensitive microelectrodes. J. Physiol. (London) 295:111–137.PubMedGoogle Scholar
  97. 97.
    Vaughan-Jones, R. D. 1982. Chloride-bicarbonate exchange in the sheep cardiac Purkinje fiber. In: Intracellular pH: Its Measurement, Regulation, and Utilization in Cellular Functions. R. Nuccitelli and D. Deamer, eds. Liss, New York. pp. 239–252.Google Scholar
  98. 98.
    Vaughan-Jones, R. D., W. J. Lederer, and D. A. Eisner. 1983. Ca2+ ions can affect intracellular pH in mammalian cardiac muscle. Nature (London) 301:522–524.CrossRefGoogle Scholar
  99. 99.
    Vigne, P., C. Frelin, E. J. Cragoe, Jr., and M. Lazdunski. 1983. Ethyl-isopropyl-amiloride: A new and highly potent derivative of amiloride for the inhibition of the Na + /H+ exchange system in various cell types. Biochem. Biophys. Res. Commun. 116:86–90.PubMedCrossRefGoogle Scholar
  100. 100.
    Vigne, P., C. Frelin, and M. Lazdunski. 1982. The amiloride sensitive Na+/H+ exchange system in skeletal muscle cells in culture. J. Biol. Chem. 257:9394–9400.PubMedGoogle Scholar
  101. 101.
    Weinman, S. A., and L. Reuss. 1982. Na+ /H+ exchange at the apical membrane of Necturus gallbladder. J. Gen. Phvsiol. 80:299–321.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Walter F. Boron
    • 1
  1. 1.Department of PhysiologyYale University School of MedicineNew HavenUSA

Personalised recommendations