Advertisement

The Proximal Nephron

  • Gerhard Giebisch
  • Peter S. Aronson

Abstract

This chapter deals with an analysis of proximal tubular fluid and electrolyte transport. The proximal tubule of the mammalian kidney is the nephron site where the major portion, some two-thirds to three-fourths, of the filtered sodium salts is reabsorbed. The unique importance of this transport operation derives from the fact that this active, energy-consuming transport process provides the main driving force for transepithelial water movement/12) Thus, the maintenance of an adequate and constant extracellular fluid and plasma volume depends crucially on the integrity of the proximal tubular Na+ transport system. This is not to ignore the fact that distal portions of the nephron may enhance their rate of Na+ and fluid transport when Na+ and fluid escape proximal reabsorption, and that the fine adjustment of salt and water balance is regulated within the distal nephron. Nevertheless, it is at the proximal tubular level where the bulk of water, salts, and nonelectrolytes are normally retrieved from the filtrate.

Keywords

Proximal Tubule Basolateral Membrane Proximal Tubule Cell Proximal Convoluted Tubule Luminal Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Giebisch, G., and E. E. Windhager. 1973. Electrolyte transport across renal tubular membranes. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 315–376.Google Scholar
  2. 2.
    Giebisch, G., E. L. Boulpaep, and G. Whittembury. 1971. Electrolyte transport in kidney tubule cells. Proc. R. Soc. London Ser. B. 262:175–196.Google Scholar
  3. 3.
    Rector, F. C. 1973. Acidification of the urine. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 431–454.Google Scholar
  4. 4.
    Warnock, D. G., and F. C. Rector, Jr. 1981. Renal acidification mechanisms. In: The Kidney. B. M. Brenner and F. C. Rector, Jr., eds. Saunders, Philadelphia, pp. 440–494.Google Scholar
  5. 5.
    Aronson, P. S. 1983. Mechanisms of active H+ secretion in the proximal tubule. Am. J. Physiol. 245:F647–F659.PubMedGoogle Scholar
  6. 6.
    Ullrich, K. J. 1976. Renal tubular mechanisms of organic solute transport. Kidney Int. 9:172–188.CrossRefGoogle Scholar
  7. 7.
    Sacktor, B. 1982. Na+ gradient-dependent transport systems in renal proximal tubule brush border membrane vesicles. In: Membranes and Transport, Volume II. A. N. Martonosi, ed. Plenum Press, New York. pp. 197–206.Google Scholar
  8. 8.
    Aronson, P. S. 1981. Identifying secondary active solute transport in epithelia. Am. J. Physiol. 240:F1–F11.PubMedGoogle Scholar
  9. 9.
    Schultz, S. G. 1985. Cellular models of epithelial ion transport. This volume.Google Scholar
  10. 10.
    Schultz, S. G., and P. F. Curran. 1970. Coupled transport of sodium and organic solutes. Physiol. Rev. 50:637–718.PubMedGoogle Scholar
  11. 11.
    Shannon, J. A. 1938. The renal reabsorption and excretion of urea under conditions of extreme diuresis. Am. J. Physiol. 123:182–190.Google Scholar
  12. 12.
    Lassiter, W. E., M. Mylle, and C. W. Gottschalk. 1961. Micro-puncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am. J. Physiol. 200:1139–1147.PubMedGoogle Scholar
  13. 13.
    Frömter, E. 1979. Solute transport across epithelia: What can we learn from micropuncture studies on kidney tubules? J. Physiol. (London) 188:1–31.Google Scholar
  14. 14.
    Boulpaep, E. L. 1979. Electrophysiology of the kidney. In: Membrane Transport in Biology, Volume IV A. G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds. Springer-Verlag, Berlin, pp. 97–144.Google Scholar
  15. 15.
    Burg, M. B. 1981. Renal handling of sodium, chloride, water, amino acids, and glucose. In: The Kidney. B. M. Brenner and F. C. Rector, Jr., eds. Saunders, Philadelphia, pp. 328–370.Google Scholar
  16. 16.
    Whittembury, G., and F. A. Rawlins. 1971. Evidence of a para-cellular pathway for ion flow in the kidney proximal tubule: Elec-tronmicroscopic demonstration of lanthanum precipitate in the tight junction. Pfluegers Arch. 330:302–309.CrossRefGoogle Scholar
  17. 17.
    Whittembury, G., F. A. Rawlins, and E. L. Boulpaep. 1973. Paracellular pathway in kidney tubules: Electrophysiological and morphological evidence. In: Transport Mechanisms in Epithelia. H. H. Ussing and N. A. Thorn, eds. Academic Press, New York, pp. 577–588.Google Scholar
  18. 18.
    Rector, F. C., Jr. 1983. Sodium, bicarbonate and chloride absorption by the proximal tubule. Am. J. Physiol. 244:F461–F471.PubMedGoogle Scholar
  19. 19.
    Frömter, E., and K. Gessner. 1974. Free-flow profile along rat kidney proximal tubule. Pfluegers Arch. 351:69–83.CrossRefGoogle Scholar
  20. 20.
    Kaissling, B., and W. Kriz. 1979. Structural Analysis of the Rabbit Kidney. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  21. 21.
    Welling, L. W., and D. J. Welling. 1976. Surface area of brush border and lateral cell walls in the rabbit proximal nephron. Kidney Int. 9:385–394.PubMedCrossRefGoogle Scholar
  22. 22.
    Maunsbach, A. B., and E. L. Boulpaep. 1984. Quantitative ultra-structure and functional correlates in proximal tubule of Am-bystoma and Necturus. Am. J. Physiol. 246:F710–F724.PubMedGoogle Scholar
  23. 23.
    Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell. 1941. The collection and analysis of fluid from single nephrons of the mammalian kidney. Am. J. Physiol. 134:580–595.Google Scholar
  24. 24.
    Gottschalk, C. W. 1963. Renal tubular function: Lessons from micropuncture. Harvey Lect. 58:99–123.PubMedGoogle Scholar
  25. 25.
    Le Grimellec, C., P. Poujeol, and C. de Ruffignac. 1975. Micro-puncture study along proximal convoluted tubule: Electrolyte re-absorption in first convolutions. Pfluegers Arch. 354:133–150.CrossRefGoogle Scholar
  26. 26.
    Walker, A. M., and C. L. Hudson. 1937. Reabsorption of glucose from the renal tubule in Amphibia and the action of phlorizin on it. Am. J. Physiol. 118:130–141.Google Scholar
  27. 27.
    Frohnert, P., B. Hohmann, R. Zwiebel, and K. Baumann. 1970. Free flow micropuncture studies of glucose transport in the rat nephron. Pfluegers Arch. 315:66–85.CrossRefGoogle Scholar
  28. 28.
    Bergeron, M., and F. Morel. 1969. Amino acid transport in rat renal tubules. Am. J. Physiol. 216:1139–1149.PubMedGoogle Scholar
  29. 29.
    Lingard, J., G. Rumrich, and J. S. Young. 1973. Reabsorption of L-glutamine and L-histidine from various regions of the rat proximal convolution studied by stationary microperfusion: Evidence that the proximal tubule is not homogeneous. Pfluegers Arch. 342:1–12.CrossRefGoogle Scholar
  30. 30.
    Silbernagl, S. 1975. Renal transport of amino acids. Rev. Physiol. Biochem. Pharmacol. 74:105–167.PubMedGoogle Scholar
  31. 31.
    Hohmann, B., P. P. Frohnert, R. Kinne, and K. Baumann. 1974. Proximal tubular lactate transport in rat kidney: A micropuncture study. Kidney Int. 5:261–270.PubMedCrossRefGoogle Scholar
  32. 32.
    Baumann, K., C. de Rouffignac, N. Roinel, G. Rumrich, and K. J. Ullrich. 1975. Renal phosphate transport: Inhomogeneity of local proximal transport rates and sodium dependence. Pfluegers Arch. 356:287–297.CrossRefGoogle Scholar
  33. 33.
    McKeown, J., P. C. Brazy, and V. W. Dennis. 1979. Intrarenal heterogeneity for fluid, phosphate and glucose absorption in the rabbit. Am. J. Physiol. 234:F312–F318.Google Scholar
  34. 34.
    Ullrich, K. J., G. Rumrich, and K. Baumann. 1975. Renal proximal tubular buffer (glycodiazine) transport: Inhomogeneity of local transport dependence on sodium, effect of inhibitors and chronic adaptation. Pfluegers Arch. 357:140–163.Google Scholar
  35. 35.
    Jacobson, H. R., and J. P. Kokko. 1976. Intrinsic differences in various segments of the proximal convoluted tubule. J. Clin. Invest. 57:818–825.PubMedCrossRefGoogle Scholar
  36. 36.
    Gjöri, A. Z., J. M. Lindgard, and J. A. Young. 1974. Relation between active sodium transport and distance along the proximal convolutions of rat nephrons: Evidence for homogeneity of sodium transport. Pfluegers Arch. 348:205–210.CrossRefGoogle Scholar
  37. 37.
    Berry, C. A. 1982. Heterogeneity of tubular transport processes in the nephron. Annu. Rev. Physiol. 44:181–201.PubMedCrossRefGoogle Scholar
  38. 38.
    Jacobson, H. R. 1981. Functional segmentation of the mammalian nephron. Am. J. Physiol 241:F203–F218.PubMedGoogle Scholar
  39. 39.
