Abstract
This chapter deals with an analysis of proximal tubular fluid and electrolyte transport. The proximal tubule of the mammalian kidney is the nephron site where the major portion, some two-thirds to three-fourths, of the filtered sodium salts is reabsorbed. The unique importance of this transport operation derives from the fact that this active, energy-consuming transport process provides the main driving force for transepithelial water movement/12) Thus, the maintenance of an adequate and constant extracellular fluid and plasma volume depends crucially on the integrity of the proximal tubular Na+ transport system. This is not to ignore the fact that distal portions of the nephron may enhance their rate of Na+ and fluid transport when Na+ and fluid escape proximal reabsorption, and that the fine adjustment of salt and water balance is regulated within the distal nephron. Nevertheless, it is at the proximal tubular level where the bulk of water, salts, and nonelectrolytes are normally retrieved from the filtrate.
Keywords
Proximal Tubule Basolateral Membrane Proximal Tubule Cell Proximal Convoluted Tubule Luminal MembranePreview
Unable to display preview. Download preview PDF.
References
- 1.Giebisch, G., and E. E. Windhager. 1973. Electrolyte transport across renal tubular membranes. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 315–376.Google Scholar
- 2.Giebisch, G., E. L. Boulpaep, and G. Whittembury. 1971. Electrolyte transport in kidney tubule cells. Proc. R. Soc. London Ser. B. 262:175–196.Google Scholar
- 3.Rector, F. C. 1973. Acidification of the urine. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 431–454.Google Scholar
- 4.Warnock, D. G., and F. C. Rector, Jr. 1981. Renal acidification mechanisms. In: The Kidney. B. M. Brenner and F. C. Rector, Jr., eds. Saunders, Philadelphia, pp. 440–494.Google Scholar
- 5.Aronson, P. S. 1983. Mechanisms of active H+ secretion in the proximal tubule. Am. J. Physiol. 245:F647–F659.PubMedGoogle Scholar
- 6.Ullrich, K. J. 1976. Renal tubular mechanisms of organic solute transport. Kidney Int. 9:172–188.CrossRefGoogle Scholar
- 7.Sacktor, B. 1982. Na+ gradient-dependent transport systems in renal proximal tubule brush border membrane vesicles. In: Membranes and Transport, Volume II. A. N. Martonosi, ed. Plenum Press, New York. pp. 197–206.Google Scholar
- 8.Aronson, P. S. 1981. Identifying secondary active solute transport in epithelia. Am. J. Physiol. 240:F1–F11.PubMedGoogle Scholar
- 9.Schultz, S. G. 1985. Cellular models of epithelial ion transport. This volume.Google Scholar
- 10.Schultz, S. G., and P. F. Curran. 1970. Coupled transport of sodium and organic solutes. Physiol. Rev. 50:637–718.PubMedGoogle Scholar
- 11.Shannon, J. A. 1938. The renal reabsorption and excretion of urea under conditions of extreme diuresis. Am. J. Physiol. 123:182–190.Google Scholar
- 12.Lassiter, W. E., M. Mylle, and C. W. Gottschalk. 1961. Micro-puncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am. J. Physiol. 200:1139–1147.PubMedGoogle Scholar
- 13.Frömter, E. 1979. Solute transport across epithelia: What can we learn from micropuncture studies on kidney tubules? J. Physiol. (London) 188:1–31.Google Scholar
- 14.Boulpaep, E. L. 1979. Electrophysiology of the kidney. In: Membrane Transport in Biology, Volume IV A. G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds. Springer-Verlag, Berlin, pp. 97–144.Google Scholar
- 15.Burg, M. B. 1981. Renal handling of sodium, chloride, water, amino acids, and glucose. In: The Kidney. B. M. Brenner and F. C. Rector, Jr., eds. Saunders, Philadelphia, pp. 328–370.Google Scholar
- 16.Whittembury, G., and F. A. Rawlins. 1971. Evidence of a para-cellular pathway for ion flow in the kidney proximal tubule: Elec-tronmicroscopic demonstration of lanthanum precipitate in the tight junction. Pfluegers Arch. 330:302–309.CrossRefGoogle Scholar
- 17.Whittembury, G., F. A. Rawlins, and E. L. Boulpaep. 1973. Paracellular pathway in kidney tubules: Electrophysiological and morphological evidence. In: Transport Mechanisms in Epithelia. H. H. Ussing and N. A. Thorn, eds. Academic Press, New York, pp. 577–588.Google Scholar
- 18.Rector, F. C., Jr. 1983. Sodium, bicarbonate and chloride absorption by the proximal tubule. Am. J. Physiol. 244:F461–F471.PubMedGoogle Scholar
- 19.Frömter, E., and K. Gessner. 1974. Free-flow profile along rat kidney proximal tubule. Pfluegers Arch. 351:69–83.CrossRefGoogle Scholar
- 20.Kaissling, B., and W. Kriz. 1979. Structural Analysis of the Rabbit Kidney. Springer-Verlag, Berlin.CrossRefGoogle Scholar
- 21.Welling, L. W., and D. J. Welling. 1976. Surface area of brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int. 9:385–394.PubMedCrossRefGoogle Scholar
- 22.Maunsbach, A. B., and E. L. Boulpaep. 1984. Quantitative ultra-structure and functional correlates in proximal tubule of Am-bystoma and Necturus. Am. J. Physiol. 246:F710–F724.PubMedGoogle Scholar
- 23.Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell. 1941. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134:580–595.Google Scholar
- 24.Gottschalk, C. W. 1963. Renal tubular function: Lessons from micropuncture. Harvey Lect. 58:99–123.PubMedGoogle Scholar
- 25.Le Grimellec, C., P. Poujeol, and C. de Ruffignac. 1975. Micro-puncture study along proximal convoluted tubule: Electrolyte re-absorption in first convolutions. Pfluegers Arch. 354:133–150.CrossRefGoogle Scholar
- 26.Walker, A. M., and C. L. Hudson. 1937. Reabsorption of glucose from the renal tubule in Amphibia and the action of phlorizin on it. Am. J. Physiol. 118:130–141.Google Scholar
- 27.Frohnert, P., B. Hohmann, R. Zwiebel, and K. Baumann. 1970. Free flow micropuncture studies of glucose transport in the rat nephron. Pfluegers Arch. 315:66–85.CrossRefGoogle Scholar
- 28.Bergeron, M., and F. Morel. 1969. Amino acid transport in rat renal tubules. Am. J. Physiol. 216:1139–1149.PubMedGoogle Scholar
- 29.Lingard, J., G. Rumrich, and J. S. Young. 1973. Reabsorption of L-glutamine and L-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: Evidence that the proximal tubule is not homogeneous. Pfluegers Arch. 342:1–12.CrossRefGoogle Scholar
- 30.Silbernagl, S. 1975. Renal transport of amino acids. Rev. Physiol. Biochem. Pharmacol. 74:105–167.PubMedGoogle Scholar
- 31.Hohmann, B., P. P. Frohnert, R. Kinne, and K. Baumann. 1974. Proximal tubular lactate transport in rat kidney: A micropuncture study. Kidney Int. 5:261–270.PubMedCrossRefGoogle Scholar
- 32.Baumann, K., C. de Rouffignac, N. Roinel, G. Rumrich, and K. J. Ullrich. 1975. Renal phosphate transport: Inhomogeneity of local proximal transport rates and sodium dependence. Pfluegers Arch. 356:287–297.CrossRefGoogle Scholar
- 33.McKeown, J., P. C. Brazy, and V. W. Dennis. 1979. Intrarenal heterogeneity for fluid, phosphate and glucose absorption in the rabbit. Am. J. Physiol. 234:F312–F318.Google Scholar
- 34.Ullrich, K. J., G. Rumrich, and K. Baumann. 1975. Renal proximal tubular buffer (glycodiazine) transport: Inhomogeneity of local transport dependence on sodium, effect of inhibitors and chronic adaptation. Pfluegers Arch. 357:140–163.Google Scholar
- 35.Jacobson, H. R., and J. P. Kokko. 1976. Intrinsic differences in various segments of the proximal convoluted tubule. J. Clin. Invest. 57:818–825.PubMedCrossRefGoogle Scholar
