Transport Functions of the Distal Convoluted Tubule

  • Linda S. Costanzo
  • Erich E. Windhager


The distal convoluted tubule (DCT) has traditionally been described as the nephron segment extending from the macula densa the first confluence with another DCT to form a collecting tubule. Virtually all data on DCT function derive from in vivo studies in the rat using micropuncture or microperfusion techniques. Rat DCT are 2.4–2.5 mm in length(1, 2) They can be identified on the kidney surface with light microscopy by their contrast to proximal tubules: the lumina are narrower and the contour more irregular than in proximal tubules. Distal tubulai epithelium lacks a brush border and therefore fails to exhibit the light reflex seen in proximal tubules.(3) Eighty percent of the rar DCT is accessible to micropuncture, with only the initial 20% below the kidney surface. At present, the rat provides the most convenient model for studies of DCT function. While the in vitrc perfused rabbit nephron technique has been applied extensivery to study the function of other tubular segments, the technique is not readily applied to the DCT because of its short length in the rabbit.


Distal Tubule Distal Convoluted Tubule Luminal Membrane Nephron Segment Tubular Fluid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woodhall, P. B., and C. C. Tisher. 1973. Response of the distal tubule and cortical collecting duct to vasopressin in the rat. J. Clin. Invest. 52:3095–3108.PubMedGoogle Scholar
  2. 2.
    Morgan, T., and R. W. Berliner. 1969. A study by continuous microperfusion of water and electrolyte movements in the loop of Henle and distal tubule of the rat. Nephron 6:388–405.PubMedGoogle Scholar
  3. 3.
    Gottschalk, C. W., and M. Mylle. 1957. Micropuncture study of pressures in proximal and distal tubules and peritubular capillaries of the rat kidney during osmotic diuresis. Am. J. Physiol. 189:323–328.PubMedGoogle Scholar
  4. 4.
    Malnic, G., R. M. Klose, and G. Giebisch. 1966. Micropuncture study of distal tubular potassium and sodium transport in rat nephron. Am. J. Physiol. 211:529–547.PubMedGoogle Scholar
  5. 5.
    Kashgarian, M. H., H. Stockle, C. W. Gottschalk, and K. J. Ullrich. 1963. Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (diabetes insipidus). Pfluegers Arch. 277:89–106.Google Scholar
  6. 6.
    Malnic, G., R. M. Klose, and G. Giebisch. 1964. Micropuncture study of renal potassium excretion in the rat. Am. J. Physiol. 206:674–686.PubMedGoogle Scholar
  7. 7.
    Malnic, G., M. de Mello-Aires, and G. Giebisch. 1972. Micro-puncture study of renal tubular hydrogen ion transport in the rat. Am. J. Physiol. 222:147–158.PubMedGoogle Scholar
  8. 8.
    Costanzo, L. S., and E. E. Windhager. 1978. Calcium and sodium transport by the distal convoluted tubule. Am. J. Physiol. 235:F492–F506.PubMedGoogle Scholar
  9. 9.
    Wright, F. S. 1971. Increasing magnitude of electrical potential along the renal distal tubule. Am. J. Physiol. 220:624–638.PubMedGoogle Scholar
  10. 10.
    Farquhar, M. G., and G. E. Palade. 1963. Functional complexes in various epithelia. J. Cell Biol. 17:375–412.PubMedGoogle Scholar
  11. 11.
    Tisher, C. C., and W. E. Yarger. 1973. Lanthanum permeability of the tight junction (zonula occludens) in the renal tubule of the rat. Kidney Int. 3:238–250.PubMedGoogle Scholar
  12. 12.
    Martinez-Palomo, A., and D. Erlij. 1973. The distribution of lanthanum in different tubular segments of the rat kidney. Pfluegers Arch. 343:267–272.Google Scholar
  13. 13.
    Erlij, D. 1976. Solute transport across isolated epithelia. Kidney Int. 9:76–87.PubMedGoogle Scholar
  14. 14.
    Walker, A., P. Bott, J. Oliver, and M. MacDowell. 1941. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134:580–595.Google Scholar
  15. 15.
    Hierholzer, K., M. Wiederholt, H. Holzgreve, G. Giebisch, R. M. Klose, and E. E. Windhager. 1965. Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalectomized rats. Pfluegers Arch. 285:193–210.Google Scholar
  16. 16.
    Hierholzer, K., M. Wiederholt, and H. Stolte. 1966. Hemmung der Natriumresorption in proximalen und distalen konvolut an-drenalektomierter Ratten. Pfluegers Arch. 291:43–63.Google Scholar
  17. 17.
    Hierholzer, K., and H. Stolte. 1969. The proximal and distal tubular action of adrenal steroids on sodium reabsorption. Nephron 6:188–204.PubMedGoogle Scholar
  18. 18.
    Gottschalk, C. W. 1961. Micropuncture studies of tubular function in mammalian kidney. Physiologist 4:35.Google Scholar
  19. 19.
    Shareghi, G. R., and L. C. Stoner. 1978. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 235:F367–F375.PubMedGoogle Scholar
  20. 20.
    Costanzo, L. S., and E. E. Windhager. 1980. Effects of PTH, ADH and cyclic AMP on distal tubular Ca and Na reabsorption. Am. J. Physiol. 239:F478–F485.PubMedGoogle Scholar
  21. 21.
    Schweigger-Seidel, F. 1865. Die Nieren des Menschen und der Saugetiere in innrem feineren Baue. Halle.Google Scholar
  22. 22.
    Kaissling, B., and W. Kriz. 1979. Structural analysis of the rabbit kidney. Adv. Anat. Embryol. Cell. Biol. 56:1–123.PubMedGoogle Scholar
  23. 23.
    Kaissling, B. 1982. Structural aspects of adaptive changes in renal electrolyte excretion. Am. J. Physiol. 243:F211–F226.PubMedGoogle Scholar
  24. 24.
    Oliver, J. 1968. Nephrons and Kidneys: A Quantitative Study of Developmental and Evolutionary Mammalian Renal Architecture. Harper and Row, New York.Google Scholar
  25. 25.
    Crayen, M., and W. Thoenes. 1975. Architektur und Cytologischer Aufbau des distalen Tubulus in der Rattenniere. Fortschr. Zool. 23:279–288.PubMedGoogle Scholar
  26. 26.
    Kriz, W., B. Kaissling, and M. Psczolla. 1978. Morphological characterization of the cells in Henle’s loop and the distal tubule. In: New Aspects of Renal F unction. H. G. Vogel and K. J. Ullrich, eds. Excerpta Medica, Amsterdam, pp. 67–78.Google Scholar
  27. 27.
    Tisher, C. C., R. E. Bulger, and B. F. Trump. 1968. Human renal ultrastructure. III. The distal tubule in healthy individuals. Lab. Invest. 18:655–668.PubMedGoogle Scholar
  28. 28.
    Kaissling, B., and M. LeHir. 1982. Distal tubular segments of the rabbit kidney after adaptation to altered Na and K intake. I. Structural changes. Cell Tissue Res. 224:469–492.PubMedGoogle Scholar
  29. 29.
    Schiller, A., R. Taugner, and B. Roesinger. 1978. Vergleichende Morphologie der zonulae occludentes am Nierentubulus. Verh. Anat. Ges. 72:229–234.PubMedGoogle Scholar
  30. 30.
    Schmidt, U., and U. C. DuBach. 1971. Na-K-ATPase in the rat nephron related to sodium transport: Results with quantitative histochemistry. In: Recent Advances in Quantitative Histochemistry and Cytochemistry. Huber, Bern. pp. 320–344.Google Scholar
  31. 31.
    Schmidt, U., and M. Horster. 1977. Na-K-activated ATPase: Maturation in rabbit nephron segments. Am. J. Physiol. 233:F55–F60.PubMedGoogle Scholar
  32. 32.