    Barfuss, D. W., and J. A. Schafer. 1981. Differences in active and passive glucose transport along the proximal nephron. Am. J. Physiol. 240:F322–F332.Google Scholar
  40. 40.
    Barfuss, D. W., and J. A. Schafer. 1979. Active amino acid absorption by proximal convoluted and proximal straight tubules. Am. J. Physiol. 236:F149–162.Google Scholar
  41. 41.
    Burg, M., and N. Green. 1977. Bicarbonate transport by isolated perfused rabbit proximal convoluted tubules. Am. J. Physiol. 233:F307–F314.PubMedGoogle Scholar
  42. 42.
    McKinney, T. D., and M. B. Burg. 1977. Bicarbonate and fluid absorption by renal proximal straight tubules. Kidney Int. 12:1–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Schafer, J. A., S. L. Troutman, M. L. Watkins, and T. E. An-dreoli. 1978. Volume absorption in the pars recta. I. “Simple” active Na transport. Am. J. Physiol. 234:F332–F329.PubMedGoogle Scholar
  44. 44.
    Kawamura, S., M. Imai, D. W. Seldin, and J. P. Kokko. 1975. Characteristics of salt and water transport in superficial and jux-tamedullary straight segments of proximal tubules. J. Clin. Invest. 55:1269–1277.PubMedCrossRefGoogle Scholar
  45. 45.
    Biagi, B., T. Kubota, M. Sohtell, and G. Giebisch. 1981. Intracellular potentials in rabbit proximal tubules perfused in vitro. Am. J. Physiol. 240:F200–F210.PubMedGoogle Scholar
  46. 46.
    Katz, A. I., A. Doucet, and F. Morel. 1979. Na-K-ATPase activity along the rabbit, rat and mouse nephron. Am. J. Physiol. 237:F114–F120.PubMedGoogle Scholar
  47. 47.
    Garg, L., M. Knepper, and M. Burg. 1981. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am. J. Physiol 240:F536–F544.PubMedGoogle Scholar
  48. 48.
    Tune, B. M., M. B. Burg, and C. S. Patlak. 1969. Characteristics of p-amino hippurate transport in proximal renal tubules. Am. J. Physiol. 217:1057–1063.PubMedGoogle Scholar
  49. 49.
    Grantham, J., P. Qualizza, and R. Irwin. 1974. Net fluid secretion in proximal straight renal tubules in vitro: Role of PAH. Am. J. Physiol. 226:191–197.PubMedGoogle Scholar
  50. 50.
    Grantham, J., R. Irwin, P. Qualizza, D. Tucker, and F. Whittier. 1973. Fluid secretion in isolated proximal straight renal tubules: Effect of human uremic serum. J. Clin. Invest. 52:2441–2450.PubMedCrossRefGoogle Scholar
  51. 51.
    Jacobson, H. R., and J. P. Kokko. 1985. Intrarenal heterogeneity: Vascular and tubular. In: The Kidney: Normal and Abnormal function. D. Seldin and G. Giebisch, eds. Raven Press, New York, in press.Google Scholar
  52. 52.
    Horster, M., and K. Thurau. 1968. Micropuncture studies on the filtration of single superficial and juxtamedullary glomeruli in the rat kidney. Pfluegers Arch 301:162–181.CrossRefGoogle Scholar
  53. 53.
    Jamison, R. L., and J. B. Lacy. 1971. Effect of saline infusion on superficial and juxtamedullary nephrons in the rat. Am. J. Physiol. 221:690–697.PubMedGoogle Scholar
  54. 54.
    Jacobson, H. R. 1981. Effects of C02 and acetazolamide on bicarbonate and fluid transport in rabbit proximal tubules. Am. J. Physiol 240:F54–F62.PubMedGoogle Scholar
  55. 55.
    Berry, C. A. 1981. Electrical effects of acidification in the rabbit proximal convoluted tubule. Am. J. Physiol, 240:F459–F470.PubMedGoogle Scholar
  56. 56.
    Jacobson, H. R. 1979. Characteristics of volume reabsorption in rabbit superficial and juxtamedullary proximal convoluted tubules. J. Clin. Invest. 63:410–418.PubMedCrossRefGoogle Scholar
  57. 57.
    Giebisch, G. 1961. Measurements of electrical potential difference in perfused single proximal tubules in Necturus kidney. J. Gen. Physiol. 44:659–678.PubMedCrossRefGoogle Scholar
  58. 58.
    Koeppen, B. M., G. Giebisch, and B. A. Biagi. 1983. Elec-trophysiology of mammalian renal tubules: Inferences from intracellular microelectrode studies. Annu. Rev. Physiol 45:497–517.PubMedCrossRefGoogle Scholar
  59. 59.
    Laprade, R., and J. Cardinal. 1983. Liquid junctions and isolated proximal tubule transepithelial potentials. Am. J. Physiol. 244:F304–F319.PubMedGoogle Scholar
  60. 60.
    Seeley, J. F., and E. Chirito. 1975. Studies of the electrical potential difference in rat proximal tubules. Am. J. Physiol 229:72–80.Google Scholar
  61. 61.
    Barratt, L. J., F. C. Rector, J. P. Kokko, and D. W. Seldin. 1974. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J. Clin. Invest. 53:454–460.PubMedCrossRefGoogle Scholar
  62. 62.
    Burg, M. B., L. Isaacson, J. Grantham, and J. Orloff. 1968. Electrical properties of isolated perfused rabbit renal tubules. Am. J. Physiol 215:788–794.PubMedGoogle Scholar
  63. 63.
    Burg, M. B., and J. Orloff. 1970. Electrical potential difference across proximal convoluted tubules. Am. J. Physiol. 219:1714— 1716.Google Scholar
  64. 64.
    Kokko, J. P. 1973. Proximal tubular potential difference: Dependence on glucose, HC03 and amino acids. J. Clin. Invest. 52: 1362–1367.PubMedCrossRefGoogle Scholar
  65. 65.
    Burg, M., C. Patlak, N. Green, and D. Villey. 1976. The role of organic solutes in fluid absorption by renal proximal convoluted tubules. Am. J. Physiol 231:627–637.PubMedGoogle Scholar
  66. 66.
    Kokko, J., and F. C. Rector. 1971. Flow dependence of trans-tubular potential difference in isolated perfused segments of rabbit proximal convoluted tubule. J. Clin. Invest. 50:2745–2750.PubMedCrossRefGoogle Scholar
  67. 67.
    Frömter, E. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. I. Basic phenomena. Pfluegers Arch. 393:179–189.CrossRefGoogle Scholar
  68. 68.
    Samarzija, I., B. T. Hinton, and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. II. Dependence on various transport parameters and inhibitors. Pfluegers Arch. 393:190–197.CrossRefGoogle Scholar
  69. 69.
    Samarzija, I., and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. III: Neutral amino acids. Pfluegers Arch. 393:199–200.CrossRefGoogle Scholar
  70. 70.
    Samarzija, I., and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. IV. Basic amino acids. Pfluegers Arch. 393:210–214.CrossRefGoogle Scholar
  71. 71.
    Samarzija, I., and E. Frömter. 1982. Electrophysiological analysis of rat renal sugar and amino acid transport. V. Acidic amino acids. Pfluegers Arch. 393:215–221.CrossRefGoogle Scholar
  72. 72.
    Schafer, J. A., S. L. Troutman, and T. E. Andreoli. 1974. Isotonic volume reabsorption, transepithelial potential differences and ionic permeability properties in mammalian proximal straight tubules. J. Gen. Physiol. 64:582–607.PubMedCrossRefGoogle Scholar
  73. 73.
    Berry, C. A., D. G. Warnock, and F. C. Rector, Jr. 1978. Ion selectivity and proximal salt reabsorption. Am. J. Physiol. 235:F234–F245.PubMedGoogle Scholar
  74. 74.
    Warnock, D., and V. Yee. 1982. Anion permeabilities of the isolated perfused rabbit proximal tubule. Am. J. Physiol. 241.F395–F405.Google Scholar
  75. 75.
    Berry, C. A., and F. C. Rector, Jr. 1981. Active and passive sodium transport in the proximal tubule. Miner. Electrolyte Met-ab. 4:149–160.Google Scholar
  76. 76.
    Giebisch, G. H. 1956. Measurement of pH, chloride and inulin concentrations in proximal tubule fluid of Necturus. Am. J. Physiol. 185:171–175.PubMedGoogle Scholar
  77. 77.
    Montgomery, H., and J. A. Pierce. 1937. The site of acidification of the urine within the renal tubule of Amphibia. Am. J. Physiol. 118:114–152.Google Scholar
  78. 78.
    Maruyama, T., and T. Hoshi. 1972. The effect of d-glucose on the proximal electrical potential profile across the proximal tubule of newt kidney. Biochim. Biophys. Acta 282:214–225.PubMedCrossRefGoogle Scholar
  79. 79.
    Hoshi, T. 1976. Electrophysiological studies on amino acid transport across the luminal membrane of the proximal tubular cells of Triturus kidney. In: Amino Acid Transport and Uric Acid Transport. S. S. Silbernagl, F. Lang, and R. Greger, eds. Thieme, Stuttgart, pp. 96–103.Google Scholar
  80. 80.