- 36.Gjöri, A. Z., J. M. Lindgard, and J. A. Young. 1974. Relation between active sodium transport and distance along the proximal convolutions of rat nephrons: Evidence for homogeneity of sodium transport. Pfluegers Arch. 348:205–210.CrossRefGoogle Scholar
- 37.Berry, C. A. 1982. Heterogeneity of tubular transport processes in the nephron. Annu. Rev. Physiol. 44:181–201.PubMedCrossRefGoogle Scholar
- 38.Jacobson, H. R. 1981. Functional segmentation of the mammalian nephron. Am. J. Physiol 241:F203–F218.PubMedGoogle Scholar
- 39.Barfuss, D. W., and J. A. Schafer. 1981. Differences in active and passive glucose transport along the proximal nephron. Am. J. Physiol. 240:F322–F332.Google Scholar
- 40.Barfuss, D. W., and J. A. Schafer. 1979. Active amino acid absorption by proximal convoluted and proximal straight tubules. Am. J. Physiol. 236:F149–162.Google Scholar
- 41.Burg, M., and N. Green. 1977. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. Am. J. Physiol. 233:F307–F314.PubMedGoogle Scholar
- 42.McKinney, T. D., and M. B. Burg. 1977. Bicarbonate and fluid absorption by renal proximal straight tubules. Kidney Int. 12:1–8.PubMedCrossRefGoogle Scholar
- 43.Schafer, J. A., S. L. Troutman, M. L. Watkins, and T. E. An-dreoli. 1978. Volume absorption in the pars recta. I. “Simple” active Na transport. Am. J. Physiol. 234:F332–F329.PubMedGoogle Scholar
- 44.Kawamura, S., M. Imai, D. W. Seldin, and J. P. Kokko. 1975. Characteristics of salt and water transport in superficial and jux-tamedullary straight segments of proximal tubules. J. Clin. Invest. 55:1269–1277.PubMedCrossRefGoogle Scholar
- 45.Biagi, B., T. Kubota, M. Sohtell, and G. Giebisch. 1981. Intracellular potentials in rabbit proximal tubules perfused in vitro. Am. J. Physiol. 240:F200–F210.PubMedGoogle Scholar
- 46.Katz, A. I., A. Doucet, and F. Morel. 1979. Na-K-ATPase activity along the rabbit, rat and mouse nephron. Am. J. Physiol. 237:F114–F120.PubMedGoogle Scholar
- 47.Garg, L., M. Knepper, and M. Burg. 1981. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am. J. Physiol 240:F536–F544.PubMedGoogle Scholar
- 48.Tune, B. M., M. B. Burg, and C. S. Patlak. 1969. Characteristics of p-amino hippurate transport in proximal renal tubules. Am. J. Physiol. 217:1057–1063.PubMedGoogle Scholar
- 49.Grantham, J., P. Qualizza, and R. Irwin. 1974. Net fluid secretion in proximal straight renal tubules in vitro: Role of PAH. Am. J. Physiol. 226:191–197.PubMedGoogle Scholar
- 50.Grantham, J., R. Irwin, P. Qualizza, D. Tucker, and F. Whittier. 1973. Fluid secretion in isolated proximal straight renal tubules: Effect of human uremic serum. J. Clin. Invest. 52:2441–2450.PubMedCrossRefGoogle Scholar
- 51.Jacobson, H. R., and J. P. Kokko. 1985. Intrarenal heterogeneity: Vascular and tubular. In: The Kidney: Normal and Abnormal function. D. Seldin and G. Giebisch, eds. Raven Press, New York, in press.Google Scholar
- 52.Horster, M., and K. Thurau. 1968. Micropuncture studies on the filtration of single superficial and juxtamedullary glomeruli in the rat kidney. Pfluegers Arch 301:162–181.CrossRefGoogle Scholar
- 53.Jamison, R. L., and J. B. Lacy. 1971. Effect of saline infusion on superficial and juxtamedullary nephrons in the rat. Am. J. Physiol. 221:690–697.PubMedGoogle Scholar
- 54.Jacobson, H. R. 1981. Effects of C02 and acetazolamide on bicarbonate and fluid transport in rabbit proximal tubules. Am. J. Physiol 240:F54–F62.PubMedGoogle Scholar
- 55.Berry, C. A. 1981. Electrical effects of acidification in the rabbit proximal convoluted tubule. Am. J. Physiol, 240:F459–F470.PubMedGoogle Scholar
- 56.Jacobson, H. R. 1979. Characteristics of volume reabsorption in rabbit superficial and juxtamedullary proximal convoluted tubules. J. Clin. Invest. 63:410–418.PubMedCrossRefGoogle Scholar
- 57.Giebisch, G. 1961. Measurements of electrical potential difference in perfused single proximal tubules in Necturus kidney. J. Gen. Physiol. 44:659–678.PubMedCrossRefGoogle Scholar
- 58.Koeppen, B. M., G. Giebisch, and B. A. Biagi. 1983. Elec-trophysiology of mammalian renal tubules: Inferences from intracellular microelectrode studies. Annu. Rev. Physiol 45:497–517.PubMedCrossRefGoogle Scholar
- 59.Laprade, R., and J. Cardinal. 1983. Liquid junctions and isolated proximal tubule transepithelial potentials. Am. J. Physiol. 244:F304–F319.PubMedGoogle Scholar
- 60.Seeley, J. F., and E. Chirito. 1975. Studies of the electrical potential difference in rat proximal tubules. Am. J. Physiol 229:72–80.Google Scholar
- 61.Barratt, L. J., F. C. Rector, J. P. Kokko, and D. W. Seldin. 1974. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J. Clin. Invest. 53:454–460.PubMedCrossRefGoogle Scholar
- 62.Burg, M. B., L. Isaacson, J. Grantham, and J. Orloff. 1968. Electrical properties of isolated perfused rabbit renal tubules. Am. J. Physiol 215:788–794.PubMedGoogle Scholar
- 63.Burg, M. B., and J. Orloff. 1970. Electrical potential difference across proximal convoluted tubules. Am. J. Physiol. 219:1714— 1716.Google Scholar
- 64.Kokko, J. P. 1973. Proximal tubular potential difference: Dependence on glucose, HC03 and amino acids. J. Clin. Invest. 52: 1362–1367.PubMedCrossRefGoogle Scholar
- 65.Burg, M., C. Patlak, N. Green, and D. Villey. 1976. The role of organic solutes in fluid absorption by renal proximal convoluted tubules. Am. J. Physiol 231:627–637.PubMedGoogle Scholar
- 66.Kokko, J., and F. C. Rector. 1971. Flow dependence of trans-tubular potential difference in isolated perfused segments of rabbit proximal convoluted tubule. J. Clin. Invest. 50:2745–2750.PubMedCrossRefGoogle Scholar
- 67.Frömter, E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomena. Pfluegers Arch. 393:179–189.CrossRefGoogle Scholar
- 68.Samarzija, I., B. T. Hinton, and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. II. Dependence on various transport parameters and inhibitors. Pfluegers Arch. 393:190–197.CrossRefGoogle Scholar
- 69.Samarzija, I., and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. III: Neutral amino acids. Pfluegers Arch. 393:199–200.CrossRefGoogle Scholar
- 70.Samarzija, I., and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. IV. Basic amino acids. Pfluegers Arch. 393:210–214.CrossRefGoogle Scholar
- 71.Samarzija, I., and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. V. Acidic amino acids. Pfluegers Arch. 393:215–221.CrossRefGoogle Scholar
- 72.Schafer, J. A., S. L. Troutman, and T. E. Andreoli. 1974. Isotonic volume reabsorption, transepithelial potential differences and ionic permeability properties in mammalian proximal straight tubules. J. Gen. Physiol. 64:582–607.PubMedCrossRefGoogle Scholar
- 73.Berry, C. A., D. G. Warnock, and F. C. Rector, Jr. 1978. Ion selectivity and proximal salt reabsorption. Am. J. Physiol. 235:F234–F245.PubMedGoogle Scholar
- 74.Warnock, D., and V. Yee. 1982. Anion permeabilities of the isolated perfused rabbit proximal tubule. Am. J. Physiol. 241.F395–F405.Google Scholar
- 75.Berry, C. A., and F. C. Rector, Jr. 1981. Active and passive sodium transport in the proximal tubule. Miner. Electrolyte Met-ab. 4:149–160.Google Scholar
- 76.Giebisch, G. H. 1956. Measurement of pH, chloride and inulin concentrations in proximal tubule fluid of Necturus. Am. J. Physiol. 185:171–175.PubMedGoogle Scholar
