Advertisement

The Effects of ADH on Salt and Water Transport in the Mammalian Nephron

The Collecting Duct and Thick Ascending Limb of Henle
  • Steven C. Hebert
  • Thomas E. Andreoli

Abstract

A cardinal function of the kidney is the separation of salt and water excretion, thus maintaining the constancy of both osmolality and composition of body fluids despite the wide variations in water and solute intake. The processes that accomplish this task are complex and involve the integrated action of virtually all nephron segments, coupled with that of a specialized vascular system (see Chapter 39, Concentrating and Diluting Processes).

Keywords

Water Transport Apical Membrane Water Permeability Renal Medulla Nephron Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Orloff, J., and J. H. Handler. 1962. The similarity of effects of vasopressin, adenosine 3′, 5′-monophosphate (cyclic AMP) and theophylline on the toad bladder. J. Clin. Invest. 41:702–709.PubMedCrossRefGoogle Scholar
  2. 2.
    Grantham, J. J., and M. B. Burg. 1966. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211:255–259.PubMedGoogle Scholar
  3. 3.
    Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. 1981. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport. Am. J. Physiol. 241:F412–F431.PubMedGoogle Scholar
  4. 4.
    Morel, F. 1983. Regulation of kidney functions by hormones: A new approach. Recent Prog. Horm. Res. 39:271–304.PubMedGoogle Scholar
  5. 5.
    Jard, S., C. Roy, T. Barth, R. Rajerison, and J. Bockaert. 1975. Antidiuretic hormone-sensitive kidney adenylate cyclase. Adv. Cyclic Nucleotide Res. 5:31–52.PubMedGoogle Scholar
  6. 6.
    Eggena, P., I. L. Schwartz, and R. Walter. 1970. Threshold and receptor reserve in the action of neurohypophyseal peptides: A study of synergists and antagonists in the hydroosmotic response on the toad urinary bladder. J. Gen. Physiol. 56:250–271.PubMedCrossRefGoogle Scholar
  7. 7.
    Dousa, T. P., and H. Valtin. 1976. Cellular actions of vasopressin in the mammalian kidney. Kidney Int. 10:4663.CrossRefGoogle Scholar
  8. 8.
    Dousa, T. P., L. O. Barnes, and J. K. Kim. 1977. The role of cyclic AMP-dependent protein phosphorylations and microtubules in the cellular action of vasopressin in mammalian kidney. In: Neurohypophysis. A. M. Moses and L. Share, eds. Karger, Basel, pp. 220–235.Google Scholar
  9. 9.
    Schwartz, I. L., C. S. Huang, A. J. Fischman, S. K. Marur, and H. R. Wyssbrod. 1981. Current ideas on the sequence of events involved in the hydroosmotic action of antidiuretic hormones. In: Neurohypophyseal Peptide Hormones and Other Biologically Active Peptides. D. H. Schlessinger, ed. Elsevier, Amsterdam, pp. 101–110.Google Scholar
  10. 10.
    Muller, J., W. A. Kachadorian, and V. A. DiScala. 1980. Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells. J. Cell Biol 85:83–95.PubMedCrossRefGoogle Scholar
  11. 11.
    Wirz, V. H., B. Hargitay, and W. Kuhn. 1951. Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helv. Physiol. Pharmacol. Acta 9:196–207.PubMedGoogle Scholar
  12. 12.
    Burg, M. B., and N. Green. 1973. Function of the thick ascending limb of Henle’s loop. Am. J. Physiol. 224:659–668.PubMedGoogle Scholar
  13. 13.
    Rocha, A. S., and J. P. Kokko. 1973. Sodium chloride and water transport in the medullary thick ascending limb of Henle: Evidence for active chloride transport. J. Clin. Invest. 52:612–623.PubMedCrossRefGoogle Scholar
  14. 14.
    Schmidt, U., and U. C. Dubach. 1969. Activity of (Na+, K + )-stimulated adenosine triphosphatase in the rat nephron. Pfluegers Arch. 306:219–226.CrossRefGoogle Scholar
  15. 15.