    Aronson, P. S., and B. Sacktor. 1975. The Na+ gradient-dependent transport of d-glucose in renal brush border membranes. J. Biol. Chem. 250:6032–6039.PubMedGoogle Scholar
  81. 81.
    Kinne, R., H. Murer, E. Kinne-Saffran, M. Thees, and G. Sachs. 1975. Sugar transport by renal plasma membrane vesicles: Characterization of the systems in the brush-broder microvilli and the basal lateral plasma membranes. J. Membr. Biol. 21:375–395.CrossRefGoogle Scholar
  82. 82.
    Beck, J. C., and B. Sacktor. 1978. Membrane potential-sensitive fluorescence changes during Na+-dependent D-glucose transport in renal brush border membrane vesicles. J. Biol. Chem. 253:7158–7162.PubMedGoogle Scholar
  83. 83.
    Kleinzeller, A. 1976. Renal sugar transport systems and their specificity. In: Proceedings of the VI International Congress on Nephrology, Florence, 1975. Karger, Basel, pp. 130–133.Google Scholar
  84. 84.
    Turner, R. J., and A. Moran. 1982. Heterogeneity of sodium-dependent D-glucose transport sites along the proximal tubule: Evidence from vesicle studies. Am. J. Physiol. 242:F406–F414.PubMedGoogle Scholar
  85. 85.
    Turner, R. J., and A. Moran. 1982. Further studies of proximal tubular brush border membrane D-glucose transport heterogeneity. J. Membr. Biol 70:37–45.PubMedCrossRefGoogle Scholar
  86. 86.
    Turner, R. J., and A. Moran. 1982. Stoichiometric studies of the renal outer cortical brush border membrane D-glucose transporter. J. Membr. Biol. 67:73–80.PubMedCrossRefGoogle Scholar
  87. 87.
    Fass, S. J., M. R. Hammerman, and B. Sacktor. 1977. Transport of amino acids in renal brush border membrane vesicles: Uptake of the neutral amino acid L-alanine. J. Biol. Chem. 252:583–590.PubMedGoogle Scholar
  88. 88.
    Evers, J., H. Murer, and R. Kinne. 1976. Phenylalanine uptake in isolated renal brush border vesicles. Biochim. Biophys. Acta 426:598–615.PubMedCrossRefGoogle Scholar
  89. 89.
    Schell, R. E., B. R. Stevens, and E. M. Wright. 1983. Kinetics of sodium-dependent solute transport by rabbit renal and jejunal brush-border vesicles using a fluorescent dye. J. Physiol. (London) 335:307–318.Google Scholar
  90. 90.
    Sacktor, B., I. L. Rosenbloom, C. T. Liang, and L. Cheng. 1981. Sodium gradient-and sodium plus potassium gradient-dependent L-glutamate uptake in renal basolateral membrane vesicles. J. Membr. Biol. 60:63–71.PubMedCrossRefGoogle Scholar
  91. 91.
    Barfus, D. W., J. M. Mays, and J. A. Schafer. 1980. Peritubular uptake and transepithelial transport of glycine in isolated proximal tubules. Am. J. Physiol. 238:F324–F333.Google Scholar
  92. 92.
    Silverman, M., P. Vinay, L. Shinobu, A. Gougoux, and G. Lemieux. 1981. Luminal and antiluminal transport of glutamine in dog kidney: Effect of metabolic acidosis. Kidney Int. 20:359–365.PubMedCrossRefGoogle Scholar
  93. 93.
    Barac-Nieto, M., H. Murer, and R. Kinne. 1980. Lactate-sodium cotransport in rat renal brush border membranes. Am. J. Physiol. 239:F496–F506.PubMedGoogle Scholar
  94. 94.
    Barac-Nieto, M., H. Murer, and R. Kinne. 1982. Asymmetry in the transport of lactate by basolateral and brush border membranes of rat kidney cortex. Pfluegers Arch. 392:366–371.CrossRefGoogle Scholar
  95. 95.
    Wright, S. H., S. Krasne, I. Kippen, and E. M. Wright. 1981. Na +-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes: Effect on fluorescence of a potential-sensitive cyanine dye. Biochim. Biophys. Acta 640:767–778.PubMedCrossRefGoogle Scholar
  96. 96.
    Kragh-Hansen, U., K. E. Jorgensen, and M. I. Sheikh. 1982. The use of a potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Biochem. J. 208: 369–376.PubMedGoogle Scholar
  97. 97.
    Kahn, A. M., S. Branham, and E.J. Weinman. 1984. Mechanism of L-malate transport in rat renal basolateral membrane vesicles. Am. J. Physiol. 246:F779–F784.PubMedGoogle Scholar
  98. 98.
    Jorgensen, K. E., U. Kragh-Hansen, E. Roigaard-Petersen, and M. I. Sheikh. 1983. Citrate uptake by basolateral and luminal membrane vesicles from rabbit kidney cortex. Am. J. Physiol. 244:F686–F695.PubMedGoogle Scholar
  99. 99.
    Hoffman, N., M. Thees, and R. Kinne. 1976. Phosphate transport by isolated renal brush border vesicles. Pfluegers Arch. 362:147–156.CrossRefGoogle Scholar
  100. 100.
    Burg, M., and N. Green. 1976. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit. Kidney Int. 10:221–228.PubMedCrossRefGoogle Scholar
  101. 101.
    Schafer, J. A., S. L. Troutman, and T. E. Andreoli. 1974. Isotonic volume reabsorption, transepithelial potential differences and ionic permeability properties in mammalian proximal straight tubules. J. Gen. Physiol. 64:582–607.PubMedCrossRefGoogle Scholar
  102. 102.
    Biagi, B., and G. Giebish. 1979. Temperature dependence of transepithelial potential in isolated perfused rabbit proximal tubule. Am. J. Physiol 236:F302–F310.PubMedGoogle Scholar
  103. 103.
    Boulpaep, E. L., and J. F. Seely. 1971. Electrophysiology of proximal and distal tubules in autoperfused dog kidney. Am. J. Physiol. 221:1084–1096.PubMedGoogle Scholar
  104. 104.
    Frömter, E., and K. Gessner. 1974. Active transport potentials, membrane diffusion potentials and streaming potentials across rat kidney proximal tubule. Pfluegers Arch. 351:85–98.CrossRefGoogle Scholar
  105. 105.
    Seely, J. F. 1973. Variation in electrical resistance along length of rat proximal convoluted tubule. Am. J. Physiol. 225:48–57.PubMedGoogle Scholar
  106. 106.
    Grasset, E., P. Gunter-Smith, and S. G. Schultz. 1983. Effects of Na-coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes of Necturus small intestine. J. Membr. Biol. 71:89–94.PubMedCrossRefGoogle Scholar
  107. 107.
    Lau, K. R., R. L. Hudson, and S. G. Schultz. 1984. Cell swelling increases a barium-inhibitable, potassium conductance in the basolateral membrane of Necturus small intestine. Proc. Natl. Acad. Sci. USA 81:3591–3594.PubMedCrossRefGoogle Scholar
  108. 108.
    Cardinal, J., J. Y. LaPointe, and R. Laprade. 1984. Luminal and peritubular ionic substitutions and intracellular potential of the rabbit proximal convoluted tubule. Am. J. Physiol. 247:F352–F364.PubMedGoogle Scholar
  109. 109.
    Matsumura, Y., B. Cohen, W. B. Guggino, and G. Giebisch. 1984. Regulation of the basolateral potassium conductance of the Necturus proximal tubule. J. Membr. Biol. 79:153–161.PubMedCrossRefGoogle Scholar
  110. 110.
    Burckhardt, B. C., K. Sato, and E. Frömter. 1984. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. Pfluegers Arch. 401:34–42.CrossRefGoogle Scholar
  111. 111.
    Burckhardt, B. C., A. C. Cassola, and E. Frömter. 1984. Electrophysiological analysis of bicarbonate permeation across the peritubular cell membrane of rat kidney proximal tubule. II Exclusion of HCO3-effects on other ion permeabilities and of coupled electroneutral HCO3-transport. Pfluegers Arch. 401:43–51.CrossRefGoogle Scholar
  112. 112.
    Cardinal, J., M.D. Lutz, M.B. Burg, and J. Orloff. 1975.Lack of relationship of potential difference to fluid absorption in the proximal renal tubule. Kidney Int. 7:94–102.PubMedCrossRefGoogle Scholar
  113. 113.
    Lutz, M. D., J. Cardinal, and M. B. Burg. 1973. Electrical resistance of renal proximal tubule perfused in vitro. Am. J. Physiol. 225:729–734.PubMedGoogle Scholar
  114. 114.
    Wesson, L. G., and W. P. Anslow, Jr. 1948. Excretion of sodium and water during osmotic diuresis in the dog. Am. J. Physiol. 153:465–474.PubMedGoogle Scholar
  115. 115.
    Green, R., and G. Giebisch. 1975. Some ionic requirements of proximal tubular sodium transport: The role of bicarbonate and chloride. Am. J. Physiol. 229:1216–1226.PubMedGoogle Scholar
  116. 116.
    Erlij, D. 1976. Solute transport across isolated epithelia. Kidney Int. 9:76–87.PubMedCrossRefGoogle Scholar
  117. 117.
    Ussing, H. H., D. Erlij, and U. Lassen. 1974. Transport pathways in biological membranes. Annu. Rev. Physiol. 36:17–49.PubMedCrossRefGoogle Scholar
  118. 118.