- 77.Montgomery, H., and J. A. Pierce. 1937. The site of acidification of the urine within the renal tubule of Amphibia. Am. J. Physiol. 118:114–152.Google Scholar
- 78.Maruyama, T., and T. Hoshi. 1972. The effect of d-glucose on the proximal electrical potential profile across the proximal tubule of newt kidney. Biochim. Biophys. Acta 282:214–225.PubMedCrossRefGoogle Scholar
- 79.Hoshi, T. 1976. Electrophysiological studies on amino acid transport across the luminal membrane of the proximal tubular cells of Triturus kidney. In: Amino Acid Transport and Uric Acid Transport. S. S. Silbernagl, F. Lang, and R. Greger, eds. Thieme, Stuttgart, pp. 96–103.Google Scholar
- 80.Aronson, P. S., and B. Sacktor. 1975. The Na+ gradient-dependent transport of d-glucose in renal brush border membranes. J. Biol. Chem. 250:6032–6039.PubMedGoogle Scholar
- 81.Kinne, R., H. Murer, E. Kinne-Saffran, M. Thees, and G. Sachs. 1975. Sugar transport by renal plasma membrane vesicles: Characterization of the systems in the brush-broder microvilli and the basal lateral plasma membranes. J. Membr. Biol. 21:375–395.CrossRefGoogle Scholar
- 82.Beck, J. C., and B. Sacktor. 1978. Membrane potential-sensitive fluorescence changes during Na+-dependent D-glucose transport in renal brush border membrane vesicles. J. Biol. Chem. 253:7158–7162.PubMedGoogle Scholar
- 83.Kleinzeller, A. 1976. Renal sugar transport systems and their specificity. In: Proceedings of the VI International Congress on Nephrology, Florence, 1975. Karger, Basel, pp. 130–133.Google Scholar
- 84.Turner, R. J., and A. Moran. 1982. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: Evidence from vesicle studies. Am. J. Physiol. 242:F406–F414.PubMedGoogle Scholar
- 85.Turner, R. J., and A. Moran. 1982. Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J. Membr. Biol 70:37–45.PubMedCrossRefGoogle Scholar
- 86.Turner, R. J., and A. Moran. 1982. Stoichiometric studies of the renal outer cortical brush border membrane D-glucose transporter. J. Membr. Biol. 67:73–80.PubMedCrossRefGoogle Scholar
- 87.Fass, S. J., M. R. Hammerman, and B. Sacktor. 1977. Transport of amino acids in renal brush border membrane vesicles: Uptake of the neutral amino acid L-alanine. J. Biol. Chem. 252:583–590.PubMedGoogle Scholar
- 88.Evers, J., H. Murer, and R. Kinne. 1976. Phenylalanine uptake in isolated renal brush border vesicles. Biochim. Biophys. Acta 426:598–615.PubMedCrossRefGoogle Scholar
- 89.Schell, R. E., B. R. Stevens, and E. M. Wright. 1983. Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush-border vesicles using a fluorescent dye. J. Physiol. (London) 335:307–318.Google Scholar
- 90.Sacktor, B., I. L. Rosenbloom, C. T. Liang, and L. Cheng. 1981. Sodium gradient-and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles. J. Membr. Biol. 60:63–71.PubMedCrossRefGoogle Scholar
- 91.Barfus, D. W., J. M. Mays, and J. A. Schafer. 1980. Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules. Am. J. Physiol. 238:F324–F333.Google Scholar
- 92.Silverman, M., P. Vinay, L. Shinobu, A. Gougoux, and G. Lemieux. 1981. Luminal and antiluminal transport of glutamine in dog kidney: Effect of metabolic acidosis. Kidney Int. 20:359–365.PubMedCrossRefGoogle Scholar
- 93.Barac-Nieto, M., H. Murer, and R. Kinne. 1980. Lactate-sodium cotransport in rat renal brush border membranes. Am. J. Physiol. 239:F496–F506.PubMedGoogle Scholar
- 94.Barac-Nieto, M., H. Murer, and R. Kinne. 1982. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex. Pfluegers Arch. 392:366–371.CrossRefGoogle Scholar
- 95.Wright, S. H., S. Krasne, I. Kippen, and E. M. Wright. 1981. Na +-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes: Effect on fluorescence of a potential-sensitive cyanine dye. Biochim. Biophys. Acta 640:767–778.PubMedCrossRefGoogle Scholar
- 96.Kragh-Hansen, U., K. E. Jorgensen, and M. I. Sheikh. 1982. The use of a potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Biochem. J. 208: 369–376.PubMedGoogle Scholar
- 97.Kahn, A. M., S. Branham, and E.J. Weinman. 1984. Mechanism of L-malate transport in rat renal basolateral membrane vesicles. Am. J. Physiol. 246:F779–F784.PubMedGoogle Scholar
- 98.Jorgensen, K. E., U. Kragh-Hansen, E. Roigaard-Petersen, and M. I. Sheikh. 1983. Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex. Am. J. Physiol. 244:F686–F695.PubMedGoogle Scholar
- 99.Hoffman, N., M. Thees, and R. Kinne. 1976. Phosphate transport by isolated renal brush border vesicles. Pfluegers Arch. 362:147–156.CrossRefGoogle Scholar
- 100.Burg, M., and N. Green. 1976. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit. Kidney Int. 10:221–228.PubMedCrossRefGoogle Scholar
- 101.Schafer, J. A., S. L. Troutman, and T. E. Andreoli. 1974. Isotonic volume reabsorption, transepithelial potential differences and ionic permeability properties in mammalian proximal straight tubules. J. Gen. Physiol. 64:582–607.PubMedCrossRefGoogle Scholar
- 102.Biagi, B., and G. Giebish. 1979. Temperature dependence of transepithelial potential in isolated perfused rabbit proximal tubule. Am. J. Physiol 236:F302–F310.PubMedGoogle Scholar
- 103.Boulpaep, E. L., and J. F. Seely. 1971. Electrophysiology of proximal and distal tubules in autoperfused dog kidney. Am. J. Physiol. 221:1084–1096.PubMedGoogle Scholar
- 104.Frömter, E., and K. Gessner. 1974. Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pfluegers Arch. 351:85–98.CrossRefGoogle Scholar
- 105.Seely, J. F. 1973. Variation in electrical resistance along length of rat proximal convoluted tubule. Am. J. Physiol. 225:48–57.PubMedGoogle Scholar
- 106.Grasset, E., P. Gunter-Smith, and S. G. Schultz. 1983. Effects of Na-coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes of Necturus small intestine. J. Membr. Biol. 71:89–94.PubMedCrossRefGoogle Scholar
- 107.Lau, K. R., R. L. Hudson, and S. G. Schultz. 1984. Cell swelling increases a barium-inhibitable, potassium conductance in the basolateral membrane of Necturus small intestine. Proc. Natl. Acad. Sci. USA 81:3591–3594.PubMedCrossRefGoogle Scholar
- 108.Cardinal, J., J. Y. LaPointe, and R. Laprade. 1984. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule. Am. J. Physiol. 247:F352–F364.PubMedGoogle Scholar
- 109.Matsumura, Y., B. Cohen, W. B. Guggino, and G. Giebisch. 1984. Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J. Membr. Biol. 79:153–161.PubMedCrossRefGoogle Scholar
- 110.Burckhardt, B. C., K. Sato, and E. Frömter. 1984. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. Pfluegers Arch. 401:34–42.CrossRefGoogle Scholar
- 111.Burckhardt, B. C., A. C. Cassola, and E. Frömter. 1984. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. II Exclusion of HCO3-effects on other ion permeabilities and of coupled electroneutral HCO3-transport. Pfluegers Arch. 401:43–51.CrossRefGoogle Scholar
- 112.Cardinal, J., M.D. Lutz, M.B. Burg, and J. Orloff. 1975.Lack of relationship of potential difference to fluid absorption in the proximal renal tubule. Kidney Int. 7:94–102.PubMedCrossRefGoogle Scholar
- 113.Lutz, M. D., J. Cardinal, and M. B. Burg. 1973. Electrical resistance of renal proximal tubule perfused in vitro. Am. J. Physiol. 225:729–734.PubMedGoogle Scholar