    Jorgensen, P. L. 1977. The function of (Na+, K + )-ATPase in the thick ascending limb of Henle’s loop. Curr. Probl. Clin. Biochem. 6:190–199.Google Scholar
  16. 16.
    Katz, A. I., A. Doucet, and F. Morel. 1979. Na-K-ATPase activity along the rabbit, rat and mouse nephron. Am. J. Physiol. 237:F114–F120.PubMedGoogle Scholar
  17. 17.
    Greger, R., and E. Schlatter. 1983. Properties of the lumen membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. Pfluegers Arch. 396:315–324.CrossRefGoogle Scholar
  18. 18.
    O’Neil, R. G. 1983. Voltage-dependent interaction of barium and cesium with the potassium conductance of the cortical collecting duct apical cell membrane. J. Membr. Biol. 74:165–173.PubMedCrossRefGoogle Scholar
  19. 19.
    van Driessche, W., and W. Zeiske. 1980. Ba2-induced conductance fluctuations of spontaneously fluctuating K + channels in the apical membrane of frog skin (Rana temporaria). J. Membr. Biol. 56:31–42.PubMedCrossRefGoogle Scholar
  20. 20.
    Wills, N. K., W. Zeiske, and W. Van Driessche. 1982. Noise analysis reveals K+ channel conductance fluctuations in the apical membrane of rabbit colon. J. Membr. Biol. 69:187–197.PubMedCrossRefGoogle Scholar
  21. 21.
    Zeiske, W., and W. van Driessche. 1983. The interaction of “K +-like” cations with the apical K+ channel in frog skin. J. Membr. Biol. 76:57–72.PubMedCrossRefGoogle Scholar
  22. 22.
    García-Díaz, J. F., W. Nagel, and A. Essig. 1983. Voltage-dependent K conductance at the apical membrane of Necturus gallbladder. Biophys. J. 43:269–278.PubMedCrossRefGoogle Scholar
  23. 23.
    Armstrong, C. M., R. P. Swenson, Jr., and S. R. Taylor. 1982. Block of squid axon K+ channels by internally and externally applied barium ions. J. Gen. Physiol. 80:663–682.PubMedCrossRefGoogle Scholar
  24. 24.
    Greger, R., and G. Frömter. 1981. Chloride reabsorption in the rabbit cortical thick ascending limb of the loop of Henle: A sodium dependent process. Pfluegers Arch. 390:38–43.CrossRefGoogle Scholar
  25. 25.
    Hebert, S. C., P. A. Friedman, and T. E. Andreoli. 1984. The effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. I. ADH increases transcellular conductance pathways. J. Membr. Biol. 80:201–219.PubMedCrossRefGoogle Scholar
  26. 26.
    Murer, H., and R. Greger. 1982. Membrane transport in the proximal tubule and thick ascending limb of Henle’s loop: Mechanisms and their alterations. Klin. Wochenschr. 60:1103–1113.PubMedCrossRefGoogle Scholar
  27. 27.
    Hebert, S. C., and T. E. Andreoli. 1984. Control of NaCl transport in the thick ascending limb. Am. J. Physiol. 246:F745–F756.PubMedGoogle Scholar
  28. 28.
    Eveloff, J., and R. Kinne. 1983. Sodium-chloride transport in the medullary thick ascending limb of Henle’s loop: Evidence for a sodium-chloride cotransport system in plasma membrane vesicles. J. Membr. Biol. 72:173–181.PubMedCrossRefGoogle Scholar
  29. 29.
    Forbush, B., and H. C. Palfrey. 1983. [3H]-Bumetanide binding to membranes isolated from dog kidney outer medulla. J. Biol. Chem. 258:11787–11792.PubMedGoogle Scholar
  30. 30.
    Oberleithner, H., W. Guggino, and G. Giebisch. 1982. Mechanism of distal tubular chloride transport in amphiuma kidney. Am. J. Physiol. 242:F331–F339.PubMedGoogle Scholar
  31. 31.