    Ullrich, K. J., H. W. Radtke, and G. Rumrich. 1971. The role of bicarbonate and other buffers on isotonic fluid absorption in the proximal convolution of the rat kidney. Pfluegers Arch. 330:149–161.CrossRefGoogle Scholar
  119. 119.
    Kokko, J., M. B. Burg, and J. Orloff. 1971. Characteristics of NaCl and water transport in the renal proximal tubule. J. Clin. Invest. 50:69–75.PubMedCrossRefGoogle Scholar
  120. 120.
    Giebisch, G., and E. E. Windhager. 1964. Renal tubular transfer of sodium chloride and potassium. Am. J. Med. 36:643–669.PubMedCrossRefGoogle Scholar
  121. 121.
    Windhager, E. E., G. Whittembury, D. E. Oken, H. J. Schatzmann, and A. K. Solomon. 1959. Single proximal tubules of the Necturus kidney. III. Dependence of H20 movement on NaCl concentration. Am. J. Physiol. 197:313–318.PubMedGoogle Scholar
  122. 122.
    Giebisch, G., R. M. Klose, G. Malnic, W. J. Sullivan, and E. E. Windhager. 1964. Sodium movement across single perfused tubules of rat kidney. J. Gen. Physiol. 47:1175–1194.PubMedCrossRefGoogle Scholar
  123. 123.
    Györy, A. Z., and R. Kinne. 1971. Energy source for trans-epithelial sodium transport in rat renal proximal tubules. Pfluegers Arch. 327:234–260.CrossRefGoogle Scholar
  124. 124.
    Green, R., E. E. Windhager, and G. Giebisch. 1974. Protein oncotic pressure effects on proximal tubular fluid movement in the rat. Am. J. Physiol. 226:265–276.PubMedGoogle Scholar
  125. 125.
    Koefoed-Johnsen, V., and H. H. Ussing. 1958. The nature of the frog skin potential. Acta Physiol. Scand. 42:298–308.PubMedCrossRefGoogle Scholar
  126. 126.
    Giebisch, G., and E. E. Windhager. 1973. Electrolyte transport across renal tubular membranes. In: Handbook of Physiology, Section 8. J. Orloff and R. W. Berliner, eds. American Physiological Society, Washington, D.C. pp. 315–376.Google Scholar
  127. 127.
    Schultz, S. G. 1982. Homocellular regulatory mechanisms in sodium-transporting epithelia: An extension of the Koefoed-John-sen-Ussing model. Semin. Nephrol. 2:343–347.Google Scholar
  128. 128.
    Schultz, S. G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through.” Am. J. Physiol. 241:F579–F590.PubMedGoogle Scholar
  129. 129.
    Stroup, R. F., E. Weinman, J. P. Hayslett, and M. Kashgarian. 1974. Effect of luminal permeability on net transport across the amphibian proximal tubule. Am. J. Physiol. 212:1341–1349.Google Scholar
  130. 130.
    Spring, K. R., and G. Giebisch. 1977. Kinetics of Na+ transport in Necturus proximal tubule. J. Gen. Physiol. 70:307–328.PubMedCrossRefGoogle Scholar
  131. 131.
    Bentley, P. J. 1968. Action of amphotericin-B on the toad bladder: Evidence for sodium transport along two pathways. J. Physiol. (London) 196:703–711.Google Scholar
  132. 132.
    Finn, A. L. 1968. Separate effects of sodium and vasopressin on the sodium pump in toad bladder. Am. J. Physiol. 215:849–856.PubMedGoogle Scholar
  133. 133.
    Lichtenstein, N. S., and A. Leaf. 1966. Evidence for a double permeability barrier at the mucosal surface of the toad bladder. Ann. N.Y. Acad. Sci. 137:556–565.PubMedCrossRefGoogle Scholar
  134. 134.
    Mendoza, S. A., J. S. Handler, and J. Orloff. 1967. Effect of amphotericin-B on permeability and short-circuit current in toad bladder. Am. J. Phyisol. 213:1263–1268.Google Scholar
  135. 135.
    Spring, K. R., and G. Kimura. 1978. Chloride reabsorption by renal proximal tubules of Necturus. J. Membr. Biol. 38:233–254.PubMedCrossRefGoogle Scholar
  136. 136.
    Seifter, J. L., and P. S. Aronson. 1984. Cl-transport via anion exchange in Necturus renal microvillus membranes. Am. J. Physiol. 247:F888–F895.PubMedGoogle Scholar
  137. 137.
    Lucci, M. S., and D. G. Warnock. 1979. Effects of anion-trans-port inhibitors on NaCl reabsorption in the rat superficial proximal convoluted tubule. J. Clin. Invest. 64:570–579.PubMedCrossRefGoogle Scholar
  138. 138.
    Green, R., G. Giebisch, and J. H. V. Bishop. 1979. Ionic requirements of proximal tubular sodium transport. III. Selective luminal anion substitution. Am. J. Physiol. 236:F268–F277.PubMedGoogle Scholar
  139. 139.
    Giebisch, G., and R. Green. 1981. Anion-driven fluid movement across proximal tubular epithelium. In: Water Transport across Epithelia. H. H. Ussing, N. Bindsley, N. A. Lassen, and O. Sten-Knudsen, eds. Munksgaard, Copenhagen, pp. 376–385.Google Scholar
  140. 140.
    Murer, H., and R. Greger. 1982. Membrane transport in the proximal tubule and thick ascending limb of Henle’s loop: Mechanisms and their alterations. Klin. Wochenschr. 60:1103–1113.PubMedCrossRefGoogle Scholar
  141. 141.
    Oberleithner, H., G. Giebisch, F. Lang, and W. Wang. 1982. Cellular mechanism of the furosemide sensitive transport system in the kidney. Klin. Wochenschr. 60:1173–1179.PubMedCrossRefGoogle Scholar
  142. 142.
    Seifter, J. L., R. Knickelbein, and P. S. Aronson. 1984. Absence of Cl-OH exchange and NaCl cotransport in rabbit renal microvillus membrane vesicles. Am. J. Physiol. 247:F753–F759.PubMedGoogle Scholar
  143. 143.
    Kahn, A. M., and P. S. Aronson. 1983. Urate transport via anion exchange in dog renal microvillus membrane vesicles. Am. J. Physiol. 244:F56–F63.PubMedGoogle Scholar
  144. 144.
    Baum, M., and C. A. Berry. 1984. Evidence for neutral trans-cellular NaCl transport and neutral basolateral Cl-exit in rabbit proximal convoluted tubule. J. Clin. Invest. 74:205–211.PubMedCrossRefGoogle Scholar
  145. 145.
    Green, R., R. J. Moriarty, and G. Giebisch. 1981. Ionic requirements of proximal tubular fluid reabsorption. IV. Flow dependence of fluid transport. Kidney Int. 20:580–587.PubMedCrossRefGoogle Scholar
  146. 146.
    Cogan, M., and F. C. Rector, Jr. 1982. Determinants of proximal bicarbonate, chloride and water reabsorption during carbonic anhydrase inhibition. Am. J. Physiol. 242:F274–F284.PubMedGoogle Scholar
  147. 147.
    Frömter, E., and K. Gessner. 1975. Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule. Pfluegers Arch. 357:209–224.CrossRefGoogle Scholar
  148. 148.
    Warnock, D. G., and V. J. Yee. 1981. Chloride uptake by brush-border membrane vesicles isolated from rabbit renal cortex: Coupling to proton gradients and K + diffusion potentials. J. Clin. Invest. 67:103–115.PubMedCrossRefGoogle Scholar
  149. 149.
    Cassano, G., B. Stieger, and H. Murer. 1984. Na/H-and Cl/OH-exchange in rat jejunal and rat proximal tubular brush border membrane vesicles. Pfluegers Arch. 400:309–317.CrossRefGoogle Scholar
  150. 150.
    Sabolic, I., and G. Burckhardt. 1983. Proton pathways in rat renal brush-border and basolateral membranes. Biochim. Biophys. Acta 734:210–220.PubMedCrossRefGoogle Scholar
  151. 151.
    Schwartz, G. J. 1983. Absence of Cl−-OH− or C1−-HC03-exchange in the rabbit renal proximal tubule. Am. J. Physiol. 245: F462–F469.PubMedGoogle Scholar
  152. 152.
    Sasaki, S., Y. lino, T. Shiigai, and J. Takeuchi. 1984. Intracellular pH of isolated perfused rabbit proximal tubule: Effect of luminal and Na and Cl. Kidney Int. 25:282.Google Scholar
  153. 153.
    Karniski, L. P., and P. S. Aronson. 1985. Recycling of Formic acid: a mechanism of chloride transport across renal microvillus membrane vesicles. Proc. Vth European Colloquium on Renal Physiology (in press).Google Scholar
  154. 154.
    Walter, A., and J. Gutknecht. 1984. Monocarboxylic acid permeation through lipid bilayer membranes. J. Membr. Biol. 77:255–264.PubMedCrossRefGoogle Scholar
  155. 155.
    Cassola, A. C., M. Mollenhauer, and E. Fromter. 1983. The intracellular chloride activity of rat kidney proximal tubular cells. Pfluegers Arch. 399:259–265.CrossRefGoogle Scholar
  156. 156.
