Acidification of Intracellular Organelles

Mechanism and Function
  • Gary Rudnick


The interior of many intracellular organelles is maintained at a pH lower than that of the cytoplasm. These organelles include a wide variety of secretory granules, such as synaptic vesicles, chromaffin granules, and peptide storage granules, as well as lysosomes and plant vacuoles. This chapter will discuss the evidence that these organelles are acidic, and the ways in which the acidic interior is used by the cell. It also attempts to review the mechanisms which might account for maintenance of a pH difference (ApH) across the organelle membrane, including the proposal that a unique ATPase H + pump resides in the organelle membrane. It is beyond the scope of this chapter to review H + movements across energy-transducing membranes, such as submitochondrial particles and chloroplasts, which also acidify their interiors in a process directly connected with conversion of metabolic or light energy into ATP. In general, we can separate proton movements across intracellular membranes into two categories, those which are coupled to ATP production, as in mitochondria and chloroplasts, and those in which metabolic energy is used to acidify the interior of organelles for a specialized purpose distinct from energy production. The two processes are not mutually exclusive, since the processes of ATP synthesis and hydrolysis are innate properties of both pathways. However, there probably are physical distinctions between the machinery involved in the two systems.


Synaptic Vesicle Biogenic Amine Secretory Granule Granule Membrane Chromaffin Granule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



transmembrane pH difference


transmembrane electrical potential


transmembrane electrochemical potential of H+






N, .N′-dicyclohexylcarbodiimide


fluorescein isothiocyanate-labeled dextran




1-anilino-naphthalene sulfonate




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Metchnikoff, E. 1893. Lectures on the Comparative Pathology of Inflammation. Kegan, Paul, Trench, Trübner, London.Google Scholar
  2. 2.
    Rous, P. 1925. The relative reaction within living mammalian tissues. I. General features of vital staining with litmus. J. Exp. Med. 41:379–397.PubMedGoogle Scholar
  3. 3.
    Rous, P. 1925. The relative reaction within living mammalian tissues. II. On the mobilization of acid material within cells, and the reaction as influenced by cell state. J. Exp. Med. 41:399–411.PubMedGoogle Scholar
  4. 4.
    Pulcher, C. 1927. Le variazioni del pH nella fagocitosi. Nota II Boll. Soc. Ital. Biol. Sper. 2:722.Google Scholar
  5. 5.
    Sprick, M. G. 1956. Phagocytosis of M. tuberculosis and M. smegmatis stained with indicator dyes. Am. Rev. Tuberc. Pulm. Dis. 74:552–565.Google Scholar
  6. 6.
    Pavlov, E. P., and V.N. Soloviev. 1967. Changes of cytoplasm in phagocytosis of microbes stained with indicator dyes. Biul. Eksp. Biol. Med. 4:78.Google Scholar
  7. 7.
    Mandell, G. L. 1970. Intraphagolysosomal pH of human polymorphonuclear neutrophils. Proc. Soc. Exp. Biol. Med. 134:447–449.PubMedGoogle Scholar
  8. 8.
    Jensen, R. G., and D. F. Bainton. 1973. Temporal changes in ApH within the phagocytic vacuole of the polymorphonuclear neutrophilic leukocyte. J. Cell Biol. 56:379–388.PubMedGoogle Scholar
  9. 9.
    Goldman, R., and H. Rottenberg. 1973. Ion distribution in lysosomal suspensions. FEBS Lett. 33:233–238.PubMedGoogle Scholar
  10. 10.
    Reijngoud, D. J., and J. M. Tager. 1973. Measurement of intra-lysosomal pH. Biochim. Biophys. Acta 297:174–178.Google Scholar
  11. 11.
    Rottenberg, H., T. Grunwald, and M. Avron. 1972. Determination of pH in chloroplasts. I. Distribution of (14C)methylamine. Eur. J. Biochem. 25:54–63.PubMedGoogle Scholar
  12. 12.
    Schuldiner, S., H. Rottenberg, and M. Avron. 1972. Determination of ApH in chloroplasts. 2. Fluorescent amines as a probe for the determination of ΔpH in chloroplasts. Eur. J. Biochem. 25:64–70.PubMedGoogle Scholar
  13. 13.
    Waddell, W. J., and T. C. Butler. 1959. Calculation of intracellular pH from the distribution of 5, 5-dimethyl-2, 4-oxazolidine-dione (DMO): Application to skeletal muscle of the dog. J. Clin. Invest. 38:720–729.PubMedGoogle Scholar
  14. 14.