- 114.Wesson, L. G., and W. P. Anslow, Jr. 1948. Excretion of sodium and water during osmotic diuresis in the dog. Am. J. Physiol. 153:465–474.PubMedGoogle Scholar
- 115.Green, R., and G. Giebisch. 1975. Some ionic requirements of proximal tubular sodium transport: The role of bicarbonate and chloride. Am. J. Physiol. 229:1216–1226.PubMedGoogle Scholar
- 116.Erlij, D. 1976. Solute transport across isolated epithelia. Kidney Int. 9:76–87.PubMedCrossRefGoogle Scholar
- 117.Ussing, H. H., D. Erlij, and U. Lassen. 1974. Transport pathways in biological membranes. Annu. Rev. Physiol. 36:17–49.PubMedCrossRefGoogle Scholar
- 118.Ullrich, K. J., H. W. Radtke, and G. Rumrich. 1971. The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney. Pfluegers Arch. 330:149–161.CrossRefGoogle Scholar
- 119.Kokko, J., M. B. Burg, and J. Orloff. 1971. Characteristics of NaCl and water transport in the renal proximal tubule. J. Clin. Invest. 50:69–75.PubMedCrossRefGoogle Scholar
- 120.Giebisch, G., and E. E. Windhager. 1964. Renal tubular transfer of sodium chloride and potassium. Am. J. Med. 36:643–669.PubMedCrossRefGoogle Scholar
- 121.Windhager, E. E., G. Whittembury, D. E. Oken, H. J. Schatzmann, and A. K. Solomon. 1959. Single proximal tubules of the Necturus kidney. III. Dependence of H20 movement on NaCl concentration. Am. J. Physiol. 197:313–318.PubMedGoogle Scholar
- 122.Giebisch, G., R. M. Klose, G. Malnic, W. J. Sullivan, and E. E. Windhager. 1964. Sodium movement across single perfused tubules of rat kidney. J. Gen. Physiol. 47:1175–1194.PubMedCrossRefGoogle Scholar
- 123.Györy, A. Z., and R. Kinne. 1971. Energy source for trans-epithelial sodium transport in rat renal proximal tubules. Pfluegers Arch. 327:234–260.CrossRefGoogle Scholar
- 124.Green, R., E. E. Windhager, and G. Giebisch. 1974. Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Am. J. Physiol. 226:265–276.PubMedGoogle Scholar
- 125.Koefoed-Johnsen, V., and H. H. Ussing. 1958. The nature of the frog skin potential. Acta Physiol. Scand. 42:298–308.PubMedCrossRefGoogle Scholar
- 126.Giebisch, G., and E. E. Windhager. 1973. Electrolyte transport across renal tubular membranes. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 315–376.Google Scholar
- 127.Schultz, S. G. 1982. Homocellular regulatory mechanisms in sodium-transporting epithelia: An extension of the Koefoed-John-sen-Ussing model. Semin. Nephrol. 2:343–347.Google Scholar
- 128.Schultz, S. G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through.” Am. J. Physiol. 241:F579–F590.PubMedGoogle Scholar
- 129.Stroup, R. F., E. Weinman, J. P. Hayslett, and M. Kashgarian. 1974. Effect of luminal permeability on net transport across the amphibian proximal tubule. Am. J. Physiol. 212:1341–1349.Google Scholar
- 130.Spring, K. R., and G. Giebisch. 1977. Kinetics of Na+ transport in Necturus proximal tubule. J. Gen. Physiol. 70:307–328.PubMedCrossRefGoogle Scholar
- 131.Bentley, P. J. 1968. Action of amphotericin-B on the toad bladder: Evidence for sodium transport along two pathways. J. Physiol. (London) 196:703–711.Google Scholar
- 132.Finn, A. L. 1968. Separate effects of sodium and vasopressin on the sodium pump in toad bladder. Am. J. Physiol. 215:849–856.PubMedGoogle Scholar
- 133.Lichtenstein, N. S., and A. Leaf. 1966. Evidence for a double permeability barrier at the mucosal surface of the toad bladder. Ann. N.Y. Acad. Sci. 137:556–565.PubMedCrossRefGoogle Scholar
- 134.Mendoza, S. A., J. S. Handler, and J. Orloff. 1967. Effect of amphotericin-B on permeability and short-circuit current in toad bladder. Am. J. Phyisol. 213:1263–1268.Google Scholar
- 135.Spring, K. R., and G. Kimura. 1978. Chloride reabsorption by renal proximal tubules of Necturus. J. Membr. Biol. 38:233–254.PubMedCrossRefGoogle Scholar
- 136.Seifter, J. L., and P. S. Aronson. 1984. Cl-transport via anion exchange in Necturus renal microvillus membranes. Am. J. Physiol. 247:F888–F895.PubMedGoogle Scholar
- 137.Lucci, M. S., and D. G. Warnock. 1979. Effects of anion-trans-port inhibitors on NaCl reabsorption in the rat superficial proximal convoluted tubule. J. Clin. Invest. 64:570–579.PubMedCrossRefGoogle Scholar
- 138.Green, R., G. Giebisch, and J. H. V. Bishop. 1979. Ionic requirements of proximal tubular sodium transport. III. Selective luminal anion substitution. Am. J. Physiol. 236:F268–F277.PubMedGoogle Scholar
- 139.Giebisch, G., and R. Green. 1981. Anion-driven fluid movement across proximal tubular epithelium. In: Water Transport across Epithelia. H. H. Ussing, N. Bindsley, N. A. Lassen, and O. Sten-Knudsen, eds. Munksgaard, Copenhagen, pp. 376–385.Google Scholar
- 140.Murer, H., and R. Greger. 1982. Membrane transport in the proximal tubule and thick ascending limb of Henle’s loop: Mechanisms and their alterations. Klin. Wochenschr. 60:1103–1113.PubMedCrossRefGoogle Scholar
- 141.Oberleithner, H., G. Giebisch, F. Lang, and W. Wang. 1982. Cellular mechanism of the furosemide sensitive transport system in the kidney. Klin. Wochenschr. 60:1173–1179.PubMedCrossRefGoogle Scholar
- 142.Seifter, J. L., R. Knickelbein, and P. S. Aronson. 1984. Absence of Cl-OH exchange and NaCl cotransport in rabbit renal microvillus membrane vesicles. Am. J. Physiol. 247:F753–F759.PubMedGoogle Scholar
- 143.Kahn, A. M., and P. S. Aronson. 1983. Urate transport via anion exchange in dog renal microvillus membrane vesicles. Am. J. Physiol. 244:F56–F63.PubMedGoogle Scholar
- 144.Baum, M., and C. A. Berry. 1984. Evidence for neutral trans-cellular NaCl transport and neutral basolateral Cl-exit in rabbit proximal convoluted tubule. J. Clin. Invest. 74:205–211.PubMedCrossRefGoogle Scholar
- 145.Green, R., R. J. Moriarty, and G. Giebisch. 1981. Ionic requirements of proximal tubular fluid reabsorption. IV. Flow dependence of fluid transport. Kidney Int. 20:580–587.PubMedCrossRefGoogle Scholar
- 146.Cogan, M., and F. C. Rector, Jr. 1982. Determinants of proximal bicarbonate, chloride and water reabsorption during carbonic anhydrase inhibition. Am. J. Physiol. 242:F274–F284.PubMedGoogle Scholar
- 147.Frömter, E., and K. Gessner. 1975. Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule. Pfluegers Arch. 357:209–224.CrossRefGoogle Scholar
- 148.Warnock, D. G., and V. J. Yee. 1981. Chloride uptake by brush-border membrane vesicles isolated from rabbit renal cortex: Coupling to proton gradients and K + diffusion potentials. J. Clin. Invest. 67:103–115.PubMedCrossRefGoogle Scholar
- 149.Cassano, G., B. Stieger, and H. Murer. 1984. Na/H-and Cl/OH-exchange in rat jejunal and rat proximal tubular brush border membrane vesicles. Pfluegers Arch. 400:309–317.CrossRefGoogle Scholar
- 150.Sabolic, I., and G. Burckhardt. 1983. Proton pathways in rat renal brush-border and basolateral membranes. Biochim. Biophys. Acta 734:210–220.PubMedCrossRefGoogle Scholar
- 151.Schwartz, G. J. 1983. Absence of Cl−-OH− or C1−-HC03-exchange in the rabbit renal proximal tubule. Am. J. Physiol. 245: F462–F469.PubMedGoogle Scholar
- 152.Sasaki, S., Y. lino, T. Shiigai, and J. Takeuchi. 1984. Intracellular pH of isolated perfused rabbit proximal tubule: Effect of luminal and Na and Cl. Kidney Int. 25:282.Google Scholar
- 153.Karniski, L. P., and P. S. Aronson. 1985. Recycling of Formic acid: a mechanism of chloride transport across renal microvillus membrane vesicles. Proc. Vth European Colloquium on Renal Physiology (in press).Google Scholar
- 154.Walter, A., and J. Gutknecht. 1984. Monocarboxylic acid permeation through lipid bilayer membranes. J. Membr. Biol. 77:255–264.PubMedCrossRefGoogle Scholar
- 155.Cassola, A. C., M. Mollenhauer, and E. Fromter. 1983. The intracellular chloride activity of rat kidney proximal tubular cells. Pfluegers Arch. 399:259–265.CrossRefGoogle Scholar
- 156.Schafer, J. A., C. S. Patlak, and T. E. Andreoli. 1975. Acompo-nent of fluid absorption linked to passive ion flows in the superficial pars recta. J. Gen. Physiol. 66:445–471.PubMedCrossRefGoogle Scholar
- 157.Wright, E. M. 1984. Electrophysiology of plasma membrane vesicles. Am. J. Physiol. 246:F363–F372.PubMedGoogle Scholar
- 158.Meng, K. 1975. Comparison of the local effects of amiloride hydrochloride on the isotonic fluid absorption in the distal and proximal convoluted tubule. Pfluegers Arch. 356:91–99.Google Scholar
- 159.Messner, G., H. Oberleithner, and F. Lang. The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney. Pfluegers Arch, in preGoogle Scholar
- 160.Jorgensen, P. L. 1980. Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60:864–917.PubMedGoogle Scholar
- 161.Biagi, B. A., M. Sohtell, and G. Giebisch. 1981. Intracellular potassium activity in the rabbit proximal straight tubule. Am. J. Physiol. 241:F677–F686.PubMedGoogle Scholar
- 162.Proverbio, F., and G. Whittembury. 1975. Cell electrical potentials during enhanced sodium extrusion in guinea-pig cortex slices. J. Physiol. (London) 250:559–578.Google Scholar
- 163.Sackin, H., and E. L. Boulpaep. 1981. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rhe-ogenic transport. Am. J. Physiol. 241:F540–F555.PubMedGoogle Scholar
- 164.Sackin, H., and E. L. Boulpaep. 1983. Rheogenic transport in the renal proximal tubule. J. Gen. Physiol. 82:819–852.PubMedCrossRefGoogle Scholar
- 165.Cardinal, J., and D. Duchesneau. 1978. Effect of potassium on proximal tubular function. Am. J. Physiol. 234:F381–F385.PubMedGoogle Scholar
- 166.Warnock, D. G., R. Greger, P. B. Dunham, M. A. Benjamin, R. A. Frizzell, M. Field, K. R. Spring, H. E. Ives, P. S. Aronson, and J. Seifter. 1984. Ion transport processes in apical membranes of epithelia. Fed. Proc. 43:2473–2487.PubMedGoogle Scholar
- 167.Oberleithner, H., M. Ritter, F. Lang, and W. Guggino. 1983. Anthracene-9-carboxylic acid inhibits renal chloride reabsorption. Pfluegers Arch. 398:172–174.CrossRefGoogle Scholar
- 168.Guggino, W., E. Boulpaep, and G. Giebisch. 1982. Electrical properties of chloride transport across the Necturus proximal tubule. J. Membr. Biol. 65:185–196.PubMedCrossRefGoogle Scholar
- 169.Bello-Reuss, E. 1982. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J. Physiol. (London) 326:49–63.Google Scholar
- 170.Biagi, B. S., T. Kubota, M. Sohtell, and G. Giebisch. 1981. Intracellular potentials in rabbit proximal tubules perfused in vitro. Am. J. Physiol. 240:F200–F210.PubMedGoogle Scholar
- 171.Grassl, S. M., L. P. Karniski, and P. S. Aronson. 1985. Cl-HC03 exchange in rabbit renal cortical basolateral membrane vesicles. Kidney Int. 27:282.Google Scholar
- 172.Nakhoul, N. L., and W. F. Boron. 1985. Intracellular pH regulation in rabbit proximal straight tubules: Basolateral HC03 transport, Kidney Int. 27:286.Google Scholar
- 173.Reuss, L. 1983. Basolateral KCl co-transport in a NaCl-absorbing epithelium. Nature (London) 305:723–726.CrossRefGoogle Scholar
- 174.Mandel, L. J., and R. S. Balaban. 1981. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am. J. Physiol. 240:F357–F371.PubMedGoogle Scholar
- 175.Mandel, L. J. 1985. Bioenergetics of membrane transport processes. This volume.Google Scholar
- 176.Whittembury, G., and F. Proverbio. 1970. Two modes of Na extrusion in cells from guinea pig kidney cortex slices. Pfluegers Arch. 316:1–25.CrossRefGoogle Scholar
- 177.Proverbio, F., and J. R. DelCastillo. 1981. Na+-stimulated ATPase activities in kidney basal-lateral plasma membranes. Biochim. Biophys. Acta 646:99–108.PubMedCrossRefGoogle Scholar
- 178.DelCastillo, J. R., R. Marin, T, Proverbio, and F. Proverbio. 1982. Partial characterization of the ouabain-insensitive, Na +-stimulated ATPase activity of the kidney basal-lateral plasma membranes. Biochim. Biophys. Acta 692:61–68.CrossRefGoogle Scholar
- 179.Boumendil-Podevin, E. F., and R. A. Podevin. 1983. Effects of ATP on Na + transport and membrane potential in inside-out renal basolateral vesicles. Biochim. Biophys. Acta 728:39–49.PubMedCrossRefGoogle Scholar
- 180.Ross, B., A. Leaf, P. Silva, and F. H. Epstein. 1974. Na-K-ATPase in sodium transport by the perfused rat kidney. Am. J. Physiol. 226:624–629.PubMedGoogle Scholar
- 181.Gmaj, P., H. Murer, and R. Kinne. 1979. Calcium ion transport across plasma membranes isolated from rat kidney cortex. Bio-chem. J. 178:549–557.Google Scholar
- 182.Lee, C. O., A. Taylor, and E. E. Windhager. 1980. Cytosolic calicum ion activity in epithelial cells of Necturus kidney. Nature (London) 287:859–861.CrossRefGoogle Scholar
- 183.Lorenzen, M., C. O. Lee, and E. E. Windhager. 1984. Cytosolic Ca2 + and Na + activities in perfused proximal tubules of Necturus kidney. Am. J. Physiol. 247:F93–F102.PubMedGoogle Scholar
- 184.Taylor, A., and E. E. Wind ager. 1979. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236:F505–F512.PubMedGoogle Scholar
- 185.Kubota, T., B. A. Biagi, and G. Giebisch. 1983. Intracellular potassium activity measurements in single proximal tubules of Necturus kidney. J. Membr. Biol. 73:51–60.PubMedCrossRefGoogle Scholar
- 186.Schwartz, W., and H. Passow. 1983. Ca + +-activated K + channels in erythrocytes and excitable cells. Annu. Rev. Physiol. 45:359–374.CrossRefGoogle Scholar
- 187.Brown, C. D. A., and N. L. Simmons. 1982. K + transport in “tight” epithelial monolayers of MDCK cells: Evidence for calcium-activated K +-channel. Biochim. Biophys. Acta 690:95–102.PubMedCrossRefGoogle Scholar
- 188.Lorenzen, M., C. O. Lee, and E. E. Windhager. 1985. Effect of gramicidin and reduction of luminal [Na+] or cytosolic [Ca+ + ] on [Na+] activity in isolated perfused Necturus proximal tubule. Kidney Int. 27:315.Google Scholar
- 189.Wang, W., G. Messner, H. Oberleithner, and F. Lang. 1984. The effect of ouabain on intracellular activities of K +, Na +, Cl-, H + and Ca2+ in proximal tubules of frog kidneys. Pfluegers Arch. 401:6–13.CrossRefGoogle Scholar
- 190.Lang, F., G. Messner, W. Wang, and H. Oberleithner. 1983. Interaction of intracellular electrolytes and tubular transport. Klin. Wochenschr. 61:1029–1037.PubMedCrossRefGoogle Scholar
- 191.Boron, W. F., and E. L. Boulpaep. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Na-H exchange. J. Gen. Physiol. 81:29–52.PubMedCrossRefGoogle Scholar
- 192.Struyvenberg, A., R. B. Morrison, and A. S. Relman. 1968. Acid-base behavior of separated canine renal tubule cells. Am. J. Physiol. 214:1155–1162.PubMedGoogle Scholar
- 193.Murer, H., U. Hopfer, and R. Kinne. 1976. Sodium/proton anti-port in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154:597–604.PubMedGoogle Scholar
- 194.Kinsella, J. L., and P. S. Aronson. 1980. Properties of the Na +-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 238:F461–F469.PubMedGoogle Scholar