    Schafer, J. A., C. S. Patlak, and T. E. Andreoli. 1975. Acompo-nent of fluid absorption linked to passive ion flows in the superficial pars recta. J. Gen. Physiol. 66:445–471.PubMedCrossRefGoogle Scholar
  157. 157.
    Wright, E. M. 1984. Electrophysiology of plasma membrane vesicles. Am. J. Physiol. 246:F363–F372.PubMedGoogle Scholar
  158. 158.
    Meng, K. 1975. Comparison of the local effects of amiloride hydrochloride on the isotonic fluid absorption in the distal and proximal convoluted tubule. Pfluegers Arch. 356:91–99.Google Scholar
  159. 159.
    Messner, G., H. Oberleithner, and F. Lang. The effect of phenylalanine on the electrical properties of proximal tubule cells in the frog kidney. Pfluegers Arch, in preGoogle Scholar
  160. 160.
    Jorgensen, P. L. 1980. Sodium and potassium ion pump in kidney tubules. Physiol. Rev. 60:864–917.PubMedGoogle Scholar
  161. 161.
    Biagi, B. A., M. Sohtell, and G. Giebisch. 1981. Intracellular potassium activity in the rabbit proximal straight tubule. Am. J. Physiol. 241:F677–F686.PubMedGoogle Scholar
  162. 162.
    Proverbio, F., and G. Whittembury. 1975. Cell electrical potentials during enhanced sodium extrusion in guinea-pig cortex slices. J. Physiol. (London) 250:559–578.Google Scholar
  163. 163.
    Sackin, H., and E. L. Boulpaep. 1981. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rhe-ogenic transport. Am. J. Physiol. 241:F540–F555.PubMedGoogle Scholar
  164. 164.
    Sackin, H., and E. L. Boulpaep. 1983. Rheogenic transport in the renal proximal tubule. J. Gen. Physiol. 82:819–852.PubMedCrossRefGoogle Scholar
  165. 165.
    Cardinal, J., and D. Duchesneau. 1978. Effect of potassium on proximal tubular function. Am. J. Physiol. 234:F381–F385.PubMedGoogle Scholar
  166. 166.
    Warnock, D. G., R. Greger, P. B. Dunham, M. A. Benjamin, R. A. Frizzell, M. Field, K. R. Spring, H. E. Ives, P. S. Aronson, and J. Seifter. 1984. Ion transport processes in apical membranes of epithelia. Fed. Proc. 43:2473–2487.PubMedGoogle Scholar
  167. 167.
    Oberleithner, H., M. Ritter, F. Lang, and W. Guggino. 1983. Anthracene-9-carboxylic acid inhibits renal chloride reabsorption. Pfluegers Arch. 398:172–174.CrossRefGoogle Scholar
  168. 168.
    Guggino, W., E. Boulpaep, and G. Giebisch. 1982. Electrical properties of chloride transport across the Necturus proximal tubule. J. Membr. Biol. 65:185–196.PubMedCrossRefGoogle Scholar
  169. 169.
    Bello-Reuss, E. 1982. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule. J. Physiol. (London) 326:49–63.Google Scholar
  170. 170.
    Biagi, B. S., T. Kubota, M. Sohtell, and G. Giebisch. 1981. Intracellular potentials in rabbit proximal tubules perfused in vitro. Am. J. Physiol. 240:F200–F210.PubMedGoogle Scholar
  171. 171.
    Grassl, S. M., L. P. Karniski, and P. S. Aronson. 1985. Cl-HC03 exchange in rabbit renal cortical basolateral membrane vesicles. Kidney Int. 27:282.Google Scholar
  172. 172.
    Nakhoul, N. L., and W. F. Boron. 1985. Intracellular pH regulation in rabbit proximal straight tubules: Basolateral HC03 transport, Kidney Int. 27:286.Google Scholar
  173. 173.
    Reuss, L. 1983. Basolateral KCl co-transport in a NaCl-absorbing epithelium. Nature (London) 305:723–726.CrossRefGoogle Scholar
  174. 174.
    Mandel, L. J., and R. S. Balaban. 1981. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am. J. Physiol. 240:F357–F371.PubMedGoogle Scholar
  175. 175.
    Mandel, L. J. 1985. Bioenergetics of membrane transport processes. This volume.Google Scholar
  176. 176.
    Whittembury, G., and F. Proverbio. 1970. Two modes of Na extrusion in cells from guinea pig kidney cortex slices. Pfluegers Arch. 316:1–25.CrossRefGoogle Scholar
  177. 177.
    Proverbio, F., and J. R. DelCastillo. 1981. Na+-stimulated ATPase activities in kidney basal-lateral plasma membranes. Biochim. Biophys. Acta 646:99–108.PubMedCrossRefGoogle Scholar
  178. 178.
    DelCastillo, J. R., R. Marin, T, Proverbio, and F. Proverbio. 1982. Partial characterization of the ouabain-insensitive, Na +-stimulated ATPase activity of the kidney basal-lateral plasma membranes. Biochim. Biophys. Acta 692:61–68.CrossRefGoogle Scholar
  179. 179.
    Boumendil-Podevin, E. F., and R. A. Podevin. 1983. Effects of ATP on Na + transport and membrane potential in inside-out renal basolateral vesicles. Biochim. Biophys. Acta 728:39–49.PubMedCrossRefGoogle Scholar
  180. 180.
    Ross, B., A. Leaf, P. Silva, and F. H. Epstein. 1974. Na-K-ATPase in sodium transport by the perfused rat kidney. Am. J. Physiol. 226:624–629.PubMedGoogle Scholar
  181. 181.
    Gmaj, P., H. Murer, and R. Kinne. 1979. Calcium ion transport across plasma membranes isolated from rat kidney cortex. Bio-chem. J. 178:549–557.Google Scholar
  182. 182.
    Lee, C. O., A. Taylor, and E. E. Windhager. 1980. Cytosolic calicum ion activity in epithelial cells of Necturus kidney. Nature (London) 287:859–861.CrossRefGoogle Scholar
  183. 183.
    Lorenzen, M., C. O. Lee, and E. E. Windhager. 1984. Cytosolic Ca2 + and Na + activities in perfused proximal tubules of Necturus kidney. Am. J. Physiol. 247:F93–F102.PubMedGoogle Scholar
  184. 184.
    Taylor, A., and E. E. Wind ager. 1979. Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport. Am. J. Physiol. 236:F505–F512.PubMedGoogle Scholar
  185. 185.
    Kubota, T., B. A. Biagi, and G. Giebisch. 1983. Intracellular potassium activity measurements in single proximal tubules of Necturus kidney. J. Membr. Biol. 73:51–60.PubMedCrossRefGoogle Scholar
  186. 186.
    Schwartz, W., and H. Passow. 1983. Ca + +-activated K + channels in erythrocytes and excitable cells. Annu. Rev. Physiol. 45:359–374.CrossRefGoogle Scholar
  187. 187.
    Brown, C. D. A., and N. L. Simmons. 1982. K + transport in “tight” epithelial monolayers of MDCK cells: Evidence for calcium-activated K +-channel. Biochim. Biophys. Acta 690:95–102.PubMedCrossRefGoogle Scholar
  188. 188.
    Lorenzen, M., C. O. Lee, and E. E. Windhager. 1985. Effect of gramicidin and reduction of luminal [Na+] or cytosolic [Ca+ + ] on [Na+] activity in isolated perfused Necturus proximal tubule. Kidney Int. 27:315.Google Scholar
  189. 189.
    Wang, W., G. Messner, H. Oberleithner, and F. Lang. 1984. The effect of ouabain on intracellular activities of K +, Na +, Cl-, H + and Ca2+ in proximal tubules of frog kidneys. Pfluegers Arch. 401:6–13.CrossRefGoogle Scholar
  190. 190.
    Lang, F., G. Messner, W. Wang, and H. Oberleithner. 1983. Interaction of intracellular electrolytes and tubular transport. Klin. Wochenschr. 61:1029–1037.PubMedCrossRefGoogle Scholar
  191. 191.
    Boron, W. F., and E. L. Boulpaep. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Na-H exchange. J. Gen. Physiol. 81:29–52.PubMedCrossRefGoogle Scholar
  192. 192.
    Struyvenberg, A., R. B. Morrison, and A. S. Relman. 1968. Acid-base behavior of separated canine renal tubule cells. Am. J. Physiol. 214:1155–1162.PubMedGoogle Scholar
  193. 193.
    Murer, H., U. Hopfer, and R. Kinne. 1976. Sodium/proton anti-port in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154:597–604.PubMedGoogle Scholar
  194. 194.
    Kinsella, J. L., and P. S. Aronson. 1980. Properties of the Na +-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 238:F461–F469.PubMedGoogle Scholar
  195. 195.
    Cohen, D. E., K. A. Hruska, S. Klahr, and M. R. Hammerman. 1982. Increased Na +-H + exchange in brush border vesicles from dogs with renal failure. Am. J. Physiol. 243:F293–F299.Google Scholar
  196. 196.
    Kinsella, J. L., and P. S. Aronson. 1981. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 241:F374–F379.PubMedGoogle Scholar
  197. 197.
    Chaillet, J.R., and W.F. Boron. 1984. Intracellular pH regulation in rabbit proximal tubules studied with a pH-sensitive dye. Kidney Int. 25:273a.Google Scholar
  198. 198.