    Reijngoud, D. J., and J. M. Tager. 1977. The permeability properties of the lysosomal membrane. Biochim. Biophys. Acta 472:419–449.PubMedGoogle Scholar
  15. 15.
    Marin, B., M. Marin-Lanza, and E. Komor. 1981. The proton-motive potential difference across the vacuo lysosomal membrane of Hevea brasiliensis (rubber tree) and its modification by a membrane-bound adenosine triphosphatase. Biochem. J. 198: 365–372.PubMedGoogle Scholar
  16. 16.
    Pollard, H. B., O. Zinder, P. G. Hoffman, and O. Nikodejevic. 1976. Regulation of the transmembrane potential of isolated chromaffin granules by ATP, ATP analogs, and external pH. J. Biol. Chem. 251:4544–4550.PubMedGoogle Scholar
  17. 17.
    Johnson, R. G., and A. Scarpa. 1976. Internal pH of isolated chromaffin vesicles. J. Biol. Chem. 251:2189–2191.PubMedGoogle Scholar
  18. 18.
    Johnson, R. G., and A. Scarpa. 1976. Ion permeability of isolated chromaffin granules. J. Gen. Physiol. 68:601–631.PubMedGoogle Scholar
  19. 19.
    Johnson, R. G., A. Scarpa, and L. Salganicoff. 1978. The internal pH of isolated serotonin containing granules of pig platelets. J. Biol. Chem. 253:7061–7068.PubMedGoogle Scholar
  20. 20.
    Wilkins, J. A., and L. Salganicoff. 1981. Participation of a transmembrane proton gradient in 5-hydroxytryptamine transport by platelet dense granules and dense granule ghosts. Biochem. J. 198:113–123.PubMedGoogle Scholar
  21. 21.
    Russell, J. T., and R. W. Holz. 1981. Measurement of ΔpH and membrane potential in isolated neurosecretory vesicles from bovine neurohypophyses. J. Biol. Chem. 256:5950–5953.PubMedGoogle Scholar
  22. 22.
    Scherman, D., and J. J. Nordmann. 1982. Internal pH of isolated newly formed and aged neurohypophysial granules. Proc. Natl. Acad. Sci. USA 79:476–479.PubMedGoogle Scholar
  23. 23.
    Ohkuma, S., and B. Poole. 1978. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Natl. Acad. Sci. USA 75:3327–3331.PubMedGoogle Scholar
  24. 24.
    Ohkuma, S., and B. Poole. 1981. Cytoplasmic vacuolation of mouse peritoneal macrophages and the uptake into lysosomes of weakly basic substances. J. Cell Biol. 90:656–664.PubMedGoogle Scholar
  25. 25.
    Salama, G., R. G. Johnson, and A. Scarpa. 1980. Spectrophoto-metric measurements of transmembrane potential and pH gradients in chromaffin granules. J. Gen. Physiol. 75:109–140.PubMedGoogle Scholar
  26. 26.
    Rottenberg, H. 1979. The measurement of membrane potential and ΔpH in cells, organelles, and vesicles. Methods Enzymol. 55:547–569.PubMedGoogle Scholar
  27. 27.
    Johnson, R. G., S. E. Carty, B. J. Fingerhood, and A. Scarpa. 1980. The internal pH of mast cell granules. FEBS Lett. 120:75–79.PubMedGoogle Scholar
  28. 28.
    Dell’ Antone, P. 1979. Evidence for an ATP-driven ‘proton pump’ in rat liver lysosomes by basic dyes uptake. Biochem. Biophys. Res. Commun. 86:180–189.Google Scholar
  29. 29.
    Lin, W., G. J. Wagner, H. W. Siegelman, and G. Hind. 1977. Membrane-bound ATPase of intact vacuoles and tonoplasts isolated from mature plant tissue. Biochim. Biophys. Acta 465:110–117.PubMedGoogle Scholar
  30. 30.
    Smith, F. A., and J. A. Raven. 1976. H+ transport and regulation of cell pH. In: Encyclopedia of Plant Physiology, Volume 2. O. Luttge and M. Pittman, eds. Springer, Berlin, pp. 317–346.Google Scholar
  31. 31.
    Hurd-Karrer, A. M. 1939. Hydrogen ion concentration of leaf-juice in relation to environment and plant species. Am. J. Bot. 26:834–846.Google Scholar
  32. 32.
    Small, J. 1946. p H and Plants. Ballière, Tindall & Cox, London.Google Scholar
  33. 33.
    Drawert, H. 1955. Der pH-Wert des Zellsaftes. In: Encyclopedia of Plant Physiology, Volume 1. W. Ruhland, ed. Springer, Berlin, pp. 627–648.Google Scholar
  34. 34.
    Ranson, S. L. 1965. The plant acids. In: Plant Biochemistry. J. Bonner and J. E. Varner, eds. Academic Press, New York. pp. 493–525.Google Scholar
  35. 35.
    Eppley, R. W., and C. R. Bovell. 1968. Sulfuric acid in Des-marestia. Biol. Bull. 115:101–106.Google Scholar
  36. 36.
    Casey, R. P., D. Njus, G. K. Radda, and P. A. Sehr. 1977. Active proton uptake by chromaffin granules: Observation by amine distribution and phosphorus-31 nuclear magnetic resonance techniques. Biochemistry 16:972–977.PubMedGoogle Scholar
  37. 37.
    Schulman, R. G., T. P. Brown, K. Ugurbil, S. Ogawa, S. M. Cohen, and J. A. den Hollander. 1979. Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205:160–166.Google Scholar
  38. 38.
    Ritchie, G. A. 1975. Ph.D. thesis. University of Oxford.Google Scholar
  39. 39.
    Njus, D., P. A. Sehr, G. K. Radda, G. A. Ritchie, and P. J. Seeley. 1978. Phosphorus-31 nuclear magnetic resonance studies of active proton translocation in chromaffin granules. Biochemistry 17:4337–4343.PubMedGoogle Scholar
  40. 40.
    Pollard, H. B., H. Shindo, C. E. Creutz, C. J. Pazoles, and J. S. Cohen. 1979. Internal pH and state of ATP in adrenergic chromaffin granules determined by 31P nuclear magnetic resonance spectroscopy. J. Biol. Chem. 254:1170–1177.PubMedGoogle Scholar
  41. 41.
    Reijngoud, D. J., and J. M. Tager. 1975. Effect of ionophores and temperature on intralysosomal pH. FEBS Lett. 54:76–79.PubMedGoogle Scholar
  42. 42.
    Henning, R. 1975. pH gradient across the lysosomal membrane generated by selective cation permeability and Donnan equilibrium. Biochim. Biophys. Acta 401:307–316.PubMedGoogle Scholar
  43. 43.
    Casey, R. P., D. Njus, G. K. Radda, and P. A. Sehr. 1976. Adenosine triphosphate-evoked catecholamine release in chromaffin granules: Osmotic lysis as a consequence of proton translocation. Biochem. J. 158:583–588.PubMedGoogle Scholar
  44. 44.
    Winkler, H. 1976. The composition of adrenal chromaffin granules: An assessment of controversial results. Neuroscience 1:65–80.PubMedGoogle Scholar
  45. 45.
    Holz, R. W. 1979. Measurement of membrane potential of chromaffin granules by the accumulation of triphenylmethylphos-phonium cations. J. Biol. Chem. 254:6703–6709.PubMedGoogle Scholar
  46. 46.
    Holz, R. W. 1978. Evidence that catecholamine transport into chromaffin vesicles is coupled to vesicle membrane potential. Proc. Natl. Acad. Sci. USA 75:5190–5194.PubMedGoogle Scholar
  47. 47.
    Reeves, J. P. 1984. The mechanism of lysosomal acidification. In: Lysosomes in Biology and Pathology, Volume 7. J. Dingle, R. Dean, and W. Sly, eds. Elsevier, Amsterdam, pp. 175–199.Google Scholar
  48. 48.
    Kirshner, N. 1962. Uptake of catecholamines by a particulate fraction of the adrenal medulla. J. Biol. Chem. 237:2311–2317.PubMedGoogle Scholar
  49. 49.
    Carlsson, A., N. A. Hillarp, and B. Waldeck. 1963. Analysis of the Mg+ +-ATP dependent storage mechanism in the amine granules of the adrenal medulla. Acta Physiol. Scand. 59(Suppl. 215): 1–38.Google Scholar
  50. 50.
    Phillips, J. H. 1974. Transport of catecholamines by resealed chromaffin-granule ‘ghosts.’ Biochem. J. 144:311–318.PubMedGoogle Scholar
  51. 51.
    Phillips, J. H. 1974. Steady-state kinetics of catecholamine transport by chromaffin-granule ‘ghosts.’ Biochem. J. 144:319–325.PubMedGoogle Scholar
  52. 52.
    Njus, D., J. Knoth, and M. Zallakian. 1980. Proton-linked transport in chromaffin granules. Curr. Top. Bioenerg. 11:107–147.Google Scholar
  53. 53.