- 195.Cohen, D. E., K. A. Hruska, S. Klahr, and M. R. Hammerman. 1982. Increased Na +-H + exchange in brush border vesicles from dogs with renal failure. Am. J. Physiol. 243:F293–F299.Google Scholar
- 196.Kinsella, J. L., and P. S. Aronson. 1981. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 241:F374–F379.PubMedGoogle Scholar
- 197.Chaillet, J.R., and W.F. Boron. 1984. Intracellular pH regulation in rabbit proximal tubules studied with a pH-sensitive dye. Kidney Int. 25:273a.Google Scholar
- 198.Sacktor, B., and L. Cheng. 1981. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles: Effect of an intravesicular < extra vesicular proton gradient. J. Biol. Chem. 256:8080–8084.PubMedGoogle Scholar
- 199.Blomstedt, J. W., and P. S. Aronson. 1980. pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles. J. Clin. Invest. 65:931–934.PubMedCrossRefGoogle Scholar
- 200.Guggino, S. E., G. J. Martin, and P. S. Aronson. 1983. Specificity and modes of the anion exchanger in dog renal microvillus membranes. Am. J. Physiol. 244:F612–F621.PubMedGoogle Scholar
- 201.Kahn, A. M., S. Branham, and E. J. Weinman. 1983. Mechanism of urate and p-aminohippurate transport in rat microvillus membrane vesicles. Am. J. Physiol. 245:F151–F158.PubMedGoogle Scholar
- 202.Nord, E. P., S. H. Wright, I. Kippen, and E. M. Wright. 1983. Specificity of the Na +-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes. J. Membr. Biol. 72:213–221.PubMedCrossRefGoogle Scholar
- 203.Kinne-Saffran, E., and R. Kinne. 1974. Presence of bicarbonate stimulated ATPase in the brush border microvillus membranes of the proximal tubule. Proc. Soc. Exp. Biol. Med. 146:751–753.PubMedGoogle Scholar
- 204.Kinne-Saffran, E., and R. Kinne. 1979. Further evidence for the existence of an intrinsic bicarbonate-stimulated Mg2 +-ATPase in brush border membranes isolated from rat kidney cortex. J. Membr. Biol. 49:235–251.PubMedCrossRefGoogle Scholar
- 205.Kinne-Saffran, E., R. Beauwens, and R. Kinne. 1982. An ATP-driven proton pump in brush-border membranes from rat renal cortex. J. Membr. Biol. 64:67–76.PubMedCrossRefGoogle Scholar
- 206.Gimenez-Gallego, G., J. Benavides, M. L. Garcia, and F. Val-divieso. 1980. Occurrence of a reduced nicotinamide adenine di-nucleotide oxidase activity linked to a cytochrome system in renal brush border membranes. Biochemistry 19:4834–4839.PubMedCrossRefGoogle Scholar
- 207.Garcia, M. L., J. Benavides, G. Gimenez-Gallego, and F. Val-divieso. 1980. Coupling between reduced nicotinamide adenine dinucleotide oxidation and metabolite transport in renal brush border membrane vesicles. Biochemistry 19:4840–4843.PubMedCrossRefGoogle Scholar
- 208.Forgac, M., L. Cantley, B. Wiedenmann, L. Altstiel, and D. Branton. 1983. Clathrin-coated vesicles contain an ATP-depen-dent proton pump. Proc. Natl. Acad, Sci. USA 80:1300–1303.CrossRefGoogle Scholar
- 209.Stone, D. K., X,-S. Xie, and E. Racker. 1983. An ATP-driven proton pump in clathrin-coated vesicles. J. Biol. Chem. 258: 4059–4062.PubMedGoogle Scholar
- 210.Galloway, C. J., G. E. Dean, M. Marsh, G. Rudnick, and I. Mellman. 1983. Acidification of macrophage and fibroblast endo-cytic vesicles in vitro. Proc. Natl. Acad. Sci. USA 80:3334–3338.PubMedCrossRefGoogle Scholar
- 211.Schneider, D. 1981. ATP-dependent acidification of intact and disrupted lysosomes: Evidence for an ATP-driven proton pump. J. Biol. Chem. 256:3858–3864.PubMedGoogle Scholar
- 212.Rodman, J. S., D. Kerjaschki, E. Merisko, and M. G. Farquhar. 1984. Presence of an extensive clathrin coat on the apical plas-malemma of the rat kidney proximal tubule cell. J. Cell Biol. 98:1630–1636.PubMedCrossRefGoogle Scholar
- 213.Lang, F., P. Quehenberger, R. Greger, S. Silbernagl, and P. Stockinger. 1980. Evidence for a bicarbonate leak in the proximal tubule of the rat kidney. Pfluegers Arch. 386:239–244.CrossRefGoogle Scholar
- 214.Reenstra, W. W., D. G. Warnock, V. J. Yee, and J. G. Forte. 1981. Proton gradients in renal cortex brush-border membrane vesicles: Demonstration of a rheogenic proton flux with acridine orange. J. Biol. Chem. 256:11663–11666.PubMedGoogle Scholar
- 215.Costa Silva, V. L., S. S. Campiglia, M. de Mello Aires, G. Malnic, and G. Giebisch. 1981. Role of luminal buffers in renal tubular acidification. J. Membr. Biol. 63:13–24.CrossRefGoogle Scholar
- 216.Ganapathy, V., and F. H. Leibach. 1983. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. J. Biol. Chem. 258:14189–14192.PubMedGoogle Scholar
- 217.Nelson, P. J., G. E. Dean, P. S. Aronson, and G. Rudnick. 1983. Hydrogen ion co-transport by the renal brush border glutamate transporter. Biochemistry 22:5459–5463.PubMedCrossRefGoogle Scholar
- 218.Holohan, P. D., and C. R. Ross. 1983. Mechanisms of organic cation transport in kidney plasma membrane vesicles. 2. A pH studies. J. Pharmacol. Exp. Ther. 216:294–298.Google Scholar
- 219.Chantrelle, B., M. G. Cogan, and F. C. Rector, Jr. 1982. Evidence for coupled sodium/hydrogen exchange in the rat superficial proximal convoluted tubule. Pfluegers Arch. 395:186–189.CrossRefGoogle Scholar
- 220.Sasaki, S., C. A. Berry, and F. C. Rector, Jr. 1983. Effect of potassium concentration on bicarbonate reabsorption in the rabbit proximal convoluted tubule. Am. J. Physiol. 244.F122–F128.Google Scholar
- 221.Cohn, D. E., S. Klahr, and M. R. Hammerman. 1983. Metabolic acidosis and parathyroidectomy increase Na +-H + exchange in brush border vesicles. Am. J. Physiol. 245:F217–F222.PubMedGoogle Scholar
- 222.Seifter, J. L., and R. C. Harris. 1984. Chronic K depletion increases Na-H exchange in rat renal cortical brush-border membrane vesicles. Kidney Int. 25:282.Google Scholar
- 223.Freiberg, J. M., J. Kinsella, and B. Sacktor. 1982. Glucocorticoids increase the Na+-H+ exchange and decrease the Na + gradient-dependent phosphate-uptake systems in renal brush border membrane vesicles. Proc. Natl. Acad. Sci. USA 79:4932–4936.PubMedCrossRefGoogle Scholar
- 224.de Mello Aires, M., and G. Malnic. 1979. Sodium in renal tubular acidification kinetics. Am. J. Physiol. 236:F434–F441.Google Scholar
- 225.Green, R., and G. Giebisch. 1975. Some ionic requirements of proximal tubular sodium transport. II. The role of hydrogen ion secretion. Am. J. Physiol. 229:1205–1215.PubMedGoogle Scholar
- 226.Chan, Y. L., and G. Giebisch. 1981. Relationship between so-dium and bicarbonate transport in the rat proximal convoluted tubule. Am. J. Physiol. 240:F222–F230.PubMedGoogle Scholar
- 227.Ullrich, K. J., G. Capaso, G. Rumrich, F. Papavassiliou, and S. Kloss. 1977. Coupling between proximal tubular transport processes. Pfluegers Arch. 368:245–252.CrossRefGoogle Scholar
- 228.Bichara, M., M. Paillard, F. Leviel, A. Prigent, and J. P. Gardin. 1983. Na:H exchange and the primary H pump in the proximal tubule. Am. J. Physiol. 244:F165–F171.PubMedGoogle Scholar
- 229.Bichara, M., M. Paillard, F. Leviel, and J. P. Gardin. 1980. Hydrogen transport in rabbit kidney proximal tubules—Na:H exchange. Am. J. Physiol. 238:F445–F451.PubMedGoogle Scholar
- 230.Beck, F., R. Bauer, U. Bauer, J. Mason, A. Dorge, R. Rick, and K. Thurau. 1980. Electron microprobe analysis of intracellular elements in the kidney. Kidney Int. 17:756–763.PubMedCrossRefGoogle Scholar
- 231.Misanko, B. S., and S. Solomon. 1981. Activity of the HC03 −-stimulated ATPase in the acidotic rat kidney. Miner. Electrolyte Metab. 6:217–226.Google Scholar
- 232.Haase, W., A. Schafer, H. Murer, and R. Kinne. 1978. Studies on the orientation of brush-border membrane vesicles. Biochem. J. 172:57–62.PubMedGoogle Scholar
- 233.Boron, W. F., and E. L. Boulpaep. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Basolateral HCO3-transport. J. Gen. Physiol. 81:53–94.PubMedCrossRefGoogle Scholar
- 234.Kleinman, J. G., R. A. Ware, and J. H. Schwartz. 1981. Anion transport regulates intracellular pH in renal cortical tissue. Bio-chim. Biophys. Acta 648:87–92.CrossRefGoogle Scholar
- 235.Edelman, A., M. Bouthier, and T. Anagnostopoulos. 1981. Chloride distribution in the proximal convoluted tubule of Necturus kidney. J. Membr. Biol. 62:7–17.PubMedCrossRefGoogle Scholar
- 236.Low, I., T. Friedrich, and G. Burckhardt. 1984. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol. 246:F334–F342.PubMedGoogle Scholar
- 237.Ives, H. E., V. J. Yee, and D. G. Warnock. 1983. Asymmetric distribution of the Na + /H + antiporter in the renal proximal tubule epithelial cell. J. Biol. Chem. 258:13513–13516.PubMedGoogle Scholar
- 238.Pritchard, J.B., and J. L. Renfro. 1983. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc. Natl. Acad. Sci. USA 80:2603–2607.PubMedCrossRefGoogle Scholar
- 239.Guggino, W. B., R. London, E. L. Boulpaep, and G. Giabisch. 1983. Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: Dependence on bicarbonate and sodium. J. Membr. Biol. 71:227–240.PubMedCrossRefGoogle Scholar
- 240.Kleinman, J. G., W. W. Brown, R. A. Ware, and J. H. Schwartz. 1980. Cell pH and acid transport in renal cortical tissue. Am. J. Physiol. 239:F440–F444.PubMedGoogle Scholar
- 241.Sasaki, S., and C. A. Berry. 1984. Mechanism of bicarbonate exit across basolateral membrane of the rabbit proximal convoluted tubule. Am. J. Physiol. 246:F889–F896.PubMedGoogle Scholar
- 242.Frömter, E. 1974. Electrophysiology and isotonic fluid absorption of proximal tubules of mammalian kidney. In: MTP International Review of Science, Physiology Series I, Volume 6. K. Thurau, ed. Butterworths/University Park Press, Baltimore, pp. 1–38.Google Scholar
- 243.Frömter, E., and K. Gessner. 1974. Free flow potential profile along rat kidney proximal tubule. Pfluegers Arch. 351:69–84.CrossRefGoogle Scholar
- 244.Frömter, E., G. Rumrich, and K. J. Ullrich. 1973. Phénoménologie description of Na +, Cl−, and HCO3 − absorption from proximal tubules of the rat kidney. Pfluegers Arch. 343:189–220.CrossRefGoogle Scholar
- 245.Rector, F. C., M. Martinez-Maldonado, F. P. Brummer, and D. W. Seldin. 1966. Evidence for passive reabsorption of NaCl in proximal tubule of rat kidney. J. Clin. Invest. 45:1060.CrossRefGoogle Scholar
- 246.Kokko, J., F. C. Rector, Jr., and D. W. Seldin. 1970. Mechanism of salt and water reabsorption in proximal convoluted tubule (PCT). Proc. Am. Soc. Nephrol. 4:42.Google Scholar
- 247.Schafer, J. A., C. S. Patlak, and T. E. Andreoli. 1975. A component of fluid absorption linked to passive ion flows in the superficial pars recta. J. Gen. Physiol. 66:445–471.PubMedCrossRefGoogle Scholar
- 248.Schafer, J. A., S. L. Troutman, M. L. Watkins, and T. E. Andreoli. 1981. Flow dependence of fluid transport in the isolated superficial pars recta: Evidence that osmotic disequilibrium between external solutions drives isotonic fluid absorption. Kidney Int. 20:588–597.PubMedCrossRefGoogle Scholar
- 249.Green, R., R. J. Moriarty, and G. Giebisch. 1981. Ionic requirements of proximal tubular fluid reabsorption: Flow dependence of fluid transport. Kidney Int. 20:580–587.PubMedCrossRefGoogle Scholar
- 250.Chantrelle, B., and F. C. Rector, Jr. 1980. Active and passive components of volume resorption in rat superficial proximal tubules. Clin. Res. 28:441a.Google Scholar
- 251.Green, R., and G. Giebisch. 1975. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride. Am. J. Physiol. 229:1205–1215.PubMedGoogle Scholar
- 252.Green, R., and G. Giebisch. 1975. Some ionic requirements of proximal tubular sodium transport. II. The role of hydrogen ion secretion. Am. J. Physiol. 229:1216–1226.PubMedGoogle Scholar
- 253.Berry, C.A. 1983. Water permeability and pathways in the proximal tubule. Am. J. Physiol. 245:F275–F294.Google Scholar
- 254.Welling, L. W., D. J. Welling, and T. J. Ochs. 1983. Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule. Am. J. Physiol. 245:F123–F129.PubMedGoogle Scholar
- 255.Gonzalez, E., P. Carpi-Medina, and G. Whittembury. 1982. Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am. J. Physiol. 242:F321–F330.PubMedGoogle Scholar
- 256.Carpi-Medina, P., E. Gonzalez, and G. Whittembury. 1983. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am. J. Physiol. 244:F554–F563.PubMedGoogle Scholar
- 257.Gonzalez, E., P. Carpi-Medina, H. Linares, and G. Whittembury. 1984. Water osmotic permeability of the apical membrane of proximal straight tubular cells. Pfluegers Arch. 402:337–339.CrossRefGoogle Scholar
- 258.Whittembury, G. 1985. Mechanisms of epithelial solute-solvent coupling. In: The Kidney: Normal and Abnormal function. D. Seldin and G. Giebisch, eds. Raven Press, New York, pp. 199–214.Google Scholar
- 259.Spring, K. R., and A. C. Ericson. 1982. Epithelial cell volume modulation and regulation. J. Membr. Biol. 69:167–176.PubMedCrossRefGoogle Scholar
- 260.Quran, P. F., and J. R. Macintosh. 1962. A model system for biological water transport. Nature (London) 193:347–348.CrossRefGoogle Scholar
- 261.Curran, P. F. 1972. Solute-solvent interactions and water transport. In: Role of Membranes in Secretory Processes. L. Bolis, R. B. Keynes, and W. Wilbrandt, eds. American Else vier/North-Holland, Amsterdam, pp. 408–419.Google Scholar
- 262.Diamond, J. M., and W. H. Bossert. 1967. Standing gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50:2061–2083.PubMedCrossRefGoogle Scholar
- 263.Sackin, H., and E. L. Boulpaep. 1975. Models for coupling of salt and water transport: Proximal tubular reabsorption in Necturus kidney. J. Gen. Physiol. 66:671–733.PubMedCrossRefGoogle Scholar
- 264.Green, R., and G. Giebisch. 1984. Luminal hypotonicity: A driving force for fluid absorption from the proximal tubule. Am. J. Physiol. 246:F167–F174.PubMedGoogle Scholar
- 265.Barfuss, D. W., and J. A. Schafer. 1984. Rate of formation and composition of absorbate from proximal nephron segments. Am. J. Physiol. 249:F117–F129.Google Scholar
- 266.Barfuss, D. W., and J. A. Schafer. 1984. Hyperosmolality of absorbate from isolated rabbit proximal tubules. Am. J. Physiol. 247:F130–F139.PubMedGoogle Scholar
- 267.Weinstein, A. M., J. L. Stephenson, and K. R. Spring. 1981. The coupled transport of water. In: Membrane Transport. S. L. Bonting and J. J. H. H. M. dePont, eds. Elsevier/North-Holland, Amsterdam, pp. 311–351.CrossRefGoogle Scholar
- 268.Schafer, J. 1984. Mechanisms coupling the absorption of solutes and water in the proximal nephron. Kidney Int. 25:708–716.PubMedCrossRefGoogle Scholar
- 269.Ussing, H. H., N. Bindslev, N. A. Lassen, and O. Sten-Knudsen. 1981. Water Transport across Epithelia. Munksgaard, Copenhagen.Google Scholar
- 270.Whitlock, R. T., and H. O. Wheeler. 1964. Coupled transport of solute and water across rabbit gallbladder epithelium. J. Clin. Invest. 43:2249–2265.PubMedCrossRefGoogle Scholar
- 271.Schafer, J. A., C. S. Patlak, and T. E. Andreoli. 1975. A component of fluid absorption linked to passive flows in the superficial pars recta. J. Gen. Physiol. 60:445–471.CrossRefGoogle Scholar
- 272.Andreoli, T. E., and J. A. Schafer. 1979. Effective luminal hypotonicity: The driving force for isotonic proximal tubular fluid reab-sorption. Am. J. Physiol 236:F89–F96.PubMedGoogle Scholar
- 273.Welling, L. W., and D. J. Welling. 1976. Shape of epithelial cells and intercellular channels in the rabbit proximal tubule. Kidney Int. 9:385–394.PubMedCrossRefGoogle Scholar
- 274.Maunsbach, A. B., and E. L. Boulpaep. 1984. Quantitative ultra-structure and functional correlates in proximal tubule of Am-bystoma and Necturus. Am. J. Physiol. 246:F710–F724.PubMedGoogle Scholar
- 275.Bishop, J. H. V., R. Green, and S. Thomas. 1979. Free-flow reabsorption of glucose, sodium, osmoles, and water in rat proximal convoluted tubules. J. Physiol. (London) 288:331–351.Google Scholar
- 276.Liu, F. Y., M. G. Cogan, and F. C. Rector. 1984. Axial heterogeneity of anion and water transport and of osmotic water permeability along the rat superficial proximal convoluted tubule. Kidney Int. 25:308a.Google Scholar
- 277.Neumann, K. H., and F. C. Rector, Jr. 1976. Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney. J. Clin. Invest. 58:1110–1118.PubMedCrossRefGoogle Scholar
- 278.Jacobson, H. R., J. P. Kokko, D. W. Seldin, and C. Holmberg. 1982._Lack of solvent drag of NaCl and NaHC03 in rabbit proximal tubules. Am. J. Physiol. 243:F342–F348.PubMedGoogle Scholar
- 279.Corman, B., and A. DiStefano. 1983. Does water drag solute through kidney proximal tubule? Pfluegers Arch. 397:35–41.CrossRefGoogle Scholar
- 280.Persson, E., and H. R. Ulfendahl. 1970. Water permeability in rat proximal tubules. Acta Physiol. Scand. 78:353–363.PubMedCrossRefGoogle Scholar
- 280a.Whittembury, G., C. Verde-Martinez, H. Linas, and A. Paz-Aliage. 1980. Solvent drag of large solutes indicates paracellular water flow in leaky epithelia. Proc. R. Soc. London Ser. B 211: 63–81.CrossRefGoogle Scholar
- 281.Boulpaep, E. L., and S. Tripathi. 1984. Evidence for both paracellular and cellular water flow across the isolated perfused proximal tubule of the salamander Ambystoma tigrinum. Proc. Physiol. Soc. p. 83.Google Scholar
- 282.Lewy, J. E., and E. E. Windhager. 1968. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am. J. Phvs-iol. 214:943–954.Google Scholar
- 283.Weinstein, A. M., and E. E. Windhager. 1985. Sodium transport along the proximal tubule. In: The Kidney: Normal and Abnormal function. D. Seldin and G. Giebisch, eds. Raven Press, New York, pp. 1033–1062.Google Scholar
- 284.Windhager, E. E., J. E. Lewy, and A. Spitzer. 1969. Intrarenal control of proximal tubular reabsorption of sodium and water. Nephron 6:247–259.PubMedCrossRefGoogle Scholar
- 285.Windhager, E. E. 1973. Peritubular control of proximal tubular fluid reabsorption. In: Transport Mechanisms in Epithelia. H. H. Ussing and N. A. Thorn, eds. Academic Press, New York. pp. 596–606.Google Scholar
- 286.Chan, Y. L., G. Malnic, and G. Giebisch. 1983. Passive driving forces of proximal tubular fluid and bicarbonate transport: Gra-dient dependence of H + secretion. Am. J. Physiol. 245:F622–F633.PubMedGoogle Scholar
- 287.Grandchamp, A., and E. L. Boulpaep. 1974. Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule. J. Clin. Invest. 54:69–82.PubMedCrossRefGoogle Scholar
- 289.Boulpaep, E. L. 1972. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222:517–531.PubMedGoogle Scholar
- 290.Ott, C. E., J. A. Hass, J. L. Cuche, and F. G. Knox. 1975. Effect of increased peritubular protein concentration on proximal tubule reabsorption in the presence and absence of extracellular volume expansion. J. Clin. Invest. 55:612–620.PubMedCrossRefGoogle Scholar
- 291.Burg, M., C. Patlak, N. Green, and D. Villey. 1976. The role of organic solutes in fluid absorption by renal proximal convoluted tubules. Am. J. Physiol. 231:627–637.PubMedGoogle Scholar
- 292.Grantham, J. J., P. B. Qualizza, and L. W. Welling. 1972. Influences of serum proteins on net fluid reabsorption of isolated proximal tubular. Kidney Int. 2:66–75.PubMedCrossRefGoogle Scholar
- 293.Imai, M., and J. P. Kokko. 1972. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proximal tubules. J. Clin. Invest. 51:314–325.PubMedCrossRefGoogle Scholar
- 294.Berry, C., and M. Cogan. 1981. Influence of peritubular protein on solute absorption in the rabbit proximal tubule: A specific effect on NaCl transport. J. Clin. Invest. 68:506–516.PubMedCrossRefGoogle Scholar
- 295.Knox, F. G., J. I. Mertz, C. Burnett, Jr., and A. Horamati. 1983. Role of hydrostatic and oncotic pressures in renal sodium reab-sorption. Circ. Res. 52:491–500.PubMedGoogle Scholar
- 296.Ott, C. E. 1981. Effect of saline expansion on peritubular capillary pressures and reabsorption. Am. J. Physiol. 240:F106–F110.PubMedGoogle Scholar
- 297.Persson, A. E. G., J. Schnermann, B. Agerup, and N. E. Eriksson. 1975. The hydraulic conductivity of the rat proximal tubular wall determined with colloidal solution. Pfluegers Arch. 360:25–44.CrossRefGoogle Scholar
- 298.Schnermann, J. 1974. Physical forces and transtubular movement of solutes and water. In: MTP International Review of Science, Physiology Series I, Volume 6. K. Thurau, ed. Butter-worths/University Park Press, Baltimore, pp. 157–198.Google Scholar
- 299.Burg, M., and N. Green. 1976. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit. Kidney Int. 10:221–228.PubMedCrossRefGoogle Scholar
- 300.Györy, A. Z., and R. Kinne. 1971. Energy source for trans-epithelial sodium transport in rat renal proximal tubules. Pfluegers Arch. 327:234–260.CrossRefGoogle Scholar
- 301.Windhager, E. E., and G. Giebisch. 1976. Proximal sodium and fluid transport. Kidney Int. 9:121–133.PubMedCrossRefGoogle Scholar
- 302.Brenner, B. M., and J. L. Troy. 1971. Postglomerular vascular protein concentration: Evidence for a causal role in governing fluid reabsorption and glomerulotubular balance by the renal proximal tubule. J. Clin. Invest. 50:336–349.PubMedCrossRefGoogle Scholar
- 303.Brenner, B. M., J. L. Troy, and T. M. Daugharty. 1971. On the mechanism of inhibition of fluid reabsorption by the renal proximal tubule of the volume-expanded rat. J. Clin. Invest. 50:1596–1602.PubMedCrossRefGoogle Scholar
- 304.Lassiter, W. E. 1975. Kidney. Annu. Rev. Physiol. 37:371–393.PubMedCrossRefGoogle Scholar
- 305.Bartoli, E., J. C. Conger, and L. E. Earley. 1973. Effect of intraluminal flow on proximal tubular reabsorption. J. Clin. Invest. 52:843–849.PubMedCrossRefGoogle Scholar
- 306.Richardson, I. W., V. Licko, and E. Bartoli. 1973. The nature of passive flows through tightly folded membranes. J. Membr. Biol. 11:293–308.PubMedCrossRefGoogle Scholar
- 307.Alpern, R. J., M. G. Cogan, and F. C. Rector, Jr. 1983. Flow dependence of proximal tubular bicarbonate reabsorption. Am. J. Physiol. 245:F478–F484.PubMedGoogle Scholar
- 308.Marsh, D. J. 1981. Models of flow and pressure modulating is-osmotic reabsorption in mammalian proximal tubules. In: Physiology of Non-excitable Cells. J. Salanki, ed. Pergamon Press, Elmsford, N.Y. pp. 47–55.Google Scholar
- 309.Häberle, D. A., and H. von Baeyer. 1983. Characteristics of glomerulotubular balance. Am. J. Physiol. 244:F355–F366.PubMedGoogle Scholar