    Sacktor, B., and L. Cheng. 1981. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles: Effect of an intravesicular < extra vesicular proton gradient. J. Biol. Chem. 256:8080–8084.PubMedGoogle Scholar
  199. 199.
    Blomstedt, J. W., and P. S. Aronson. 1980. pH gradient-stimulated transport of urate and p-aminohippurate in dog renal microvillus membrane vesicles. J. Clin. Invest. 65:931–934.PubMedCrossRefGoogle Scholar
  200. 200.
    Guggino, S. E., G. J. Martin, and P. S. Aronson. 1983. Specificity and modes of the anion exchanger in dog renal microvillus membranes. Am. J. Physiol. 244:F612–F621.PubMedGoogle Scholar
  201. 201.
    Kahn, A. M., S. Branham, and E. J. Weinman. 1983. Mechanism of urate and p-aminohippurate transport in rat microvillus membrane vesicles. Am. J. Physiol. 245:F151–F158.PubMedGoogle Scholar
  202. 202.
    Nord, E. P., S. H. Wright, I. Kippen, and E. M. Wright. 1983. Specificity of the Na +-dependent monocarboxylic acid transport pathway in rabbit renal brush border membranes. J. Membr. Biol. 72:213–221.PubMedCrossRefGoogle Scholar
  203. 203.
    Kinne-Saffran, E., and R. Kinne. 1974. Presence of bicarbonate stimulated ATPase in the brush border microvillus membranes of the proximal tubule. Proc. Soc. Exp. Biol. Med. 146:751–753.PubMedGoogle Scholar
  204. 204.
    Kinne-Saffran, E., and R. Kinne. 1979. Further evidence for the existence of an intrinsic bicarbonate-stimulated Mg2 +-ATPase in brush border membranes isolated from rat kidney cortex. J. Membr. Biol. 49:235–251.PubMedCrossRefGoogle Scholar
  205. 205.
    Kinne-Saffran, E., R. Beauwens, and R. Kinne. 1982. An ATP-driven proton pump in brush-border membranes from rat renal cortex. J. Membr. Biol. 64:67–76.PubMedCrossRefGoogle Scholar
  206. 206.
    Gimenez-Gallego, G., J. Benavides, M. L. Garcia, and F. Val-divieso. 1980. Occurrence of a reduced nicotinamide adenine di-nucleotide oxidase activity linked to a cytochrome system in renal brush border membranes. Biochemistry 19:4834–4839.PubMedCrossRefGoogle Scholar
  207. 207.
    Garcia, M. L., J. Benavides, G. Gimenez-Gallego, and F. Val-divieso. 1980. Coupling between reduced nicotinamide adenine dinucleotide oxidation and metabolite transport in renal brush border membrane vesicles. Biochemistry 19:4840–4843.PubMedCrossRefGoogle Scholar
  208. 208.
    Forgac, M., L. Cantley, B. Wiedenmann, L. Altstiel, and D. Branton. 1983. Clathrin-coated vesicles contain an ATP-depen-dent proton pump. Proc. Natl. Acad, Sci. USA 80:1300–1303.CrossRefGoogle Scholar
  209. 209.
    Stone, D. K., X,-S. Xie, and E. Racker. 1983. An ATP-driven proton pump in clathrin-coated vesicles. J. Biol. Chem. 258: 4059–4062.PubMedGoogle Scholar
  210. 210.
    Galloway, C. J., G. E. Dean, M. Marsh, G. Rudnick, and I. Mellman. 1983. Acidification of macrophage and fibroblast endo-cytic vesicles in vitro. Proc. Natl. Acad. Sci. USA 80:3334–3338.PubMedCrossRefGoogle Scholar
  211. 211.
    Schneider, D. 1981. ATP-dependent acidification of intact and disrupted lysosomes: Evidence for an ATP-driven proton pump. J. Biol. Chem. 256:3858–3864.PubMedGoogle Scholar
  212. 212.
    Rodman, J. S., D. Kerjaschki, E. Merisko, and M. G. Farquhar. 1984. Presence of an extensive clathrin coat on the apical plas-malemma of the rat kidney proximal tubule cell. J. Cell Biol. 98:1630–1636.PubMedCrossRefGoogle Scholar
  213. 213.
    Lang, F., P. Quehenberger, R. Greger, S. Silbernagl, and P. Stockinger. 1980. Evidence for a bicarbonate leak in the proximal tubule of the rat kidney. Pfluegers Arch. 386:239–244.CrossRefGoogle Scholar
  214. 214.
    Reenstra, W. W., D. G. Warnock, V. J. Yee, and J. G. Forte. 1981. Proton gradients in renal cortex brush-border membrane vesicles: Demonstration of a rheogenic proton flux with acridine orange. J. Biol. Chem. 256:11663–11666.PubMedGoogle Scholar
  215. 215.
    Costa Silva, V. L., S. S. Campiglia, M. de Mello Aires, G. Malnic, and G. Giebisch. 1981. Role of luminal buffers in renal tubular acidification. J. Membr. Biol. 63:13–24.CrossRefGoogle Scholar
  216. 216.
    Ganapathy, V., and F. H. Leibach. 1983. Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit. J. Biol. Chem. 258:14189–14192.PubMedGoogle Scholar
  217. 217.
    Nelson, P. J., G. E. Dean, P. S. Aronson, and G. Rudnick. 1983. Hydrogen ion co-transport by the renal brush border glutamate transporter. Biochemistry 22:5459–5463.PubMedCrossRefGoogle Scholar
  218. 218.
    Holohan, P. D., and C. R. Ross. 1983. Mechanisms of organic cation transport in kidney plasma membrane vesicles. 2. A pH studies. J. Pharmacol. Exp. Ther. 216:294–298.Google Scholar
  219. 219.
    Chantrelle, B., M. G. Cogan, and F. C. Rector, Jr. 1982. Evidence for coupled sodium/hydrogen exchange in the rat superficial proximal convoluted tubule. Pfluegers Arch. 395:186–189.CrossRefGoogle Scholar
  220. 220.
    Sasaki, S., C. A. Berry, and F. C. Rector, Jr. 1983. Effect of potassium concentration on bicarbonate reabsorption in the rabbit proximal convoluted tubule. Am. J. Physiol. 244.F122–F128.Google Scholar
  221. 221.
    Cohn, D. E., S. Klahr, and M. R. Hammerman. 1983. Metabolic acidosis and parathyroidectomy increase Na +-H + exchange in brush border vesicles. Am. J. Physiol. 245:F217–F222.PubMedGoogle Scholar
  222. 222.
    Seifter, J. L., and R. C. Harris. 1984. Chronic K depletion increases Na-H exchange in rat renal cortical brush-border membrane vesicles. Kidney Int. 25:282.Google Scholar
  223. 223.
    Freiberg, J. M., J. Kinsella, and B. Sacktor. 1982. Glucocorticoids increase the Na+-H+ exchange and decrease the Na + gradient-dependent phosphate-uptake systems in renal brush border membrane vesicles. Proc. Natl. Acad. Sci. USA 79:4932–4936.PubMedCrossRefGoogle Scholar
  224. 224.
    de Mello Aires, M., and G. Malnic. 1979. Sodium in renal tubular acidification kinetics. Am. J. Physiol. 236:F434–F441.Google Scholar
  225. 225.
    Green, R., and G. Giebisch. 1975. Some ionic requirements of proximal tubular sodium transport. II. The role of hydrogen ion secretion. Am. J. Physiol. 229:1205–1215.PubMedGoogle Scholar
  226. 226.
    Chan, Y. L., and G. Giebisch. 1981. Relationship between so-dium and bicarbonate transport in the rat proximal convoluted tubule. Am. J. Physiol. 240:F222–F230.PubMedGoogle Scholar
  227. 227.
    Ullrich, K. J., G. Capaso, G. Rumrich, F. Papavassiliou, and S. Kloss. 1977. Coupling between proximal tubular transport processes. Pfluegers Arch. 368:245–252.CrossRefGoogle Scholar
  228. 228.
    Bichara, M., M. Paillard, F. Leviel, A. Prigent, and J. P. Gardin. 1983. Na:H exchange and the primary H pump in the proximal tubule. Am. J. Physiol. 244:F165–F171.PubMedGoogle Scholar
  229. 229.
    Bichara, M., M. Paillard, F. Leviel, and J. P. Gardin. 1980. Hydrogen transport in rabbit kidney proximal tubules—Na:H exchange. Am. J. Physiol. 238:F445–F451.PubMedGoogle Scholar
  230. 230.
    Beck, F., R. Bauer, U. Bauer, J. Mason, A. Dorge, R. Rick, and K. Thurau. 1980. Electron microprobe analysis of intracellular elements in the kidney. Kidney Int. 17:756–763.PubMedCrossRefGoogle Scholar
  231. 231.
    Misanko, B. S., and S. Solomon. 1981. Activity of the HC03 -stimulated ATPase in the acidotic rat kidney. Miner. Electrolyte Metab. 6:217–226.Google Scholar
  232. 232.
    Haase, W., A. Schafer, H. Murer, and R. Kinne. 1978. Studies on the orientation of brush-border membrane vesicles. Biochem. J. 172:57–62.PubMedGoogle Scholar
  233. 233.
    Boron, W. F., and E. L. Boulpaep. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Basolateral HCO3-transport. J. Gen. Physiol. 81:53–94.PubMedCrossRefGoogle Scholar
  234. 234.