    Bashford, C. L., G. K. Radda, and G. A. Ritchie. 1975. Energy-linked activities of the chromaffin granule membrane. FEBS Lett. 50:21–24.PubMedGoogle Scholar
  54. 54.
    Azzi, A. 1969. Redistribution of the electrical charge of the mitochondrial membrane during energy conservation. Biochem. Biophys. Res. Commun. 37:254–260.PubMedGoogle Scholar
  55. 55.
    Johnson, R. G., and A. Scarpa. 1979. Protonmotive force and catecholamine transport in isolated chromaffin granules. J. Biol. Chem. 254:3750–3760.PubMedGoogle Scholar
  56. 56.
    Poisner, A. M., and J. M. Trifaro. 1967. The role of ATP and ATPase in the release of catecholamines from the adrenal medulla. I. ATP-evoked release of catecholamines, ATP, and protein from isolated chromaffin granules. Mol. Pharmacol. 3:561–571.PubMedGoogle Scholar
  57. 57.
    Hoffman, P. G., O. Zinder, O. Nikodejevik, and H. B. Pollard. 1976. ATP-stimulated transmitter release and cyclic AMP synthesis in isolated chromaffin granules. J. Supramol. Struct. 4:181–184.PubMedGoogle Scholar
  58. 58.
    Dolais-Kitabgi, J., and R. L. Perlman. 1975. The stimulation of catecholamine release from chromaffin granules by valinomycin. Mol. Pharmacol. 11:745–750.PubMedGoogle Scholar
  59. 59.
    Johnson, R. G., D. Pfister, S. E. Carty, and A. Scarpa. 1979. Biological amine transport in chromaffin ghosts: Coupling to the transmembrane proton and potential gradients. J. Biol. Chem. 254: 10963–10972.PubMedGoogle Scholar
  60. 60.
    Heinrich, P., M. Da Prada, and A. Pletscher. 1972. Magnesium-dependent ATP-ase in membranes of 5-hydroxytryptamine storage organelles. Biochem. Biophys. Res. Commun. 46:1769–1775.PubMedGoogle Scholar
  61. 61.
    Carty, S. E., R. G. Johnson, and A. Scarpa. 1981. Serotonin transport in isolated platelet granules: Coupling to the electrochemical proton gradient. J. Biol. Chem. 256:11244–11250.PubMedGoogle Scholar
  62. 62.
    Fishkes, H., and G. Rudnick. 1982. Bioenergetics of serotonin transport by membrane vesicles derived from platelet dense granules. J. Biol. Chem. 257:5671–5677.PubMedGoogle Scholar
  63. 63.
    Scherman, D., J. Nordmann, and J. P. Henry. 1982. Existence of an adenosine 5′-triphosphate dependent proton translocase in bovine neurosecretory granule membrane. Biochemistry 21:687–694.PubMedGoogle Scholar
  64. 64.
    de Duve, C., T. de Barsy, B. Poole, A. Trouet, P. Tulkens, and F. Van Hoof. 1974. Lysosomotropic agents. Biochem. Pharmacol. 23:2495–2531.PubMedGoogle Scholar
  65. 65.
    Wibo, M., and B. Poole. 1974. Protein degradation in cultured cells. II. The uptake of chloroquine by rat fibroblasts and the inhibition of cellular protein degradation and cathepsin B. J. Cell Biol. 63:430–440.PubMedGoogle Scholar
  66. 66.
    Poole, B., and S. Ohkuma. 1981. Effect of weak bases on the intralysosomal pH in mouse peritoneal macrophages. J. Cell Biol. 90:665–669.PubMedGoogle Scholar
  67. 67.
    Schneider, D. L. 1974. A membranous ATPase unique to lysosomes. Biochem. Biophys. Res. Commun. 61:882–888.PubMedGoogle Scholar
  68. 68.
    Schneider, D. L., and E. Cornell. 1978. Evidence for a proton pump in rat liver lysosomes. In: Protein Turnover and Lysosome function. H. L. Segal and D. Doyl, eds. Academic Press, New York. pp. 59–66.Google Scholar
  69. 69.
    Bashford, C. L., R. P. Casey, G. K. Radda, and G. A. Ritchie. 1976. Energy-coupling in adrenal chromaffin granules. Neuroscience 1:399–412.PubMedGoogle Scholar
  70. 70.
    Schneider, D. L. 1981. ATP-dependent acidification of intact and disrupted lysosomes: Evidence for an ATP-driven proton pump. J. Biol. Chem. 256:3858–3864.PubMedGoogle Scholar
  71. 71.
    Ohkuma, S., Y. Moriyama, and T. Takano. 1982. Identification and characterization of a proton pump on lysosomes by fluorescein isothiocyanate-dextran fluorescence. Proc. Natl. Acad. Sci. USA 79:2758–2762.PubMedGoogle Scholar
  72. 72.
    Ohsumi, Y., and Y. Anraku. 1981. Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J. Biol. Chem. 256:2079–2082.PubMedGoogle Scholar
  73. 73.
    Kakinuma, Y., Y. Ohsumi, and Y. Anraku. 1981. Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 256:10859–10863.PubMedGoogle Scholar
  74. 74.
    Cretin, H. 1982. The proton gradient across the vacuo-lysosomal membrane of lutoids from the latex of Hevea brasiliensis. I. Further evidence for a proton-translocating ATPase on the vacuo-lysosomal membrane of intact lutoids. J. Membr. Biol. 65:175–184.PubMedGoogle Scholar
  75. 75.
    Coffey, J. W., and C. de Duve. 1968. Digestive activity of lysosomes. I. The digestion of proteins by extracts of rat liver lysosomes. J. Biol. Chem. 243:3255–3263.PubMedGoogle Scholar
  76. 76.
    Barrett, A.J. 1969. Lysosomal enzymes. In: Lysosomes in Biology and Pathology, Volume 2. J. T. Dingle and H. B. Dell, eds. Wiley-Interscience, New York. pp. 245–312.Google Scholar
  77. 77.
    Reijngoud, D. J., P. S. Oud, J. Kas, and J. M. Tager. 1976. Relationship between medium pH and that of the lysosomal matrix as studied by two independent methods. Biochem. Biophys. Acta 448:290–302.PubMedGoogle Scholar
  78. 78.
    Mego, J. L., R. M. Farb, and J. Barnes. 1972. An ATP-dependent stabilization of proteolytic activity in heterolysosomes. Biochem. J. 128:763–769.PubMedGoogle Scholar
  79. 79.
    Mego, J. L. 1975. Further evidence for a proton pump in mouse kidney phagolysosomes: Effect of nigericin and 2, 4-dinitrophenol on the stimulation of intralysosomal proteolysis by ATP. Biochem. Biophys. Res. Commun. 67:571–575.PubMedGoogle Scholar
  80. 80.
    Reeves, J. P. 1979. Accumulation of amino acids by lysosomes incubated with amino acid methyl esters. J. Biol. Chem. 254:8914–8921.PubMedGoogle Scholar
  81. 81.
    Reeves, J. P., and T. Reames. 1981. ATP stimulates amino acid accumulation by lysosomes incubated with amino acid methyl esters. J. Biol. Chem. 256:6047–6053.PubMedGoogle Scholar
  82. 82.
    Goldstein, J. L., R. G. W., Anderson, and M. S. Brown. 1979. Coated pits, coated vesicles, and receptor mediated endocytosis. Nature (London) 279:679–685.Google Scholar
  83. 83.
    Steinman, R. M., I. S. Mellman, W. A. Muller, and Z. A. Cohn. 1983. Endocytosis and the recycling of plasma membrane. J. Cell Biol. 96:1–27.PubMedGoogle Scholar
  84. 84.
    Posner, B. I., Z. Josefsberg, and J. J. M. Bergeron. 1978. Intracellular polypeptide hormone receptors: Characterization of insulin binding sites in Golgi fractions from the liver of female rats. J. Biol. Chem. 253:4067–4073.PubMedGoogle Scholar
  85. 85.
    Sahagian, G. G., J. Distler, and G. W. Jourdian. 1981. Characterization of a membrane-associated receptor from bovine liver that binds phosphomannosyl residues of bovine testicular β-galac-tosidase. Proc. Natl. Acad. Sci. USA 78:4289–4293.PubMedGoogle Scholar
  86. 86.
    Pricer, W. E., Jr., and G. Ashwell, 1971. The binding of desialy-lated glycoproteins by plasma membranes of rat liver. J. Biol. Chem. 246:4825–4833.PubMedGoogle Scholar
  87. 87.
    Karin, M., and B. Mintz. 1981. Receptor-mediated endocytosis of transferrin in developmentally totipotent mouse teratocarcinoma stem cells. J. Biol. Chem. 256:3245–3252.PubMedGoogle Scholar
  88. 88.
    Gonzales-Noreiga, V., J. H. Grubb, V. Talkad, and W. S. Sly. 1980. Chloroquine inhibits lysosomal enzyme pinocytosis and enhances lysosomal enzyme secretion by impairing receptor recycling. J. Cell Biol. 85:839–852.Google Scholar
  89. 89.
    Tietze, C., P. Schlesinger, and P. Stahl. 1982. Mannose-specific endocytosis receptor of alveolar macrophages: Demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling. J. Cell Biol. 92:417–424.PubMedGoogle Scholar
  90. 90.
    Tycko, B., and F. R. Maxfield. 1982. Rapid acidification of endo-cytic vesicles containing alpha2-macroglobulin. Cell 28:643–651.PubMedGoogle Scholar
  91. 91.
    Geisow, M. J., P. D’Arcy Hart, and M. R. Young. 1981. Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: Studies by fluorescence spectroscopy. J. Cell Biol. 89:645–652.PubMedGoogle Scholar
  92. 92.
    Galloway, C. J., G. E. Dean, M. Marsh, G. Rudnick, and I. Mellman. 1983. Acidification of macrophage and fibroblast endo-cytic vacuoles in vitro. Proc. Natl. Acad. Sci. USA 80:3334–3338.PubMedGoogle Scholar
  93. 93.
    Sandvig, K., and S. Olsnes. 1980. Diptheria toxin entry into cells is facilitated by low pH. J. Cell Biol. 87:828–832.PubMedGoogle Scholar
  94. 94.
    Draper, R. K., and M.I. Simon. 1980. The entry of diptheria toxin into the mammalian cell cytoplasm: Evidence for lysosomal involvement. J. Cell Biol. 87:849–854.PubMedGoogle Scholar
  95. 95.
    White, J., J. Kartenbeck, and A. Helenius. 1980. Fusion of Sem-liki forest virus with the plasma membrane can be induced by low pH. J. Cell Biol. 87:264–272.PubMedGoogle Scholar
  96. 96.
    Gluck, S., C. Cannon, and Q. Al-Awqati. 1982. Exocytosisregulates urinary acidification in turtle bladder by rapid insertion of H+ pumps into the luminal membrane. Proc. Natl. Acad. Sci. USA 79:4327–4331.PubMedGoogle Scholar
  97. 97.
    Gluck, S., S. Kelly, and Q. Al-Awqati. 1982. The proton translocating ATPase responsible for urinary acidification. J. Biol. Chem. 257:9230–9233.PubMedGoogle Scholar
  98. 98.
    Falck, B., N.-Å. Hillarp, and B. Hogberg. 1956. Content and intracellular distribution of adenosine triphosphate in cow adrenal medulla. Acta Physiol. Scand. 36:360–376.PubMedGoogle Scholar
  99. 99.
    Blaschko, H., G. V. R. Born, A. D’Torio, and N. R. Eade, 1956. Observations on the distribution of catecholamines and adenosine triphosphate in the bovine adrenal medulla. J. Phvsiol. (London) 133:548–557.Google Scholar
  100. 100.
    Schuldiner, S., H. Fishkes, and B. I. Kanner. 1978. Active adrenaline transport in chromaffin membrane vesicles is driven by a transmembranous pH gradient. Proc. Natl. Acad. Sci. USA 75:3713–3716.PubMedGoogle Scholar
  101. 101.
    Phillips, J. H. 1978. 5-Hydroxytryptamine transport by the chromaffin granule membrane. Biochem. J. 170:673–679.PubMedGoogle Scholar
  102. 102.
    Johnson, R. G., N. J. Carlson, and A. Scarpa. 1978. ApH and catecholamine distribution in isolated chromaffin granules. J. Biol. Chem. 253:1512–1521.PubMedGoogle Scholar
  103. 103.
    Njus, D., and G. K. Radda. 1979. A potassium ion diffusion potential causes adrenaline uptake in chromaffin granule ‘ghosts.’ Biochem. J. 180:579–585.PubMedGoogle Scholar
  104. 104.
    Kanner, B. I., I. Sharon, R. Maron, and S. Schuldiner. 1980. Electrogenic transport of biogenic amines in chromaffin granule membrane vesicles. FEBS Lett. 111:83–86.PubMedGoogle Scholar
  105. 105.
    Johnson, R. G., S. E. Carty, and A. Scarpa. 1981. Proton: substrate stoichiometrics during active transport of biogenic amines in chromaffin ghosts. J. Biol. Chem. 256:5773–5780.PubMedGoogle Scholar
  106. 106.
    Knoth, J., M. Zallakian, and D. Njus. 1981. Stoichiometry of H+-linked dopamine transport in chromaffin granule ghosts. Biochemistry 20:6625–6629.PubMedGoogle Scholar
  107. 107.
    Toll, L., and B. D. Howard. 1978. Role of Mg2+-ATPase and a pH gradient in the storage of catecholamines in synaptic vesicles. Biochemistry 17:2517–2523.PubMedGoogle Scholar
  108. 108.
    Maron, R., B. I. Kanner, and S. Schuldiner. 1979. The role of a transmembrane pH gradient in 5-hydroxytryptamine uptake by synaptic vesicles from rat brain. FEBS Lett. 98:237–240.PubMedGoogle Scholar
  109. 109.
    Rudnick, G., H. Fishkes, P. J. Nelson, and S. Schuldiner. 1980. Evidence for two distinct serotonin transport systems in platelets. J. Biol. Chem. 255:3638–3641.PubMedGoogle Scholar
  110. 110.
    Carpenter, R. S., and S. M. Parsons. 1978. Electrogenic behavior of synaptic vesicles from Torpedo californica. J. Biol. Chem. 253:326–329.PubMedGoogle Scholar
  111. 111.
    Michaelson, D. M., I. Pinchasi, I. Angel, I. Ophir, M. Sokolovsky, and G. Rudnick. 1979. The energetics and calcium dependency of acetylcholine release from torpedo synaptic vesicles. In: Molecular Mechanisms of Biological Recognition. M. Balaban, ed. Elsevier/North-Holland, Amsterdam, pp. 361–371.Google Scholar
  112. 112.
    Rebois, R. V., E. E. Reynolds, L. Toll, and B. D. Howard. 1980. Storage of dopamine and acetylcholine in granules of PC12, a clonal pheochromocytoma cell line. Biochemistry 19:1240–1248.PubMedGoogle Scholar
  113. 113.
    Toll, L., and B. D. Howard. 1980. Evidence that an ATPase and a proton-motive force function in the transport of acetylcholine into storage vesicles. J. Biol. Chem. 255:1787–1789.PubMedGoogle Scholar
  114. 114.
    Parsons, S. M., and R. Koenigsberger. 1980. Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles. Proc. Natl. Acad. Sci. USA 77:6234–6238.PubMedGoogle Scholar
  115. 115.
    Anderson, D. C., S. C. King, and S. M. Parsons. 1981. Uncoupling of acetylcholine uptake from the Torpedo cholinergic synaptic vesicle ATPase. Biochem. Biophys. Res. Commun. 103:422–428.PubMedGoogle Scholar
  116. 116.
    Anderson, D. C., S. C. King, and S. M. Parsons. 1982. Proton gradient linkage to active uptake of [3H]acetylcholine by Torpedo electric organ synaptic vesicles. Biochemistry 21:3037–3043.PubMedGoogle Scholar
  117. 117.
    Marty, F., D. Branton, and R. A. Leigh. 1980. Plant vacuoles. In: The Biochemistry of Plants, Volume 1. N. E. Tolbert, ed. Academic Press, New York. pp. 625–658.Google Scholar
  118. 118.
    D’Auzac, J., H. Cretin, B. Marin, and C. Lioret. 1982. A plant vacuolar system: The lutoids from Hevea brasiliensis latex. Physiol. Veg. 20:311–331.Google Scholar
  119. 119.
    Leigh, R. A., T. Rees, W. A. Fuller, and J. Banfield. 1979. The location of acid invertase and sucrose in the vacuoles of storage roots of beet root (Beta vulgaris). Biochem. J. 178:539–547.PubMedGoogle Scholar
  120. 120.
    Willenbrink, J., and S. Doll. 1979. Characteristics of the sucrose uptake system of vacuoles isolated from red beet tissue: Kinetics and specificity of the sucrose uptake system. Planta 147:159–162.Google Scholar
  121. 121.
    Doll, S., F. Rodier, and J. Willenbrink. 1979. Accumulation of sucrose in vacuoles isolated from red beet tissue. Planta 144:407–411.Google Scholar
  122. 122.
    Doll, S., V. Effelsberg, and J. Willenbrink. 1982. Characteristics of the sucrose uptake system of vacuoles isolated from red beet tissue: Relationships between ion gradients and sucrose transport. In: Plasmalemma and Tonoplast: Their Functions in the Plant Cell. D. Marme, E. Marre, and R. Hertel, eds. Elsevier, Amsterdam. pp. 217–224.Google Scholar
  123. 123.
    Guy, M., L. Reinhold, and D. Michaeli. 1979. Evidence for a sugar transport mechanism in isolated vacuoles. Plant Physiol. 64:61–64.PubMedGoogle Scholar
  124. 124.
    Boiler, T., M. Durr, and A. Wiemken. 1975. Characterization of a specific transport system for arginine in isolated yeast vacuoles. Eur. J. Biochem. 54:81–91.Google Scholar
  125. 125.
    Lambert, C. 1975. Influence de l’ATP sur le pH intralutoidique et sur la penetration due citrate dans les lutoides du latex d’ Hevea brasiliensis. C.R. Acad. Sci. Ser.D 281:1705–1708.Google Scholar
  126. 126.
    Marin, B., J. A. C. Smith, and U. Luttge. 1981. The electrochemical proton gradient and its influence on citrate uptake in tonoplast vesicles of Hevea brasiliensis. Planta 153:486–493.Google Scholar
  127. 127.
    Marin, B., and F. Blasco. 1982. Further evidence for the proton pumping work of tonoplast ATPase from Hevea latex vacuole. Biochem. Biophys. Res. Commun. 105:354–361.PubMedGoogle Scholar
  128. 128.
    Marin, B., H. Cretin, and J. D’Auzac. 1982. Energization of solute transport and accumulation at the tonoplast in Hevea latex. Physiol. Veg. 20:333–346.Google Scholar
  129. 129.
    Kyte, J. 1981. Molecular considerations relevant to the mechanism of active transport. Nature (London) 292:201–204.Google Scholar
  130. 130.
    Bowman, B., and C. W. Slayman. 1979. The effects of vanadate on the plasma membrane ATPase of Neurospora crassa. J. Biol. Chem. 254:2928–2934.PubMedGoogle Scholar
  131. 131.
    Sachs, G., H. H. Chang, E. Rabon, R. Schackman, M. Lewin, and G. Saccomani. 1976. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J. Biol. Chem. 251:7690–7698.PubMedGoogle Scholar
  132. 132.
    Apps, D. K., J. G. Pryde, and R. Sutton. 1982. The H+-trans-locating adenosine triphosphatase of chromaffin granule membranes. Ann. N.Y. Acad. Sci. 402:134–145.PubMedGoogle Scholar
  133. 133.
    Dean, G. E., H. Fishkes, P. J. Nelson, and G. Rudnick. 1984. The hydrogen ion pumping adenosine triphosphatase of platelet dense granule membrane. Differences from F1F0 and phosphoenzyme-type ATPases. J. Biol. Chem. 259:9569–9574.PubMedGoogle Scholar
  134. 134.
    Apps, D. K., and L. A. Glover. 1978. Isolation and characterization of magnesium adenosine triphosphatase from the chromaffin granule membrane. FEBS Lett. 85:254–258.PubMedGoogle Scholar
  135. 135.
    Bowman, E. J., and B. J. Bowman. 1982. Identification and properties of an ATPase in vacuolar membranes of Neurospora crassa. J. Bacteriol. 151:1326–1337.PubMedGoogle Scholar
  136. 136.
    Giraudat, J., M. P. Roisin, and J. P. Henry. 1980. Solubilization and reconstitution of the adenosine 5′-triphosphatase dependent proton translocase of bovine chromaffin granule membrane. Biochemistry 19:4499–4505.PubMedGoogle Scholar
  137. 137.
    Racker, E. 1972. Reconstitution of oxidative phosphorylation and vesicles with respiratory control. In: Membrane Research. C. F. Fox, ed. Academic Press, New York. pp. 97–114.Google Scholar
  138. 138.
    Cidon, S., and N. Nelson. 1983. A novel ATPase in the chro-maffin-granule membrane. J. Biol. Chem. 258:2892–2898.PubMedGoogle Scholar
  139. 139.
    Apps, D. K., and G. Schatz. 1979. An adenosine triphosphatase isolated from chromaffin granule membranes is closely similar to F1-adenosine triphosphatase of mitochondria. Eur. J. Biochem. 100:411–419.PubMedGoogle Scholar
  140. 149.
    Sutton, R., and D. K. Apps. 1981. Isolation of a DCCD-binding protein from bovine chromaffin-granule membranes. FEBS Lett. 130:103–106.PubMedGoogle Scholar
  141. 141.
    Chung, C. H., R. L. Elliott, and J. L. Mego. 1980. Lysosomal membrane adenosine triphosphatase; solubilization and partial characterization. Arch. Biochem. Biophys. 203:251–259.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Gary Rudnick
    • 1
  1. 1.Department of PharmacologyYale University School of MedicineNew HavenUSA

Personalised recommendations