    Ganote, C. E., J. J. Grantham, H. L. Moses, M. B. Burg, and J. Orloff. 1968. Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit. J. Cell Biol. 36:355–367.PubMedGoogle Scholar
  33. 33.
    Tisher, C. C., R. E. Bulger, and H. Valtin. 1971. Morphology of renal medulla in water diuresis and vasopressin-induced anti-diuresis. Am. J. Physiol. 220:87–94.PubMedGoogle Scholar
  34. 34.
    Hagege, J., M. Gage, and G. Richet. 1974. Scanning of the apical pole of distal tubular cells under differing acid-base conditions. Kidney Int. 5:137–146.PubMedGoogle Scholar
  35. 35.
    Costanzo, L. S. 1984. Comparison of Ca and Na transport in early and late rat distal tubules: Amiloride effect. Am. J. Physiol. 246:F937–F945.PubMedGoogle Scholar
  36. 36.
    Morel, F. 1981. Sites of hormone action in the mammalian nephron. Am. J. Physiol. 240:F159–F164.PubMedGoogle Scholar
  37. 37.
    Giebisch, G., and E. E. Windhager. 1964. Renal tubular transfer of sodium chloride and potassium. Am. J. Med. 36:643–669.PubMedGoogle Scholar
  38. 38.
    Khuri, R. N., M. Wiederholt, N. Strieder, and G. Giebisch. 1975. Effects of graded solute diuresis on renal tubular sodium transport in the rat. Am. J. Physiol. 228:1262–1268.PubMedGoogle Scholar
  39. 39.
    Barratt, L. J., F. C. Rector, Jr., J. P. Kokko, C. C. Tisher, and D. W. Seldin. 1975. Transepithelial potential difference profile of the distal tubule of the rat kidney. Kidney Int. 8:368–375.PubMedGoogle Scholar
  40. 40.
    Malnic, G., and G. Giebisch. 1972. Some electrical properties of distal tubular epithelium in the rat. Am. J. Physiol. 223:797–808.PubMedGoogle Scholar
  41. 41.
    de Bermudez, L., and E. E. Windhager. 1975. Osmotically induced changes in electrical resistance of distal tubules of rat kidney. Am. J. Physiol. 229:1536–1546.PubMedGoogle Scholar
  42. 42.
    Malnic, G., R. M. Klose, and G. Giebisch. 1966. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am. J. Physiol. 211:548–559.PubMedGoogle Scholar
  43. 43.
    Burg, M. 1976. Tubular chloride transport and the mode of action of some diuretics. Kidney Int. 9:189–197.PubMedGoogle Scholar
  44. 44.
    Schlatter, E., R. Gregor, and C. Weidtke. 1983. Effect of “high ceiling” diuretics on active salt transport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch. 396:210–217.Google Scholar
  45. 45.
    Good, D. W., and F. S. Wright. 1979. Luminal influences on potassium secretion: Sodium concentration and fluid flow rate. Am. J. Physiol. 236:F192–F205.PubMedGoogle Scholar
  46. 46.
    Lassiter, W. E., C. W. Gottschalk, and M. Mylle. 1961. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am. J. Physiol. 200:1139–1146.PubMedGoogle Scholar
  47. 47.
    Lassiter, W. E., C. W. Gottschalk, and M. Mylle. 1964. Micropuncture study of net transtubular movement of water and urea in rat kidney during saline diuresis. Am. J. Physiol. 206:669–673.PubMedGoogle Scholar
  48. 48.
    Danielson, R. A, B. Schmidt-Nielsen, and C. Hohberger. 1970. Micropuncture study of the regulation of urea excretion by the collecting ducts in rats on high and low protein diets. In: Urea and the Kidney. B. Schmidt-Nielsen, ed. Excerpta Medica, Amsterdam, pp. 375–384.Google Scholar
  49. 49.
    Capek, K., R. Rumrich, and K. J. Ullrich. 1966. Harnstoffper-meabilitat der corticalen Tubulusabschnitte von Ratten in Anti-diurese and Wasserdiurese. Pfluegers Arch. 290:237–249.Google Scholar
  50. 50.
    Diezi, J., P. Michoud, A. Grandchamp, and G. Giebisch. 1976. Effects of nephrectomy on renal salt and water transport in the remaining kidney. Kidney Int. 10:450–462.PubMedGoogle Scholar
  51. 51.
    Knox, F. G., and J. Gasser. 1974. Altered distal sodium reabsorption in volume expansion. Mayo Clin. Proc. 49:775–781.PubMedGoogle Scholar
  52. 52.
    Stein, J. H., and H. J. Reineck. 1974. Role of the collecting duct in the regulation of excretion of sodium and other electrolytes. Kidney Int. 6:1–9.PubMedGoogle Scholar
  53. 53.
    Kunau, R. 1972. Changes in Na+ reabsorption in the loop of Henle and distal convolution of the rat nephron following minimal and marked increases in Na delivery. Clin. Res. 20:762.Google Scholar
  54. 54.
    Giebisch, G., and E. E. Windhager. 1973. Electrolyte transport across renal tubular membranes. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 315–376.Google Scholar
  55. 55.
    Windhager, E. E., and G. Giebisch. 1976. Proximal sodium and fluid transport. Kidney Int. 9:121–133.PubMedGoogle Scholar
  56. 56.
    Stein, J. H., R. W. Osgood, S. Boonjarern, and T. F. Ferris. 1973. A comparison of the segmental analysis of sodium reabsorp-tion during Ringer’s and hyperoncotic albumin infusion in the rat. J. Clin. Invest. 52:2313–2323.PubMedGoogle Scholar
  57. 57.
    Sonnenberg, H. 1973. Proximal and distal tubular function in salt-deprived and salt-loaded deoxycorticosterone acetate-escape rats. J. Clin. Invest. 52:263–272.PubMedGoogle Scholar
  58. 58.
    Osgood, R. W., H. J. Reineck, and J. H. Stein. 1978. Further studies on segmented sodium transport in the rat kidney during expansion of the extracellular fluid volume. J. Clin. Invest. 62:311–320.PubMedGoogle Scholar
  59. 59.
    Camargo, M. J. F., H. D. Kleinen, S. A. Atlas, J. E. Sealey, J. H. Laragh, and T. Maack. 1984. Ca-dependent hemodynamic and natriuretic effects of atrial extract in isolated rat kidney. Am. J. Physiol. 246:F447–F456.PubMedGoogle Scholar
  60. 60.
    Sonnenberg, H., W. A. Copples, A.J. DeBold, and A. T. Veress. 1982. Intrarenal localization of the natriuretic effect of cardiac atrial extract. Can. J. Physiol. Pharmacol. 60:1149–1152.PubMedGoogle Scholar
  61. 61.
    Briggs, J. P., B. Steipe, G. Schubert, and J. Schnermann. 1982. Micropuncture studies of the renal effects of atrial natriuretic substance. Pfluegers Arch. 395:271–276.Google Scholar
  62. 62.
    Anagnostopoulos, T., M. U. Kinney, and E. E. Windhager. 1971. Salt and water reabsorption by short loops of Henle during renal vein constriction. Am. J. Physiol. 220:1060–1066.PubMedGoogle Scholar
  63. 63.
    Landwehr, D. M., R. M. Klose, and G. Giebisch. 1967. Renal tubular sodium and water reabsorption in the isotonic sodium chloride-loaded rat. Am. J. Physiol. 212:1327–1333.PubMedGoogle Scholar
  64. 64.
    Schwartz, G. J., and M. B. Burg. 1978. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am. J. Physiol. 235:F576–F585.PubMedGoogle Scholar
  65. 65.
    Gross, J. B., M. Imai, and J. P. Kokko. 1975. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J. Clin. Invest. 55:1284–1294.PubMedGoogle Scholar
  66. 66.
    Wiederholt, M. 1966. Mikropunktionsuntersuchungen am proximalen und distalen Konvolut der Rattenniere über den Einfluss von Actinomycin D auf den mineralocorticoidabhangigen Na-Transport. Pfluegers Arch. 292:334–342.Google Scholar
  67. 67.