    Kleinman, J. G., R. A. Ware, and J. H. Schwartz. 1981. Anion transport regulates intracellular pH in renal cortical tissue. Bio-chim. Biophys. Acta 648:87–92.CrossRefGoogle Scholar
  235. 235.
    Edelman, A., M. Bouthier, and T. Anagnostopoulos. 1981. Chloride distribution in the proximal convoluted tubule of Necturus kidney. J. Membr. Biol. 62:7–17.PubMedCrossRefGoogle Scholar
  236. 236.
    Low, I., T. Friedrich, and G. Burckhardt. 1984. Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am. J. Physiol. 246:F334–F342.PubMedGoogle Scholar
  237. 237.
    Ives, H. E., V. J. Yee, and D. G. Warnock. 1983. Asymmetric distribution of the Na + /H + antiporter in the renal proximal tubule epithelial cell. J. Biol. Chem. 258:13513–13516.PubMedGoogle Scholar
  238. 238.
    Pritchard, J.B., and J. L. Renfro. 1983. Renal sulfate transport at the basolateral membrane is mediated by anion exchange. Proc. Natl. Acad. Sci. USA 80:2603–2607.PubMedCrossRefGoogle Scholar
  239. 239.
    Guggino, W. B., R. London, E. L. Boulpaep, and G. Giabisch. 1983. Chloride transport across the basolateral cell membrane of the Necturus proximal tubule: Dependence on bicarbonate and sodium. J. Membr. Biol. 71:227–240.PubMedCrossRefGoogle Scholar
  240. 240.
    Kleinman, J. G., W. W. Brown, R. A. Ware, and J. H. Schwartz. 1980. Cell pH and acid transport in renal cortical tissue. Am. J. Physiol. 239:F440–F444.PubMedGoogle Scholar
  241. 241.
    Sasaki, S., and C. A. Berry. 1984. Mechanism of bicarbonate exit across basolateral membrane of the rabbit proximal convoluted tubule. Am. J. Physiol. 246:F889–F896.PubMedGoogle Scholar
  242. 242.
    Frömter, E. 1974. Electrophysiology and isotonic fluid absorption of proximal tubules of mammalian kidney. In: MTP International Review of Science, Physiology Series I, Volume 6. K. Thurau, ed. Butterworths/University Park Press, Baltimore, pp. 1–38.Google Scholar
  243. 243.
    Frömter, E., and K. Gessner. 1974. Free flow potential profile along rat kidney proximal tubule. Pfluegers Arch. 351:69–84.CrossRefGoogle Scholar
  244. 244.
    Frömter, E., G. Rumrich, and K. J. Ullrich. 1973. Phénoménologie description of Na +, Cl−, and HCO3 absorption from proximal tubules of the rat kidney. Pfluegers Arch. 343:189–220.CrossRefGoogle Scholar
  245. 245.
    Rector, F. C., M. Martinez-Maldonado, F. P. Brummer, and D. W. Seldin. 1966. Evidence for passive reabsorption of NaCl in proximal tubule of rat kidney. J. Clin. Invest. 45:1060.CrossRefGoogle Scholar
  246. 246.
    Kokko, J., F. C. Rector, Jr., and D. W. Seldin. 1970. Mechanism of salt and water reabsorption in proximal convoluted tubule (PCT). Proc. Am. Soc. Nephrol. 4:42.Google Scholar
  247. 247.
    Schafer, J. A., C. S. Patlak, and T. E. Andreoli. 1975. A component of fluid absorption linked to passive ion flows in the superficial pars recta. J. Gen. Physiol. 66:445–471.PubMedCrossRefGoogle Scholar
  248. 248.
    Schafer, J. A., S. L. Troutman, M. L. Watkins, and T. E. Andreoli. 1981. Flow dependence of fluid transport in the isolated superficial pars recta: Evidence that osmotic disequilibrium between external solutions drives isotonic fluid absorption. Kidney Int. 20:588–597.PubMedCrossRefGoogle Scholar
  249. 249.
    Green, R., R. J. Moriarty, and G. Giebisch. 1981. Ionic requirements of proximal tubular fluid reabsorption: Flow dependence of fluid transport. Kidney Int. 20:580–587.PubMedCrossRefGoogle Scholar
  250. 250.
    Chantrelle, B., and F. C. Rector, Jr. 1980. Active and passive components of volume resorption in rat superficial proximal tubules. Clin. Res. 28:441a.Google Scholar
  251. 251.
    Green, R., and G. Giebisch. 1975. Ionic requirements of proximal tubular sodium transport. I. Bicarbonate and chloride. Am. J. Physiol. 229:1205–1215.PubMedGoogle Scholar
  252. 252.
    Green, R., and G. Giebisch. 1975. Some ionic requirements of proximal tubular sodium transport. II. The role of hydrogen ion secretion. Am. J. Physiol. 229:1216–1226.PubMedGoogle Scholar
  253. 253.
    Berry, C.A. 1983. Water permeability and pathways in the proximal tubule. Am. J. Physiol. 245:F275–F294.Google Scholar
  254. 254.
    Welling, L. W., D. J. Welling, and T. J. Ochs. 1983. Video measurement of basolateral membrane hydraulic conductivity in the proximal tubule. Am. J. Physiol. 245:F123–F129.PubMedGoogle Scholar
  255. 255.
    Gonzalez, E., P. Carpi-Medina, and G. Whittembury. 1982. Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am. J. Physiol. 242:F321–F330.PubMedGoogle Scholar
  256. 256.
    Carpi-Medina, P., E. Gonzalez, and G. Whittembury. 1983. Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am. J. Physiol. 244:F554–F563.PubMedGoogle Scholar
  257. 257.
    Gonzalez, E., P. Carpi-Medina, H. Linares, and G. Whittembury. 1984. Water osmotic permeability of the apical membrane of proximal straight tubular cells. Pfluegers Arch. 402:337–339.CrossRefGoogle Scholar
  258. 258.
    Whittembury, G. 1985. Mechanisms of epithelial solute-solvent coupling. In: The Kidney: Normal and Abnormal function. D. Seldin and G. Giebisch, eds. Raven Press, New York, pp. 199–214.Google Scholar
  259. 259.
    Spring, K. R., and A. C. Ericson. 1982. Epithelial cell volume modulation and regulation. J. Membr. Biol. 69:167–176.PubMedCrossRefGoogle Scholar
  260. 260.
    Quran, P. F., and J. R. Macintosh. 1962. A model system for biological water transport. Nature (London) 193:347–348.CrossRefGoogle Scholar
  261. 261.
    Curran, P. F. 1972. Solute-solvent interactions and water transport. In: Role of Membranes in Secretory Processes. L. Bolis, R. B. Keynes, and W. Wilbrandt, eds. American Else vier/North-Holland, Amsterdam, pp. 408–419.Google Scholar
  262. 262.
    Diamond, J. M., and W. H. Bossert. 1967. Standing gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50:2061–2083.PubMedCrossRefGoogle Scholar
  263. 263.
    Sackin, H., and E. L. Boulpaep. 1975. Models for coupling of salt and water transport: Proximal tubular reabsorption in Necturus kidney. J. Gen. Physiol. 66:671–733.PubMedCrossRefGoogle Scholar
  264. 264.
    Green, R., and G. Giebisch. 1984. Luminal hypotonicity: A driving force for fluid absorption from the proximal tubule. Am. J. Physiol. 246:F167–F174.PubMedGoogle Scholar
  265. 265.
    Barfuss, D. W., and J. A. Schafer. 1984. Rate of formation and composition of absorbate from proximal nephron segments. Am. J. Physiol. 249:F117–F129.Google Scholar
  266. 266.
    Barfuss, D. W., and J. A. Schafer. 1984. Hyperosmolality of absorbate from isolated rabbit proximal tubules. Am. J. Physiol. 247:F130–F139.PubMedGoogle Scholar
  267. 267.
    Weinstein, A. M., J. L. Stephenson, and K. R. Spring. 1981. The coupled transport of water. In: Membrane Transport. S. L. Bonting and J. J. H. H. M. dePont, eds. Elsevier/North-Holland, Amsterdam, pp. 311–351.CrossRefGoogle Scholar
  268. 268.
    Schafer, J. 1984. Mechanisms coupling the absorption of solutes and water in the proximal nephron. Kidney Int. 25:708–716.PubMedCrossRefGoogle Scholar
  269. 269.
    Ussing, H. H., N. Bindslev, N. A. Lassen, and O. Sten-Knudsen. 1981. Water Transport across Epithelia. Munksgaard, Copenhagen.Google Scholar
  270. 270.
    Whitlock, R. T., and H. O. Wheeler. 1964. Coupled transport of solute and water across rabbit gallbladder epithelium. J. Clin. Invest. 43:2249–2265.PubMedCrossRefGoogle Scholar
  271. 271.
    Schafer, J. A., C. S. Patlak, and T. E. Andreoli. 1975. A component of fluid absorption linked to passive flows in the superficial pars recta. J. Gen. Physiol. 60:445–471.CrossRefGoogle Scholar
  272. 272.
    Andreoli, T. E., and J. A. Schafer. 1979. Effective luminal hypotonicity: The driving force for isotonic proximal tubular fluid reab-sorption. Am. J. Physiol 236:F89–F96.PubMedGoogle Scholar
  273. 273.