    Greger, R., and E. Schlatter. 1983. Properties of the basolateral membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney—A model for secondary active chloride transport. Pfluegers Arch. 396:325–334.CrossRefGoogle Scholar
  32. 32.
    Hebert, S. C., and T. E. Andreoli. 1984. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle. II. Determinants of the ADH-mediated increases in transepithelial voltage and in net Cl~ absorption. J. Membr. Biol. 80:221–223.PubMedCrossRefGoogle Scholar
  33. 33.
    Greger, R., H. Oberleithner, E. Schlatter, A. C. Cassola, and C. Weidtke. 1983. Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pfluegers Arch. 399:29–34.CrossRefGoogle Scholar
  34. 34.
    Guggino, W. B., B. A. Stanton, and G. Giebisch. 1982. Electrical properties of isolated early distal tubule of the amphiuma kidney. Fed. Proc. 41:1597.Google Scholar
  35. 35.
    Oberleithner, H., F. Lang, R. Greger, W. Wang, and G. Giebisch. 1983. Effect of luminal potassium on cellular sodium activity in the early distal tubule of Amphiuma kidney. Pfluegers Arch. 396:34–40.CrossRefGoogle Scholar
  36. 36.
    Stokes, J. B. 1982. Consequences of potassium recycling in the renal medulla: Effects on ion transport by the medullary thick ascending limb of Henle’s loop. J. Clin. Invest. 70:219–229.PubMedCrossRefGoogle Scholar
  37. 37.
    Hebert, S. C., and T. E. Andreoli. 1984. Kinetic analysis of Ba++-blockade of apical membrane K +-channels in mouse medullary thick ascending limbs. IX International Congress of Nephrology, P416A.Google Scholar
  38. 38.
    Schultz, S. G. 1981. Homocellular regulatory mechanism in sodium-transporting epithelia: Avoidance of extinction by “flush-through.” Am. J. Physiol. 241:F579–F590.PubMedGoogle Scholar
  39. 39.
    Hall, D. A., and D. M. Varney. 1980. Effect of vasopressin on electrical potential difference and chloride transport in mouse medullary thick ascending limb of Henle’s loop. J. Clin. Invest. 66:792–802.PubMedCrossRefGoogle Scholar
  40. 40.
    Work, J., B. Booker, J. A. Schafer, J. Galla, and R. Luke. 1983. vivo and in vitro effect of ADH on loop of Henle: Chloride reabsorp-tion in the Brattleboro (DI) rat. Am. Soc. Nephrol. 16th Ann. Meet. 185A.Google Scholar
  41. 41.
    Hebert, S. C., J. A. Schafer, and T. E. Andreoli. 1981. The effects of antidiuretic hormone (ADH) on solute and water transport in the mammalian nephron. J. Membr. Biol. 58:1–19.PubMedCrossRefGoogle Scholar
  42. 42.
    Hebert, S. C., and T. E. Andreoli. 1982. Water permeability of biological membranes: Lessons from antidiuretic hormone-responsive epithelia. Biochim. Biophys. Acta 650:267–280.PubMedGoogle Scholar
  43. 43.
    Cass, A., and A. Finkelstein. 1967. Water permeability of thin lipid membranes. J. Gen. Physiol. 50:1765–1784.PubMedCrossRefGoogle Scholar
  44. 44.
    Grantham, J. J., and M. B. Burg. 1966. Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules. Am. J. Physiol. 211:255–259.PubMedGoogle Scholar
  45. 45.
    Grantham, J. J., and J. Orloff. 1968. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′, 5′-monophosphate, and theophylline. J. Clin. Invest. 47:1154–1161.PubMedCrossRefGoogle Scholar
  46. 46.
    Schafer, J. A., and T. E. Andreoli. 1972. Cellular constraints to diffusion: The effect of antidiuretic hormone on water flows in isolated mammalian collecting ducts. J. Clin. Invest. 51:1264–1278.PubMedCrossRefGoogle Scholar
  47. 47.
    Schafer, J. A., and T. E. Andreoli. 1972. The effect of antidiuretic hormone on solute flows in mammalian collecting tubules. J. Clin. Invest. 51:1279–1286.PubMedCrossRefGoogle Scholar
  48. 48.
    Finkelstein, A. 1976. Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues. J. Gen. Physiol. 68:137–143.PubMedCrossRefGoogle Scholar
  49. 49.
    Gallucci, E., S. Micelli, and C. Lippi. 1971. Nonelectrolyte permeability across thin lipid membranes. Arch. Int. Physiol. Biochim. 79:881–887.PubMedCrossRefGoogle Scholar
  50. 50.
    Vreeman, H. J. 1966. Permeability of thin phospholipid films. 1. K. Ned. Akad. Wet. Amsterdam Ser. B 69:542–577.Google Scholar
  51. 51.
    Koefoed-Johnsen, V., and H. H. Ussing. 1953. The contributions of diffusion and flow to the passage of D20 through living membranes. Acta Physiol. Scand. 28:60–76.PubMedCrossRefGoogle Scholar
  52. 52.
    Pappenheimer, J. R. 1953. Passage of molecules through capillary walls. Physiol. Rev. 33:387–423.PubMedGoogle Scholar
  53. 53.
    Pappenheimer, J. R., E. M. Renkin, and L. M. Boneru. 1951. Filtration diffusion and molecular seiving through peripheral capillary membranes. Am. J. Physiol. 167:13–46.PubMedGoogle Scholar
  54. 54.
    Andersen, B., and H. H. Ussing. 1957. Solvent drag on non-electrolytes during osmotic flow through isolated toad skin and its response to antidiuretic hormone. Acta Physiol. Scand. 39:228–239.PubMedCrossRefGoogle Scholar
  55. 55.
    Kedem, O., and A. Katchalsky. 1961. A physical interpretation of the phenomenological coefficients of membrane permeability. J. Gen. Physiol. 45:143–179.PubMedCrossRefGoogle Scholar
  56. 56.
    Dainty, J. 1963. Water relations of plant cells. Adv. Bot. Res. 1:279–326.CrossRefGoogle Scholar
  57. 57.
    Nernst, W. 1904. Theorie der reactionsgeschwindigkeit in heterogenen Systemen. Z. Phys. Chem. 47:52–55.Google Scholar
  58. 58.
    Teorell, T. 1936. A method of studying conditions within diffusion layers. J. Biol. Chem. 113:735–748.Google Scholar
  59. 59.
    Holz, R., and A. Finkelstein. 1970. The water and nonelectrolyte permeability induced in thin lipid membranes by the polyene anti-obiotics nystatin and amphotericin B. J. Gen. Physiol. 56:125–145.PubMedCrossRefGoogle Scholar
  60. 60.
    Levine, S. D., M. Jacoby, and A. Finkelstein. 1984. The water permeability of toad urinary bladder. II. The value of Pf/Pd (w) for the antidiuretic hormone-induced water permeation pathway. J. Gen. Physiol. 83:543–561.PubMedCrossRefGoogle Scholar
  61. 61.
    Levine, S. D., M. Jacoby, and A. Finkelstein. 1984. The water permeability of toad urinary bladder. I. Permeability of barriers in series with the luminal membrane. J. Gen. Physiol. 83:529–541.PubMedCrossRefGoogle Scholar
  62. 62.
    Dick, D. A. T. 1966. Cell Water. Butterworths, London, pp. 102–111.Google Scholar
  63. 63.
    Lea, E. J. A. 1963. Permeation through long narrow pores. J. Theor. Biol. 5:102–107.PubMedCrossRefGoogle Scholar
  64. 64.
    Levitt, D. G. 1974. A new theory of transport for cell membrane pores. I. General theory and application to red cell. Biochim. Bi-ophys. Acta 373:115–131.Google Scholar
  65. 65.
    Hebert, S. C., and T. E. Andreoli. 1980. Interactions of temperature and ADH on transport in cortical collecting tubules. Am. J. Physiol. 238:F470–F480.PubMedGoogle Scholar
  66. 66.
    Rosenberg, P. A., and A. Finkelstein. 1978. Interaction of ions and water in gramicidin A channels: Streaming potentials across lipid bilayer membranes. J. Gen. Physiol. 72:327–340.PubMedCrossRefGoogle Scholar
  67. 67.
    Rosenberg, P. A., and A. Finkelstein. 1978. Water permeability of gramicidin A-treated lipid bilayer membranes. J. Gen. Physiol. 72:341–350.PubMedCrossRefGoogle Scholar
  68. 68.
    O’Neil, R. G., and E. L. Boulpaep. 1979. Effect of amiloride on the apical cell membrane cation channels of sodium-absorbing, potassium-secreting renal epithelium. J. Membr. Biol. 50:365–387.PubMedCrossRefGoogle Scholar
  69. 69.
    Hebert, S. C., and T. E. Andreoli. 1982. Water movement across the mammalian cortical collecting duct. Kidney Int. 22:526–535.PubMedCrossRefGoogle Scholar
  70. 70.
    Hebert, S. C., and T. E. Andreoli. 1980. Interactions of temperature and ADH on transport processes in cortical collecting tubules: Evidence for ADH-induced narrow aqueous channels in apical membranes. Am. J. Physiol. 238:F470–F480.PubMedGoogle Scholar
  71. 71.
    Cohen, B.E. 1975. The permeability of liposomes to non-electrolytes. I. Activation energies for permeation. J. Membr. Biol. 20:205–234.PubMedCrossRefGoogle Scholar
  72. 72.
    Chevalier et al. 1974. Membrane-associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tissue Res. 152:129–140.PubMedCrossRefGoogle Scholar
  73. 73.
    Kachadorian, W. A., J. B. Wade, and V. A. DiScala. 1975. Vasopressin: Induced structural change in toad bladder luminal membranes. Science 190:67–69.PubMedCrossRefGoogle Scholar
  74. 74.
    Harmanci, M. C., P. Stem, W. A. Kachadorian, H. Valtin, and V. A. DiScala. 1980. Vasopressin and collecting duct intra-membranous particle clusters: A dose-response relationship. Am. J. Physiol. 239:F560–F564.PubMedGoogle Scholar
  75. 75.
    Harmanci, M. C., M. Lorenzen, and W. A. Kachadorian. 1982. Vasopressin-induced intramembranous particle aggregates in isolated rabbit collecting duct. Kidney Int. 21:275a.Google Scholar
  76. 76.
    Wade, J. B., D. L. Stetson, and S. A. Lewis. 1981. ADH action: Evidence for a membrane shuttle mechanism. Ann. N.Y. Acad. Sci. 372:106–117.PubMedCrossRefGoogle Scholar
  77. 77.
    Li, H-YS., L. G. Palmer, I. S. Edelman, and B. Lindeman. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to antidiuretic hormone. J. Membr. Biol. 64:77–89.PubMedCrossRefGoogle Scholar
  78. 78.
    Hebert, S. C., R. M. Culpepper, and T. E. Andreoli. 1981. NaCl transport in mouse medullary thick ascending limbs. III. Modulation of the ADH effect by peritubular osmolality. Am. J. Phvsiol. 241:F443–F451.Google Scholar
  79. 79.
    Orloff, J., J. S. Handler, and S. Bergstrom. 1965. Effect of prostaglandin (PGE) on the permeability response of the toad bladder to vasopressin, theophylline and adenosine 3′-5′-monophosphate. Nature (London) 205:397–398.CrossRefGoogle Scholar
  80. 80.
    Grantham, J. J., and J. Orloff. 1968. Effect of prostaglandin E1 on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′-5′-monophosphate and theophylline. J. Clin. Invest. 47:1154–1161.PubMedCrossRefGoogle Scholar
  81. 81.
    Handler, J. S. 1981. Vasopressin-prostaglandin interactions in the regulation of epithelial cell permeability to water. Kidney Int. 19:831–838.PubMedCrossRefGoogle Scholar
  82. 82.
    Beck, T. R., and M.J. Dunn. 1981. The relationship of antidiuretic hormone and renal protaglandins. Miner. Electrolyte Metab. 6:46–59.Google Scholar
  83. 83.
    Higashihara, E., J. B. Stokes, J. P. Kokko, W. B. Campbell, and T. D. DuBose. 1979. Cortical and papillary micropuncture examination of chloride transport in segments of the rat kidney during inhibition of prostaglandin production. J. Clin. Invest. 64:1277–1287.PubMedCrossRefGoogle Scholar
  84. 84.
    Kauker, M. L. 1977. Prostaglandin E2 effect from the luminal side on renal tubular 22Na efflux: Tracer microinjection studies. Proc. Soc. Exp. Biol. Med. 154:274–277.PubMedGoogle Scholar
  85. 85.
    Stokes, J. B. 1979. Effect of prostaglandin E2 on chloride transport across the rabbit thick ascending limb of Henle. J. Clin. Invest. 64:495–502.PubMedCrossRefGoogle Scholar
  86. 86.
    Culpepper, R. M., and T. E. Andreoli. 1983. Interactions among prostaglandin E2, antidiuretic hormone, and cyclic adenosine monophosphate in modulating CI absorption in single mouse medullary thick ascending limbs of Henle. J. Clin. Invest. 71:1588–1601.PubMedCrossRefGoogle Scholar
  87. 87.
    Torikai, S., and K. Kurokawa. 1983. Effect of PGE2 on vas-opressin-dependent cell cAMP in isolated single segments. Am. J. Physiol. 245:F58–F66.PubMedGoogle Scholar
  88. 88.
    Culpepper, R. M., and T. E. Andreoli. 1984. Prostaglandin E2 inhibition of vasopressin-stimulated NaCl transport in the mouse medullary thick ascending limb of Henle. Adv. Prostaglandin Thromboxane Leukotriene Res. in press.Google Scholar
  89. 89.
    Dominguez, J. H., F. Schüler, T. Brown, T. D. Pitts, and J. B. Puschett. 1984. Pertussigen reverses the inhibition of adenylate cyclase by prostaglandin E2 in the proximal nephron. Clin. Res. 32:445a.Google Scholar
  90. 90.
    Fejes-Töth, G., A. Magyer, and J. Walter. 1977. Renal response to vasopressin after inhibition of prostaglandin synthesis. Am. J. Physiol. 232:F416–F423.PubMedGoogle Scholar
  91. 91.
    Berl, T., A. Raz, H. Wald, J. Horowitz, and W. Czaczkes. 1977. Prostaglandin synthesis inhibition and the action of vasopressin: Studies in man and rat. Am. J. Physiol. 232:F529–F537.PubMedGoogle Scholar
  92. 92.
    Ganguli, M., L. Tobin, S. Azar, and M. O’Donnell. 1977. Evidence that prostaglandin synthesis inhibitors increase the concentration of sodium and chloride in rat renal medulla. Circ. Res. Suppl. 40:1135–1139.Google Scholar
  93. 93.
    Craven, P. A., and F. R. DeRubertis. 1981. Effects of vasopressin and urea on Ca2 +-calmodulin-dependent renal prostaglandin E. Am. J. Physiol. 241:F649–F658.PubMedGoogle Scholar
  94. 94.
    Finkelstein, A. 1974. Aqueous pores created in thin lipid membranes by the antibiotics nystatin, amphotericin B and gramicidin A: Implications for pores in plasma membranes. In: Drugs and Transport Processes. B. A. Callingham, ed. MacMillan, London, pp. 241–250.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Steven C. Hebert
    • 2
  • Thomas E. Andreoli
    • 1
  1. 1.Departments of Internal Medicine, and Physiology and Cell BiologyUniversity of Texas Medical SchoolHoustonUSA
  2. 2.Division of NephrologyUniversity of Texas Medical SchoolHoustonUSA

Personalised recommendations