    Horisberger, J. D., and J. Diezi. 1983. Effects of mineralocor-ticoids on Na and K excretion in the adrenalectomized rat. Am. J. Physiol. 245:F89–F99.PubMedGoogle Scholar
  68. 68.
    Geheb, M., E. Hercker, I. Singer, and M. Cox. 1981. Subcellular localization of aldosterone-induced proteins in toad urinary bladders. Biochim. Biophys. Acta 641:422–426.PubMedGoogle Scholar
  69. 69.
    Geheb, M., G. Huber, E. Hercker, and M. Cox. 1981. Aldosterone-induced proteins in toad urinary bladders. J. Biol. Chem. 256:11716–11723.PubMedGoogle Scholar
  70. 70.
    Geheb, M., R. Alvis, E. Hercker, and M. Cox. 1983. Miner-alocorticoid-specificity of aldosterone-induced protein synthesis in giant toad (Bufo marinus) urinary bladders. Biochem. J. 214:29–35.PubMedGoogle Scholar
  71. 71.
    Petty, K. J., J. P. Kokko, and D. Marver. 1981. Secondary effect of aldosterone on Na-K ATPase activity in the rabbit cortical collecting tubule. J. Clin. Invest. 68:1514–1521.PubMedGoogle Scholar
  72. 72.
    Perkins, F. M., and J. S. Handler. 1981. Transport properties of toad kidney epithelia in culture. Am. J. Physiol. 241:C154–C159.PubMedGoogle Scholar
  73. 73.
    Palmer, L. G., J. H. Y. Li, B. Lindemann, and I. S. Edelman. 1981. Aldosterone control of the density of sodium channels in the toad urinary bladder. J. Membr. Biol. 69:91–102.Google Scholar
  74. 74.
    Garty, H., and I. S. Edelman. 1983. Amiloride-sensitive tryp-sinization of apical sodium channels. J. Gen. Physiol. 81:785–803.PubMedGoogle Scholar
  75. 75.
    Sariban-Sohraby, S., M. B. Burg, and R. J. Turner. 1983. Apical sodium uptake in toad kidney epithelial cell line A6. Am. J. Physiol. 245:C167–C171.PubMedGoogle Scholar
  76. 76.
    Schmidt, U., J. Schmid, H. Schmid, and U. C. Dubach. 1975. Sodium and potassium-activated ATPase: A possible target of aldosterone. J. Clin. Invest. 55:655–660.PubMedGoogle Scholar
  77. 77.
    Horster, M., H. Schmid, and U. Schmidt. 1980. Aldosterone in vitro restores nephron Na-K ATPase of distal segments from adrenalectomized rabbits. Pfluegers Arch. 384:203–206.Google Scholar
  78. 78.
    Garg, L.C, M. A. Knepper, and M.B. Burg. 1981.Mineralocorticoid effects on Na-K ATPase in individual nephron segments. Am. J. Physiol. 240:F536–F544.PubMedGoogle Scholar
  79. 79.
    Doucet, A., and A. I. Katz. 1981. Mineralocorticoid receptors along the nephron: 3H aldosterone binding in rabbit tubules. Am. J. Physiol. 241:F605–F611.PubMedGoogle Scholar
  80. 80.
    Le Hir, M., B. Kaissling, and U. C. Dubach. 1982. Distal tubular segments of the rabbit kidney after adaptation to altered Na and K intake. II. Changes in Na-K ATPase activity. Cell Tissue Res. 224:493–504.PubMedGoogle Scholar
  81. 81.
    El Mernissi, G., and A. Doucet. 1983. Short-term effects of aldosterone and dexamethasone on Na-K ATPase along the rabbit nephron. Pfluegers Arch. 399:147–151.Google Scholar
  82. 82.
    Costanzo, L. S. 1985. Localization of diuretic action in microper-fused rat distal convoluted tubules: Ca and Na transport. Am. J. Physiol, in pressGoogle Scholar
  83. 83.
    Kunau, R. T., D. R. Weiler, and H. L. Webb. 1975. Clarification of the site of action of chlorothiazide in the rat nephron. J. Clin. Invest. 56:401–407.PubMedGoogle Scholar
  84. 84.
    Duarte, C. G., F. Chomety, and G. Giebisch. 1971. Effect of amiloride, ouabain, and furosemide on distal tubular function in the rat. Am. J. Physiol. 221:632–639.PubMedGoogle Scholar
  85. 85.
    Gottschalk, C. W. 1962-1963. Renal tubular function: Lessons from micropuncture. Harvey Lect. 58:99–123.Google Scholar
  86. 86.
    Windhager, E. E., and G. Giebisch. 1961. Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am. J. Physiol. 200:581–590.PubMedGoogle Scholar
  87. 87.
    Malnic, G., M. de Mello-Aires, and F. Viera. 1970. Chloride excretion in single nephrons of rat kidney during alterations of acid-base equilibrium. Am. J. Physiol. 218:20–26.PubMedGoogle Scholar
  88. 88.
    Rector, F. C., and J. R. Clapp. 1962. Evidence for active chloride reabsorption in the distal renal tubule of the rat. J. Clin. Invest. 41:101–107.PubMedGoogle Scholar
  89. 89.
    Berliner, R. W. 1961. Renal mechanisms for potassium secretion. Harvey Lect. 55:141–171.Google Scholar
  90. 90.
    Wright, F. S., and G. Giebisch. 1978. Renal potassium transport: Contributions of individual nephron segments and populations. Am. J. Physiol. 235:F515–F527.PubMedGoogle Scholar
  91. 91.
    Khuri, R. N., M. Wiederholt, N. Strieder, and G. Giebisch. 1975. The effect of flow rate and potassium intake on distal tubular potassium transfer. Am. J. Physiol. 228:1249–1261.PubMedGoogle Scholar
  92. 92.
    Brenner, B. M., and R. W. Berline:. 1969. Relationship between extracellular volume and fluid reabsorption by the rat kidney. Am. J. Physiol. 217:6–12.PubMedGoogle Scholar
  93. 93.
    Cortney, M. D., M. Mylle, W. E. Lassiter, and C. W. Gottschalk. 1965. Renal transport of water, solute and PAH in rats loaded with isotonic saline. Am. J. Physiol. 209:1199–1205.PubMedGoogle Scholar
  94. 94.
    Morgan, T., M. Tadokoro, D. Margin, and R. W. Berliner. 1970. Effect of furosemide on Na+ and K+ transport studied by microperfusion of the rat nephron. Am. J. Physiol. 218:292–297.PubMedGoogle Scholar
  95. 95.
    Kunau, R. T., Jr., H. L. Webb, and S. C. Borman. 1974. Characteristics of the relationship between the flow rate of tubular fluid and potassium transport in the distal tubule of the rat. J. Clin. Invest. 54:1488–1495.PubMedGoogle Scholar
  96. 96.
    Stokes, J. B. 1982. Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: Evidence for diffusion across the outer medullary portion. Am. J. Physiol, 242:F514–F520.PubMedGoogle Scholar
  97. 97.
    Watson, J. F. 1966. Potassium reabsorption in the proximal tubule of the dog nephron. J. Clin. Invest. 45:1341–1348.PubMedGoogle Scholar
  98. 98.
    Bennett, C. M., J. R. Clapp, and R. W. Berliner. 1967. Micro-puncture study of the proximal and distal tubule in the dog. Am. J. Physiol. 213:1254–1262.PubMedGoogle Scholar
  99. 99.
    Bennett, C. M., B. M. Brenner, and R. W. Berliner. 1968. Micro-puncture study of nephron function in the Rhesus monkey. J. Clin. Invest. 47:203–216.PubMedGoogle Scholar
  100. 100.
    Grantham, J. J., M. B. Burg, and J. Orloff. 1970. The nature of transtubular Na and K transport in isolated rabbit renal collecting tubules. J. Clin. Invest. 49:1815–1826.PubMedGoogle Scholar
  101. 101.
    Stokes, J. B. 1981. Potassium secretion by the cortical collecting tubule: Relation to sodium absorption, luminal sodium concentration and transepithelial voltage. Am. J. Physiol. 241:F395–F402.PubMedGoogle Scholar
  102. 102.
    Giebisch, G. 1971. Renal potassium excretion. In: The Kidney: Morphology, Biochemistry, Physiology, Volume 3. C. Rouiller and A. Muller, eds. Academic Press, New York. pp. 329–382.Google Scholar
  103. 103.
    Wright, F. S., N. Strieder, N. B. Fowler, and G. Giebisch. 1971. Potassium secretion by the distal tubule after potassium adaptation. Am. J. Physiol. 221:437–448.PubMedGoogle Scholar
  104. 104.
    Bank, N., and H. S. Aynedjian. 1973. A micropuncture study of potassium excretion by the remnant kidney. J. Clin. Invest. 52:1480–1490.PubMedGoogle Scholar
  105. 105.
    Finklestein, F. O., and J. P. Hayslett. 1974. Role of medullary structures in the functional adaptation of renal insufficiency. Kidney Int. 6:419–425.Google Scholar
  106. 106.
    Orloff, J., and D. G. Davidson. 1959. The mechanism of potassium excretion in the chicken. J. Clin. Invest. 38:21–30.PubMedGoogle Scholar
  107. 107.
    Stanton, B. A., and G. H. Giebisch. 1982. Potassium transport by the renal distal tubule: Effects of potassium loading. Am. J. Phys4iol. 243:F487–F493.Google Scholar
  108. 108.
    Stanton, B. A., D. Biemesderfer, J. B. Wade, and G. Giebisch. 1981. Structural and functional study of the rat distal nephron: Effects of potassium adaptation and depletion. Kidney Int. 19:36–48.PubMedGoogle Scholar
  109. 109.
    Field, M. J., R. W. Berliner, and G. H. Giebisch. 1985. Regulation of renal potassium metabolism. In: Clinical Disorders of Fluid and Electrolyte Metabolism. 4th ed. M. M. Maxwell, C. R. Kleeman, and R. G. Narens, eds. McGraw-Hill, New York, in press.Google Scholar
  110. 110.
    Stetson, D. L., J. B. Wade, and G. Giebisch. 1980. Morphologic alterations in the rat medullary collecting duct following potassium depletion. Kidney Int. 17:45–56.PubMedGoogle Scholar
  111. 111.
    Cortney, M. A. 1969. Renal tubular transfer of water and electrolytes in adrenalectomized rats. Am. J. Physiol. 216:589–598.PubMedGoogle Scholar
  112. 112.
    Wiederholt, M., C. Behn, W. Schoormans, and L. Hansen. 1972. Effect of aldosterone on sodium potassium transport in the kidney. J. Steroid Biochem. 3:151–159.PubMedGoogle Scholar
  113. 113.
    Wiederholt, M., W. Schoormans, F. Fischer, and C. Behn. 1973. Mechanism of action of aldosterone on potassium transfer in the rat kidney. Pfluegers Arch. 345:159–178.Google Scholar
  114. 114.
    Wiederholt, M., S. K. Aguilian, and R. N. Khuri. 1974. Intracellular potassium in the distal tubule of the adrenalectomized and aldosterone treated rat. Pfluegers Arch. 347:117–123.Google Scholar
  115. 115.
    Fimognari, G. M., D. D. Fanestil, and I. S. Edelman. 1967. Induction of RNA and protein synthesis in the action of aldosterone. Am. J. Physiol. 213:954–962.PubMedGoogle Scholar
  116. 116.
    Horisberger, J. D., and J. Diezi. 1984. Inhibition of aldosterone-induced anti-natriuresis and kaliuresis by actinomycin D. Am. J. Physiol. 246:F201–F204.PubMedGoogle Scholar
  117. 117.
    Malnic, G., M. de Mello-Aires, and G. Giebisch. 1971. Potassium transport across renal distal tubules during acid-base disturbances. Am. J. Physiol. 221:1192–1208.PubMedGoogle Scholar
  118. 118.
    Scott, D., and G. H. Mcintosh. 1975. Changes in blood composition and in urinary mineral acid excretion in the pig in response to acute acid-base disturbances. Q. J. Exp. Physiol. 60:131–140.Google Scholar
  119. 119.
    Rostand, S., and J. Watkins. 1977. Response of the isolated rat kidney to metabolic and respiratory acidosis. Am. J. Physiol. 233: F82–F88.PubMedGoogle Scholar
  120. 120.
    Giebisch, G., G. Malnic, and R. W. Berliner. 1981. Renal trans-port and control of potassium excretion. In: The Kidney, 2nd ed. B. M. Brenner and F. C. Rector, eds. pp. 408–439.Google Scholar
  121. 121.
    Stanton, B. A., and G. Giebisch. 1982. Effects of pH on potassium transport by renal distal tubule. Am. J. Physiol. 242: F544–F551.PubMedGoogle Scholar
  122. 122.
    de Mello-Aires, M., G. Giebisch, and G. Malnic. 1973. Kinetics of potassium transport across single distal tubules of rat kidney. J. Physiol. (London) 232:47–70.Google Scholar
  123. 123.
    Peterson, L. N., and F. S. Wright. 1977. Effect of sodium intake on renal potassium excretion. Am. J. Physiol. 233:F225–F234.PubMedGoogle Scholar
  124. 124.
    Dirks, J. H., and J. F. Seely. 1970. Effect of saline infusions and furosemide on the dog distal nephron. Am. J. Physiol. 219:114–121.PubMedGoogle Scholar
  125. 125.
    Seely, J. F., and J. H. Dirks. 1969. Micropuncture study of hypertonic mannitol diuresis in the proximal and distal tubule of the dog kidney. J. Clin. Invest. 48:2330–2340.PubMedGoogle Scholar
  126. 126.
    McDougal, W. S., and F. S. Wright. 1972. Defect in proximal and distal sodium transport in post-obstructive diuresis. Kidney Int. 2:304–317.PubMedGoogle Scholar
  127. 127.
    Peters, G. 1963. Compensatory adaptation of renal functions in the unanesthetized rat. Am. J. Physiol. 205:1042–1048.PubMedGoogle Scholar
  128. 128.
    Reineck, H. J., R. W. Osgood, T. F. Ferris, and J. H. Stein. 1975. Potassium transport in the distal tubule and collecting duct of the rat. Am. J. Physiol. 229:1403–1409.PubMedGoogle Scholar
  129. 129.
    Good, D. W., H. Velazquez, and F. S. Wright. 1984. Luminal influences on potassium secretion: Low sodium concentration. Am. J. Physiol. 246:F609–F619.PubMedGoogle Scholar
  130. 130.
    Field, M. J., B. A. Stanton, and G. H. Giebisch. 1984. Influence of ADH on renal potassium handling: A micropuncture and microperfusion study. Kidney Int. 25:502–511.PubMedGoogle Scholar
  131. 131.
    Barnatt, L. J. 1976. The effect of amiloride on the transepithelial potential difference of the distal tubule of the rat kidney. Pfluegers Arch. 361:251–254.Google Scholar
  132. 132.
    Velazquez, H., F. S. Wright, and D. W. Good. 1982. Luminal influences on potassium secretion: Chloride replacement with sulfate. Am. J. Physiol. 242:F46–F55.PubMedGoogle Scholar
  133. 132a.
    Garcia-Filho, E., G. Malnic, and G. Giebisch. 1982. Effects of changes in electrical potential difference on tubular potassium transport. Am. J. Physiol. 238:F235–F246.Google Scholar
  134. 133.
    Ullrich, K. J., G. Rumrich, and G. Fuchs. 1964. Wasserper-meabilitat und transtubularer Wasserfluss cortikaler Nephron-abschnitte bei verschiedenen Diuresezustanden. Pfluegers Arch. 280:99–119.Google Scholar
  135. 134.
    Ullrich, K. J. 1973. Permeability characteristics of the mammalian nephron. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 377–398.Google Scholar
  136. 135.
    Stolte, H., J. P. Brecht, M. Wiederholt, and K. Hierholzer. 1968. Einfluss von Adrenalektomie und Glucocorticoiden auf die Wasserpermeabilitat cortikaler Nephronabschnitte der Rattenniere. Pfluegers Arch. 299:99–127.Google Scholar
  137. 136.
    Lassiter, W. E., A. Frick, G. Rumrich, and K. J. Ullrich. 1965. Influence of ionic calcium on the water permeability of proximal and distal tubules in the rat kidney. Pflugers Arch. 285:90–95.Google Scholar
  138. 137.
    Wirz, H. 1956. Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv. Physiol. Pharmacol. Acta 14:353–362.PubMedGoogle Scholar
  139. 138.
    Gottschalk, C. W., and M. Mylle. 1959. Micropuncture study of the mammalian urinary concentrating mechanism: Evidence for the countercurrent hypothesis. Am. J. Physiol. 196:927–936.PubMedGoogle Scholar
  140. 139.
    Colindres, R. E., R. Kramp, M. E. Allison, and C. W. Got-tschalk. 1977. Hydrodynamic alterations during distal tubular fluid collections in the rat kidney. Am. J. Physiol. 232:F497–F505.PubMedGoogle Scholar
  141. 140.
    Clapp, J. R., and R. R. Robinson. 1966. Osmolality of distal tubular fluid in the dog. J. Clin. Invest. 45:1847–1853.PubMedGoogle Scholar
  142. 141.
    Imbert, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. 1975. Vasopressin dependent adenylate cyclase in single segments of rabbit kidney tubule. Pfluegers Arch. 357:173–186.Google Scholar
  143. 142.
    Imbert-Teboul, M., D. Chabardes, M. Montegut, A. Clique, and F. Morel. 1978. Vasopressin-dependent adenylate cyclase activities in the rat kidney medulla: Evidence for two separate sites of action. Endocrinology 102:1254–1261.PubMedGoogle Scholar
  144. 143.
    Chabardes, D., M. Imbert-Teboul, M. Gagnon-Brunette, and F. Morel. 1978. Different hormonal target sites along the mouse and rabbit nephrons. In: Biochemical Nephrology. W. G. Guder and U. Schmidt, eds. Huber, Bern. pp. 447–454.Google Scholar
  145. 144.
    Chabardes, D., M. Gagnon-Brunette, M. Imbert-Teboul, O. Gontcharevskaia, M. Montegut, A. Clique, and F. Morel. 1980. Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J. Clin. Invest. 65:439–448.PubMedGoogle Scholar
  146. 145.
    Kachadorian, W. A., J. B. Wade, and V. A. DiScala. 1975. Vasopressin: Induced structural change in toad bladder luminal membrane. Science 190:67–69.PubMedGoogle Scholar
  147. 146.
    Kachadorian, W. A., S. D. Levine, J. B. Wade, V. A. DiScala, and R. M. Hays. 1977. Relationship of aggregated intramem-branous particles to water permeability in vasopressin-treated toad urinary bladder. J. Clin. Invest. 59:576–581.PubMedGoogle Scholar
  148. 147.
    Harmanci, M. C., P. Stern, W. A. Kachadorian, H. Valtin, and V. A. DiScala. 1980. Vasopressin and collecting duct intra-membranous particle clusters: A dose-response relationship. Am. J. Physiol. 239:F560–F564.PubMedGoogle Scholar
  149. 148.
    Glabman, S., R. M. Klose, and G. Giebisch. 1963. Micro-puncture study of ammonia excretion in the rat. Am. J. Physiol. 205:127–132.PubMedGoogle Scholar
  150. 149.
    Hayes, C. P., J. S. Mayson, E. E. Owen, and R. R. Robinson. 1964. A micropuncture evaluation of renal ammonia excretion in the rat. Am. J. Physiol. 207:77–83.PubMedGoogle Scholar
  151. 150.
    Lucci, M. S., L. R. Pucacco, N. W. Carter, and T. D. DuBose. 1982. Evaluation of bicarbonate transport in rat distal tubule: Effects of acid-base status. Am. J. Physiol. 243:F335–F341.PubMedGoogle Scholar
  152. 151.
    Gottschalk, C. W., W. E. Lassiter, and M. Mylle. 1960. Localization of urine acidification in the mammalian kidney. Am. J. Physiol. 198:581–585.PubMedGoogle Scholar
  153. 152.
    Vierra, F. L., and G. Malnic. 1968. Hydrogen ion secretion by rat renal cortical tubules as studied by an antimony microelectrode. Am. J. Physiol. 214:710–718.Google Scholar
  154. 153.
    DuBose, T. D., L. R. Pucacco, M. S. Lucci, and N. W. Carter. 1979. Micropuncture determination of pH, PC02 and total C02 concentration in accessible structures of the rat renal cortex. J. Clin. Invest. 64:476–482.PubMedGoogle Scholar
  155. 154.
    DuBose, T. D. 1983. Application of the disequilibrium pH method to investigate the mechanism of urinary acidification. Am. J. Physiol. 245:F535–F544.PubMedGoogle Scholar
  156. 155.
    Rector, F. C., N. W. Carter, and D. W. Seldin. 1965. The mechanism of bicarbonate reabsorption in the proximal and distal tubules of the kidney. J. Clin. Invest. 44:278–290.PubMedGoogle Scholar
  157. 156.
    Warnock, D. G., and F. C. Rector. 1981. Renal acidification mechanisms. In: The Kidney, 2nd ed. B. M. Brenner and F. C. Rector, eds. Saunders, Philadelphia, pp. 440–494.Google Scholar
  158. 157.
    DuBose, T. D., L. R. Pucacco, and N. W. Carter. 1981. Determination of disequilibrium pH in the rat kidney in vivo: Evidence for hydrogen secretion. Am. J. Physiol. 240:F138–F146.PubMedGoogle Scholar
  159. 158.
    Karlmark, B., P. Jaeger, and G. Giebisch. 1983. Luminal buffer transport in rat cortical tubule: Relationship to potassium metabolism. Am. J. Physiol. 245:F584–F592.PubMedGoogle Scholar
  160. 159.
    Lonnerholm, G. 1971. Histochemical demonstration of carbonic anhydrase activity in the rat kidney. Acta Physiol. Scand. 81:433–439.PubMedGoogle Scholar
  161. 160.
    Lonnerholm, G., and Y. Ridderstrale. 1980. Intracellular distribution of carbonic anhydrase in the rat kidney. Kidney Int. 17:162–174.PubMedGoogle Scholar
  162. 161.
    Sohtell, M., and B. Karlmark. 1976. In vivo micropuncture PC02 measurements. Pfluegers Arch. 363:179–180.Google Scholar
  163. 162.
    Maren, T. H. 1967. Carbonic anhydrase: Chemistry, physiology and inhibition. Physiol. Rev. 47:595–781.PubMedGoogle Scholar
  164. 163.
    Lassiter, W. E., C. W. Gottschalk, and M. Mylle. 1963. Micropuncture study of renal tubular reabsorption of calcium in normal rodents. Am. J. Physiol. 204:771–775.Google Scholar
  165. 164.
    Walser, M. 1971. Calcium-sodium interdependence in renal transport. In: Renal Pharmacology. Appleton, New York. pp. 21–41.Google Scholar
  166. 165.
    Sutten, R. A. L., and J. H. Dirks. 1981. Renal handling of calcium, phosphate and magnesium. In: The Kidney, 2nd ed. B. M. Brenner and F. C. Rector, eds. Saunders, Philadelphia, pp. 551–618.Google Scholar
  167. 166.
    Bourdeau, J. E., and M. B. Burg. 1979. Voltage dependence of calcium transport in the thick ascending limb of Henle’s loop. Am. J. Physiol. 236:F357–F364.PubMedGoogle Scholar
  168. 167.
    Suki, W. N., D. Rouse, R. C. K. Ng, and J. P. Kokko. 1980. Calcium transport in the thick ascending limb of Henle. J. Clin. Invest. 66:1004–1009.PubMedGoogle Scholar
  169. 168.
    Costanzo, L. S., and I. M. Weiner. 1976. Relationship between clearances of Ca and Na: Effect of distal diuretics and PTH. Am. J. Physiol. 230:67–73.PubMedGoogle Scholar
  170. 169.
    Lemann, J., J. R. Litzow, and E. J. Lennon. 1967. Studies of the mechanism by which chronic metabolic acidosis augments urinary calcium excretion in man. J. Clin. Invest. 46:1318–1328.PubMedGoogle Scholar
  171. 170.
    Sutton, R. A. L., N. L. M. Wong, and J. H. Dirks. 1979. Effects of metabolic acidosis and alkalosis on Na and Ca transport in the dog kidney. Kidney Int. 15:520–533.PubMedGoogle Scholar
  172. 171.
    Sutton, R. A. L., N. L. M. Wong, and J. H. Dirks. 1976. Renal tubular Na and Ca reabsorption: Dissociation by maneuvers which increase bicarbonate excretion. Clin. Res. 24:413a.Google Scholar
  173. 172.
    Peraino, R. A., and W. N. Suki. 1980. Urine HC03” augments renal Ca absorption independent of systemic acid-base changes. Am. J. Physiol. 238:F394–F398.PubMedGoogle Scholar
  174. 173.
    Peraino, R. A., W. N. Suki, and B. J. Stinebaugh. 1983. Renal excretion of calcium and magnesium during correction of metabolic acidosis by bicarbonate infusion in the dog. Miner. Electrolyte M etab. 3:87–93.Google Scholar
  175. 174.
    Marone, C. C., N. L. M. Wong, R. A. L. Sutton, and J. H. Dirks. 1983. Effects of metabolic alkalosis on calcium excretion in the conscious dog. J. Lab. Clin. Med. 101:264–273.PubMedGoogle Scholar
  176. 175.
    Robinson, B. H. S., E. B. Marsh, J. W. Duckett, and M. Walser. 1962. Adrenocortical modification of the interdependence of calcium and sodium reabsorption in the kidney. J. Clin. Invest. 41:1394.Google Scholar
  177. 176.
    Goldfarb, S., G. R. Westby, M. Goldberg, and Z. S. Agus. 1977. Renal tubular effects of chronic phosphate depletion. J. Clin. Invest. 59:770–779.PubMedGoogle Scholar
  178. 177.
    Wong, N. L. M., G. A. Quamme, T. J. O’Callaghan, R. A. L. Sutton, and J. H. Dirks. 1980. Renal tubular transport in phosphate depletion: A micropuncture study. Can. J. Physiol. Pharmacol. 58:1063–1071.PubMedGoogle Scholar
  179. 178.
    Biber, T. U. L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin. J. Gen. Physiol. 58:131–144.PubMedGoogle Scholar
  180. 179.
    Nagel, W., and A. Dorge. 1970. Effect of amiloride on sodium transport of frog skin: Action on intracellular sodium content. Plfuegers Arch. 317:84–92.Google Scholar
  181. 180.
    O’Neil, R. G., and E. L. Boulpaep. 1979. Effect of amiloride on the apical cell membrane cation channels of a sodium-absorbing, potassium-secreting renal epithelium. J. Membr. Biol. 50:365–387.PubMedGoogle Scholar
  182. 181.
    Taylor, A., and E. E. Windhager. 1979. Possible roles of cyto-solic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236:F505–F512.PubMedGoogle Scholar
  183. 182.
    Friedman, P. A., J. F. Figueiredo, T. Maack, and E. E. Wind-hager. 1981. Sodium-calcium interactions in the renal proximal convoluted tubule of the rabbit. Am. J. Physiol. 240:F558–F568.PubMedGoogle Scholar
  184. 183.
    Frindt, G., E. E. Windhager, and A. Taylor. 1982. Hydroosmotic response of collecting tubules to ADH or cAMP at reduced peritubular sodium. Am. J. Physiol. 243:F503–F513.PubMedGoogle Scholar
  185. 184.
    Lorenzen, M., C. O. Lee, and E. E. Windhager. 1984. Cytosolic Ca+2 and Na + activities in perfused proximal tubules of Necturus kidney. Am. J. Physiol. 247:F93–F102.PubMedGoogle Scholar
  186. 185.
    Wen, S. F., R. L. Evanson, and J. H. Dirks. 1970. Micropuncture study of renal magnesium transport in proximal and distal tubule of the dog. Am. J. Physiol. 219:570–576.PubMedGoogle Scholar
  187. 186.
    LeGrimellec, C. L., N. Roinel, and F. Morel. 1973. Simultaneous Mg, Ca, P, K, Na and CI analysis in rat tubular fluid during perfusion of either inulin or ferrocyanide. Pfluegers Arch. 340:181–196.Google Scholar
  188. 187.
    Brunnette, M., H. Vigneault, and S. Carrière. 1974. Micro-puncture study of magnesium transport along the nephron in the young rat. Am. J. Physiol. 227:891–896.Google Scholar
  189. 188.
    Carney, S. L., N. L. M. Wong, G. A. Quamme, and J. H. Dirks. 1980. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat. J. Clin. Invest. 65:180–188.PubMedGoogle Scholar
  190. 189.
    Harris, C. A., M. A. Burnatowska, J. F. Seely, R. A. L. Sutton, G. A. Quamme, and J. H. Dirks. 1979. Effects of parathyroid hormone on electrolyte transport in the hamster nephron. Am. J. Physiol. 236:342–348.Google Scholar
  191. 190.
    Quamme, G. A. 1980. Effect of calcitonin on calcium and magnesium transport in the rat nephron. Am. J. Physiol. 238:573–578.Google Scholar
  192. 191.
    Quamme, G. A. 1981. Effect of furosemide on calcium and magnesium transport in the rat nephron. Am. J. Physiol. 241:340–347.Google Scholar
  193. 192.
    Quamme, G. A., and J. H. Dirks. 1980. Effect of intraluminal and contraluminal magnesium on magnesium and calcium transfer in the rat nephron. Am. J. Physiol. 238:187–198.Google Scholar
  194. 193.
    Wen, S. F., N. L. M. Wong, and J. H. Dirks. 1971. Evidence for renal magnesium secretion during magnesium infusion in the dog. Am. J. Physiol. 220:33–37.PubMedGoogle Scholar
  195. 194.
    LeGrimellec, C., N. Roinel, and F. Morel. 1973. Simultaneous Mg, Ca, P, K, Na and CI analysis in rat tubular fluid. II. During acute Mg plasma loading. Pfluegers Arch. 340:197–210.Google Scholar
  196. 195.
    Quamme, G. A., and J. H. Dirks. 1983. Renal magnesium transport. Rev. Physiol. Biochem. Pharmacol. 97:69–110.PubMedGoogle Scholar
  197. 196.
    Massry, S. G., J. W. Coburn, and C. R. Kleeman. 1969. Renal handling of magnesium in the dog. Am. J. Physiol. 216:1460–1467.PubMedGoogle Scholar
  198. 197.
    Maclntyre, I. 1967. Magnesium metabolism. Adv. Intern. Med. 13:143–154.Google Scholar
  199. 198.
    Wacker, W. E. C., and A. F. Parisi. 1968. Magnesium metabolism. N. Engl. J. Med. 278:658–776.PubMedGoogle Scholar
  200. 199.
    King, R. G., and S. W. Stanbury. 1970. Magnesium metabolism in primary hyperparathyroidism. Clin. Sci. 39:281–303.PubMedGoogle Scholar
  201. 200.
    Kuntziger, H., C. Amiel, N. Roinel, and F. Morel. 1974. Effects of parathyroidectomy and cyclic AMP on renal transport of phosphate, calcium and magnesium. Am. J. Physiol. 227:905–911.PubMedGoogle Scholar
  202. 201.
    Shareghi, G. R., and Z. S. Agus. 1982. Magnesium transport in the cortical thick ascending limb of Henle’s loop of the rabbit. J. Clin. Invest. 69:759–769.PubMedGoogle Scholar
  203. 202.
    Wong, N. L. M., G. A. Quamme, and J. H. Dirks. 1982. Effect of chlorothiazide on renal calcium and magnesium handling in the hamster. Can. J. Physiol. Pharmacol. 60:1160–1165.PubMedGoogle Scholar
  204. 203.
    LeGrimellec, C., N. Roinel, and F. Morel. 1974. Simultaneous Mg, Ca, P, K and CI analysis in rat tubular fluid. IV. During acute phosphate plasma loading. Pfluegers Arch. 346:189–204.Google Scholar
  205. 204.
    Amiel, C., H. Kuntziger, and G. Richet. 1970. Micropuncture study of handling of phosphate by proximal and distal nephron in normal and parathyroidectomized rat: Evidence for distal reab-sorption. Pfluegers Arch. 317:93–109.Google Scholar
  206. 205.
    Poujeol, P., D. Chabardes, N. Roinel, and C. DeRouffinac. 1976. Influence of extracellular fluid volume expansion on magnesium, calcium and phosphate handling along the rat nephron. Pfluegers Arch. 365:203–211.Google Scholar
  207. 206.
    Beck, L. H., and M. Goldberg. 1974. Mechanism of the blunted phosphaturia in saline-loaded thyroidectomized dogs. Kidney Int. 6:18–23.PubMedGoogle Scholar
  208. 207.
    Knox, F. G., and C. Lechene. 1975. Distal site of action of parathyroid hormone on phosphate reabsorption. Am. J. Physiol. 229:1556–1560.PubMedGoogle Scholar
  209. 208.
    Pastoriza-Munoz, E., R. E. Colindres, W. E. Lassiter, and C. Lechene. 1978. Effect of parathyroid hormone on phosphate reab-sorption in rat distal convolution. Am. J. Physiol. 235:F321–F330.PubMedGoogle Scholar
  210. 209.
    Lang, F., R. Gregor, G. Marchand, and F. G. Knox. 1976. Stationary microperfusion study of phosphate reabsorption in proximal and distal nephron segments. Pfluegers Arch. 368:45–48.Google Scholar
  211. 210.
    Gross, J. B., and J. P. Kokko. 1977. Effects of aldosterone and potassium-sparing diuretics on electrical potential differences across the distal nephron. J. Clin. Invest. 59:82–89.PubMedGoogle Scholar
  212. 211.
    Stoner, L. C. 1977. Isolated, perfused amphibian renal tubules: The diluting segment. Am. J. Physiol. 233:F438–F444.PubMedGoogle Scholar
  213. 212.
    Koeppen, B. M., and G. Giebisch. 1983. Electrophysiology of mammalian renal tubules: Inferences from intracellular micro-electrode studies. Annu. Rev. Physiol. 45:497–517.PubMedGoogle Scholar
  214. 213.
    Allen, G. G., and L. J. Barratt. 1981. Electrophysiology of the early distal tubule: Further observations of electrode techniques. Kidney Int. 19:24–35.PubMedGoogle Scholar
  215. 214.
    Allen, G. G., and L. J. Barratt. 1981. Effect of aldosterone on the transepithelial potential difference of the rat distal tubule. Kidney Int. 19:678–686.PubMedGoogle Scholar
  216. 215.
    Giebisch, G., G. Malnic, R. M. Klose, and E. E. Windhager. 1966. Effect of ionic substitutions on distal potential differences in rat kidney. Am. J. Physiol. 211:560–568.PubMedGoogle Scholar
  217. 216.
    Hayslett, J. P., E. L. Boulpaep, and G. H. Giebisch. 1978. Factors influencing transepithelial potential difference in mammalian distal tubule. Am. J. Physiol. 234:F182–F191.PubMedGoogle Scholar
  218. 217.
    Hayslett, J. P., E. L. Boulpaep, M. Kashgarian, and G. H. Giebisch. 1977. Electrical characteristics of the mammalian distal tubule: Comparison of Ling-Gerard and macroelectrodes. Kidney Int. 12:324–331.PubMedGoogle Scholar
  219. 218.
    Khuri, R. N., S. K. Agulian, and K. Kallognlian. 1972. Intracellular potassium in cells of the distal tubule. Pfluegers Arch. 335:297–308.Google Scholar
  220. 218a.
    Temple-Smith, P., L. Costanzo, and E. E. Windhager. 1977. Reexamination of transepithelial potential difference in distal convoluted tubules of the rat. Electrophysiology of the Nephron. T. Anagnostopoulos, ed. Inserm Editions, Paris, pp. 115–124.Google Scholar
  221. 219.
    Imai, M. 1979. The connecting tubule: A functional subdivision of the rabbit distal nephron segments. Kidney Int. 15:346–356.PubMedGoogle Scholar
  222. 220.
    Good, D. W., and F. S. Wright. 1980. Luminal influences on potassium secretion: Transepithelial voltage. Am. J. Physiol. 239: F289–F298.PubMedGoogle Scholar
  223. 221.
    Khuri, R. N., S. K. Agulian, and K. Bogharian. 1974. Electrochemical potential of chloride in distal renal tubule of the rat. Am. J. Physiol. 227:1352–1355.PubMedGoogle Scholar
  224. 222.
    Wiederholt, M., W. Schoormans, L. Hanson, and C. Behn. 1974. Sodium conductance changes by aldosterone in the rat kidney. Pfluegers Arch. 348:155–165.Google Scholar
  225. 223.
    Boulpaep, E. L., and J. F. Seely. 1971. Electrophysiology of proximal and distal tubules in the autoperfused dog kidney. Am. J. Physiol. 221:1084–1096.PubMedGoogle Scholar
  226. 224.
    Sullivan, J. 1968. Electrical potential differences across distal renal tubules of Amphiuma. Am. J. Physiol. 214:1096–1103.PubMedGoogle Scholar
  227. 225.
    Maude, D. L., I. Shehadeh, and A. K. Solomon. 1966. Sodium and water transport in single perfused distal tubules of Necturus kidney. Am. J. Physiol. 211:1043–1049.PubMedGoogle Scholar
  228. 226.
    Windhager, E. E., and G. Giebisch. 1965. Electrophysiology of the nephron. Physiol. Rev. 45:214–244.PubMedGoogle Scholar
  229. 227.
    Jentsch, T., M. Koch, A. Krolik, and M. Wiederhold. 1982. Calcium transport in the distal tubule of the Amphiuma kidney. Pfluegers Arch. 392(Suppl.):R15.Google Scholar
  230. 228.
    Cohen, B., G. Giebisch, L. L. Hansen, U. Teuscher, and M. Wiederholt. 1984. Relationship between peritubular membrane potential and net fluid reabsorption in the distal renal tubule of Amphiuma. J. Physiol. (London) 348:115–134.Google Scholar
  231. 229.
    Oberleithner, H., W. Guggino, and G. Giebisch. 1982. Mechanism of distal tubular chloride transport in Amphiuma kidney. Am. J. Physiol. 242:F331–F339.PubMedGoogle Scholar
  232. 230.
    Wiederholt, M., and G. Giebisch. 1974. Some electrophysio logical properties of the distal tubule of Amphiuma kidney. Fed. Proc. 33:387.Google Scholar
  233. 231.
    Oberleithner, H., W. Guggino, and G. Giebisch. 1981. The cellular mechanism of potassium adaptation in the distal amphibian nephron. J. Physiol. (London) 318:55P-56P.Google Scholar
  234. 232.
    Stanton, B. A., W. B. Guggino, and G. Giebisch. 1982. Acidification of the basolateral solution reduces potassium conductance of the apical membrane. Fed. Proc. 41:1006.Google Scholar
  235. 232a.
    Oberleithner, H., F. Lang, R. Gregor, W. Wang, and G. Giebisch. 1983. Effect of luminal potassium on cellular sodium activity in the early distal tubule of Amphiuma kidney. Pfluegers Arch. 396:34–40.Google Scholar
  236. 233.
    Burg, M., and L. Stoner. 1974. Sodium transport in the distal nephron. Fed. Proc. 33:31–36.PubMedGoogle Scholar
  237. 234.
    Wright, F. S. 1971. Alterations in electrical potential and ionic conductance of renal distal tubule cells in potassium adaptation. Proc. Int. Union Physiol. Sci. 9:609.Google Scholar
  238. 235.
    Oberleithner, H., W. Guggino, and G. Giebisch. 1983. The effect of furosemide on luminal sodium, chloride and potassium transport in the early distal tubule of Amphiuma kidney: Effects of potassium adaptation. Pfluegers Arch. 396:27–33.Google Scholar
  239. 236.
    Velazquez, H. E., and F. S. Wright. 1984. Sodium, chloride and potassium transport by the distal nephron: Effect of bumetanide and chlorothiazide. Kidney Int. 25:319a.Google Scholar
  240. 237.
    Ellison, D. H., H. E. Velazquez, and F. S. Wright. 1984. Effects of barium and chloride on net and unidirectional potassium fluxes across distal tubules. Proc. 9th Int. Congr. Nephrol, p. 411 A.Google Scholar
  241. 238.
    Schmidt, U., and I. C. Dubach. 1969. Activity of (Na + K)-stimulated adenosine triphosphatase in the rat nephron. Pfluegers Arch. 306:219–227.Google Scholar
  242. 239.
    Ernst, S. A. 1975. Transport ATPase cytochemistry: Ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex. J. Cell Biol. 66:586–608.PubMedGoogle Scholar
  243. 240.
    Oberleithner, H., F. Lang, W. Wang, and G. Giebisch. 1982. Effects of inhibition of chloride transport on intracellular sodium activity in distal amphibian nephron. Pfluegers Arch. 394:55–60.Google Scholar
  244. 241.
    O’Neil, R. G., and S. C. Sansom. 1984. Characterization of apical membrane Na and K conductances of cortical collecting duct using microelectrode techniques. Am. J. Physiol. 247:F14–F24.PubMedGoogle Scholar
  245. 242.
    Cuthbert, A. W., and W. K. Shum. 1975. Effects of vasopressin and aldosterone on amiloride binding in toad bladder epithelial cells. Proc. R. Soc. London Ser. B 189:543–575.Google Scholar
  246. 243.
    Kinsella, J. L., and P. S. Aronson. 1981. Amiloride inhibition of the Na-H exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 241:F371–F379.Google Scholar
  247. 244.
    Velazquez, H., and F. S. Wright. 1983. Distal tubular pathways for sodium, chloride and potassium transport assessed by diuretics. Kidney Int. 23:269a.Google Scholar
  248. 245.
    Frindt, G., and E. E. Windhager. 1983. Effect of quinidine, low peritubular Na or Ca on Na transport in isolated perfused rabbit cortical collecting tubules. Fed. Proc. 42:305a.Google Scholar
  249. 246.
    Frindt, G., and E. E. Windhager. 1984. Transepithelial electrical resistance (Rt) of cortical collecting tubules at reduced peritubular Na concentration. Proc. 9th Int. Congr. Nephrol, p. 413A.Google Scholar
  250. 247.
    Windhager, E. E., and G. Frindt. 1984. Role of cytosolic calcium in renal tubular transport. In: Proceedings of the IXth International Congress of Nephrology—Nephrology Today. Springer-Verlag, Berlin, in press.Google Scholar
  251. 248.
    Taylor, A., and E. E. Windhager. 1983. Regulatory role of intracellular calcium ions in epithelial Na transport. Annu. Rev. Physiol. 45:519–532.PubMedGoogle Scholar
  252. 249.
    Schultz, S. G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through.” Am. J. Physiol. 241:F579–F590.PubMedGoogle Scholar
  253. 250.
    Koeppen, B. M., B. A. Biagi, and G. H. Giebisch. 1983. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am. J. Physiol. 244.F35–F47.PubMedGoogle Scholar
  254. 251.
    Stanton, B., A. Janzen, T. Klein-Robbenhaar, J. Wade, G. Giebisch, and R. DeFronzo. 1983. Role of physiological levels of aldosterone in regulation of distal tubule morphology and potassium transport. Kidney Int. 23:267a.Google Scholar
  255. 252.
    Wade, J. B., R.G. O’Neil, J.L. Pryor, and E.L. Boulpaep. 1979. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J. Cell Biol. 81:439–445.PubMedGoogle Scholar
  256. 253.
    Giebisch, G. 1978. Renal potassium transport. In: Membrane Transport in Biology, Volume IV A. G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds. Springer-Verlag, Berlin, pp. 215–298.Google Scholar
  257. 254.
    Stanton, B., and G. Giebisch. 1981. Mechanism of urinary potassium excretion. Min. Electrolyte Metab. 5:100–120.Google Scholar
  258. 255.
    Jones, S. M., and J. P. Hayslett. 1983. Demonstration of active potassium secretion in the late distal tubule. Am. J. Physiol. 245:F83–F88.PubMedGoogle Scholar
  259. 256.
    Strieder, N., R. N. Khuri, M. Wiederholt, and G. Giebisch. 1974. Studies on the renal action of ouabain in the rat: Effects in the non-diuretic state. Pfluegers Arch. 349:91–107.Google Scholar
  260. 257.
    Greger, R., E. Schlatter, and F. Lang. 1983. Evidence for elec-troneutral sodium chloride cotransport in the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch. 396:308–314.Google Scholar
  261. 258.
    Oberleithner, H., G. Giebisch, F. Lang, and W. Wang. 1982. Cellular mechanism of the furosemide sensitive transport system in the kidney. Klin. Wochenschr. 60:1173–1179.PubMedGoogle Scholar
  262. 259.
    Sackin, H., N. Morgunov, and E. L. Boulpaep. 1982. Electrical potentials and luminal membrane ion transport in the amphibian renal diluting segment. Fed. Proc. 41:1495.Google Scholar
  263. 260.
    Ussing, H. H., and E. E. Windhager. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium. Acta Physiol. Scand. 61:484–504.PubMedGoogle Scholar
  264. 261.
    Franz, T. J., W. R. Galey, and J. T. VanBruggen. 1968. Further observations on asymmetrical solute movement across membranes. J. Gen. Physiol. 51:1–12.PubMedGoogle Scholar
  265. 262.
    DiBona, I. R., and M. D. Civan. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomical site of transepithelial shunt pathways. J. Membr. Biol. 12:101–122.Google Scholar
  266. 263.
    Schafer, J. A., C. S. Patlak, and T. E. Andreoli. 1974. Osmosis in cortical collecting tubules: A theoretical and experimental analysis of the osmotic transient phenomenon. J. Gen. Physiol. 64:201–237.PubMedGoogle Scholar
  267. 264.
    Shafer, J. A., S. L. Troutman, and T. E. Andreoli. 1974. Osmosis in cortical collecting tubules: ADH-independent osmotic flow rectification. J. Gen. Physiol. 64:228–240.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Linda S. Costanzo
    • 1
  • Erich E. Windhager
    • 2
  1. 1.Department of Physiology and BiophysicsMedical College of VirginiaRichmondUSA
  2. 2.Department of PhysiologyCornell University Medical CollegeNew YorkUSA

Personalised recommendations