    Welling, L. W., and D. J. Welling. 1976. Shape of epithelial cells and intercellular channels in the rabbit proximal tubule. Kidney Int. 9:385–394.PubMedCrossRefGoogle Scholar
  274. 274.
    Maunsbach, A. B., and E. L. Boulpaep. 1984. Quantitative ultra-structure and functional correlates in proximal tubule of Am-bystoma and Necturus. Am. J. Physiol. 246:F710–F724.PubMedGoogle Scholar
  275. 275.
    Bishop, J. H. V., R. Green, and S. Thomas. 1979. Free-flow reabsorption of glucose, sodium, osmoles, and water in rat proximal convoluted tubules. J. Physiol. (London) 288:331–351.Google Scholar
  276. 276.
    Liu, F. Y., M. G. Cogan, and F. C. Rector. 1984. Axial heterogeneity of anion and water transport and of osmotic water permeability along the rat superficial proximal convoluted tubule. Kidney Int. 25:308a.Google Scholar
  277. 277.
    Neumann, K. H., and F. C. Rector, Jr. 1976. Mechanism of NaCl and water reabsorption in the proximal convoluted tubule of rat kidney. J. Clin. Invest. 58:1110–1118.PubMedCrossRefGoogle Scholar
  278. 278.
    Jacobson, H. R., J. P. Kokko, D. W. Seldin, and C. Holmberg. 1982._Lack of solvent drag of NaCl and NaHC03 in rabbit proximal tubules. Am. J. Physiol. 243:F342–F348.PubMedGoogle Scholar
  279. 279.
    Corman, B., and A. DiStefano. 1983. Does water drag solute through kidney proximal tubule? Pfluegers Arch. 397:35–41.CrossRefGoogle Scholar
  280. 280.
    Persson, E., and H. R. Ulfendahl. 1970. Water permeability in rat proximal tubules. Acta Physiol. Scand. 78:353–363.PubMedCrossRefGoogle Scholar
  281. 280a.
    Whittembury, G., C. Verde-Martinez, H. Linas, and A. Paz-Aliage. 1980. Solvent drag of large solutes indicates paracellular water flow in leaky epithelia. Proc. R. Soc. London Ser. B 211: 63–81.CrossRefGoogle Scholar
  282. 281.
    Boulpaep, E. L., and S. Tripathi. 1984. Evidence for both paracellular and cellular water flow across the isolated perfused proximal tubule of the salamander Ambystoma tigrinum. Proc. Physiol. Soc. p. 83.Google Scholar
  283. 282.
    Lewy, J. E., and E. E. Windhager. 1968. Peritubular control of proximal tubular fluid reabsorption in the rat kidney. Am. J. Phvs-iol. 214:943–954.Google Scholar
  284. 283.
    Weinstein, A. M., and E. E. Windhager. 1985. Sodium transport along the proximal tubule. In: The Kidney: Normal and Abnormal function. D. Seldin and G. Giebisch, eds. Raven Press, New York, pp. 1033–1062.Google Scholar
  285. 284.
    Windhager, E. E., J. E. Lewy, and A. Spitzer. 1969. Intrarenal control of proximal tubular reabsorption of sodium and water. Nephron 6:247–259.PubMedCrossRefGoogle Scholar
  286. 285.
    Windhager, E. E. 1973. Peritubular control of proximal tubular fluid reabsorption. In: Transport Mechanisms in Epithelia. H. H. Ussing and N. A. Thorn, eds. Academic Press, New York. pp. 596–606.Google Scholar
  287. 286.
    Chan, Y. L., G. Malnic, and G. Giebisch. 1983. Passive driving forces of proximal tubular fluid and bicarbonate transport: Gra-dient dependence of H + secretion. Am. J. Physiol. 245:F622–F633.PubMedGoogle Scholar
  288. 287.
    Grandchamp, A., and E. L. Boulpaep. 1974. Pressure control of sodium reabsorption and intercellular backflux across proximal kidney tubule. J. Clin. Invest. 54:69–82.PubMedCrossRefGoogle Scholar
  289. 289.
    Boulpaep, E. L. 1972. Permeability changes of the proximal tubule of Necturus during saline loading. Am. J. Physiol. 222:517–531.PubMedGoogle Scholar
  290. 290.
    Ott, C. E., J. A. Hass, J. L. Cuche, and F. G. Knox. 1975. Effect of increased peritubular protein concentration on proximal tubule reabsorption in the presence and absence of extracellular volume expansion. J. Clin. Invest. 55:612–620.PubMedCrossRefGoogle Scholar
  291. 291.
    Burg, M., C. Patlak, N. Green, and D. Villey. 1976. The role of organic solutes in fluid absorption by renal proximal convoluted tubules. Am. J. Physiol. 231:627–637.PubMedGoogle Scholar
  292. 292.
    Grantham, J. J., P. B. Qualizza, and L. W. Welling. 1972. Influences of serum proteins on net fluid reabsorption of isolated proximal tubular. Kidney Int. 2:66–75.PubMedCrossRefGoogle Scholar
  293. 293.
    Imai, M., and J. P. Kokko. 1972. Effect of peritubular protein concentration on reabsorption of sodium and water in isolated perfused proximal tubules. J. Clin. Invest. 51:314–325.PubMedCrossRefGoogle Scholar
  294. 294.
    Berry, C., and M. Cogan. 1981. Influence of peritubular protein on solute absorption in the rabbit proximal tubule: A specific effect on NaCl transport. J. Clin. Invest. 68:506–516.PubMedCrossRefGoogle Scholar
  295. 295.
    Knox, F. G., J. I. Mertz, C. Burnett, Jr., and A. Horamati. 1983. Role of hydrostatic and oncotic pressures in renal sodium reab-sorption. Circ. Res. 52:491–500.PubMedGoogle Scholar
  296. 296.
    Ott, C. E. 1981. Effect of saline expansion on peritubular capillary pressures and reabsorption. Am. J. Physiol. 240:F106–F110.PubMedGoogle Scholar
  297. 297.
    Persson, A. E. G., J. Schnermann, B. Agerup, and N. E. Eriksson. 1975. The hydraulic conductivity of the rat proximal tubular wall determined with colloidal solution. Pfluegers Arch. 360:25–44.CrossRefGoogle Scholar
  298. 298.
    Schnermann, J. 1974. Physical forces and transtubular movement of solutes and water. In: MTP International Review of Science, Physiology Series I, Volume 6. K. Thurau, ed. Butter-worths/University Park Press, Baltimore, pp. 157–198.Google Scholar
  299. 299.
    Burg, M., and N. Green. 1976. Role of monovalent ions in the reabsorption of fluid by isolated perfused proximal renal tubules of the rabbit. Kidney Int. 10:221–228.PubMedCrossRefGoogle Scholar
  300. 300.
    Györy, A. Z., and R. Kinne. 1971. Energy source for trans-epithelial sodium transport in rat renal proximal tubules. Pfluegers Arch. 327:234–260.CrossRefGoogle Scholar
  301. 301.
    Windhager, E. E., and G. Giebisch. 1976. Proximal sodium and fluid transport. Kidney Int. 9:121–133.PubMedCrossRefGoogle Scholar
  302. 302.
    Brenner, B. M., and J. L. Troy. 1971. Postglomerular vascular protein concentration: Evidence for a causal role in governing fluid reabsorption and glomerulotubular balance by the renal proximal tubule. J. Clin. Invest. 50:336–349.PubMedCrossRefGoogle Scholar
  303. 303.
    Brenner, B. M., J. L. Troy, and T. M. Daugharty. 1971. On the mechanism of inhibition of fluid reabsorption by the renal proximal tubule of the volume-expanded rat. J. Clin. Invest. 50:1596–1602.PubMedCrossRefGoogle Scholar
  304. 304.
    Lassiter, W. E. 1975. Kidney. Annu. Rev. Physiol. 37:371–393.PubMedCrossRefGoogle Scholar
  305. 305.
    Bartoli, E., J. C. Conger, and L. E. Earley. 1973. Effect of intraluminal flow on proximal tubular reabsorption. J. Clin. Invest. 52:843–849.PubMedCrossRefGoogle Scholar
  306. 306.
    Richardson, I. W., V. Licko, and E. Bartoli. 1973. The nature of passive flows through tightly folded membranes. J. Membr. Biol. 11:293–308.PubMedCrossRefGoogle Scholar
  307. 307.
    Alpern, R. J., M. G. Cogan, and F. C. Rector, Jr. 1983. Flow dependence of proximal tubular bicarbonate reabsorption. Am. J. Physiol. 245:F478–F484.PubMedGoogle Scholar
  308. 308.
    Marsh, D. J. 1981. Models of flow and pressure modulating is-osmotic reabsorption in mammalian proximal tubules. In: Physiology of Non-excitable Cells. J. Salanki, ed. Pergamon Press, Elmsford, N.Y. pp. 47–55.Google Scholar
  309. 309.
    Häberle, D. A., and H. von Baeyer. 1983. Characteristics of glomerulotubular balance. Am. J. Physiol. 244:F355–F366.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Gerhard Giebisch
    • 1
  • Peter S. Aronson
    • 2
  1. 1.Department of PhysiologyYale University School of MedicineNew HavenUSA
  2. 2.Departments of Physiology and Internal MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations