Mechanisms of Bile Secretion and Hepatic Transport

  • James L. Boyer


Bile is a complex aqueous secretion that is elaborated by the liver of all vertebrate species, stored in the gallbladder, and discharged into the common hepatic duct and intestine. Its primary source is formed from transport processes in the liver parenchymal cell. This hepatic bile originates at the bile canaliculus (Fig. 1) but can be modified by absorption or secretion at more distal sites along the bile ductules and ducts (Fig. 2). Not all of these transport phenomenon are clearly understood but together they generate an isosmotic electrolyte solution into which a variety of organic and inorganic solutes are also excreted. (Table I) These solutes comprise 5% of the weight of bile by volume in man, and include mixed lipid micelles composed of bile acids, cholesterol, and phospholipid, as well as amino acids, hormones, enzymes, metals, vitamins, prophyrins, and other miscellaneous endogenous and exogenous drugs, xenobiotics, and toxins.


Bile Acid Organic Anion Bile Flow Bile Secretion Bile Canaliculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brauer, R. W. 1959. Mechanisms of bile secretion. J. Am. Med. Assoc. 169:1462–1466.PubMedGoogle Scholar
  2. 2.
    Forker, E. L. 1977. Mechanisms of hepatic bile formation. Annu. Rev. Physiol. 39:323–347.PubMedGoogle Scholar
  3. 3.
    Javitt, N. B. 1976. Hepatic bile formation. N. Engl. J. Med. 295:1464-1469, 1511–1516.PubMedGoogle Scholar
  4. 4.
    Boyer, J. L. 1980. New concepts of mechanisms of hepatocyte bile formation. Physiol. Rev. 60:303–326.PubMedGoogle Scholar
  5. 5.
    Reichen, J., and G. Paumgartner. 1980. Excretory function of the liver. In: Liver and Biliary Tract Physiology. N. B. Javitt, ed. University Park Press, Baltimore, pp. 103–150.Google Scholar
  6. 6.
    Paumgartner, G., and D. Paumgartner. 1982. Current concepts of bile formation. Prog. Liver Dis. 7:207–220.PubMedGoogle Scholar
  7. 7.
    Blitzer, B. L., and J. L. Boyer. 1982. Cellular mechanisms of bile formation. Gastroenterology 82:346–357.PubMedGoogle Scholar
  8. 8.
    Erlinger, S. 1981. Hepatocyte bile secretion: Current views and controversies. Hepatology 1:352–359.PubMedGoogle Scholar
  9. 9.
    Scharschmidt, B. F. 1982. Bile formation and cholestasis, metabolism and enterohepatic circulation of bile acids, and gallstone formation. In: Hepatology: A Textbook of Liver Disease. D. Zakem and T. D. Boyer, eds. Saunders, Philadelphia. pp. 297–351.Google Scholar
  10. 10.
    Graf, J. 1983. Canalicular bile salt independent bile formation: Concepts and clues from electrolyte transport in rat liver. Am. J. Physiol. 7:233–246.Google Scholar
  11. 11.
    Smith, R. L. 1973. The Excretory Function of Bile: The Elimination of Drugs and Toxic Substances in Bile. Chapman & Hall, London.Google Scholar
  12. 12.
    Levine, W. G. 1981. Biliary excretion of drugs and other xenobiotics. Prog. Drug Res. 25:362–420.Google Scholar
  13. 13.
    Hofmann, A. F. 1976. The enterohepatic circulation of bile acids in man. Adv. Intern. Med. 21:501–534.PubMedGoogle Scholar
  14. 13a.
    Carey, M. C. 1982. The enterohepatic circulation. In: The Liver: Biology and Pathobiology. I. Arias, H. Popper, D. Schacter, and D. A. Schafritz, eds. Raven Press, New York. pp. 429–465.Google Scholar
  15. 14.
    Lemaitre-Coelho, I., G. D. F. Jackson, and J. P. Vaerman. 1977. Rat bile as a convenient source of secretory IgA and free secretory component. Eur. J. Immunol. 7:588–590.PubMedGoogle Scholar
  16. 15.
    Wheeler, H. O. 1968. Water and electrolytes in bile. In: Handbook of Physiology, Section 6. C. F. Code, ed. American Physiological Society, Washington, D.C. pp. 2409–2431.Google Scholar
  17. 16.
    Rundle, F. F., B. Robson, and M. Middleton. 1955. Bile drainage after cholecystectomy in man, with some observations on biliary fistula. Surgery 37:903–910.PubMedGoogle Scholar
  18. 17.
    Boyer, J. L., and J. R. Bloomer. 1974. Canalicular bile secretion in man: Studies utilizing the biliary clearance of 14C-mannitol. J. Clin. Invest. 54:773–781.PubMedGoogle Scholar
  19. 18.
    Blouin, A., R. P. Bolender, and E. R. Weibel. 1977. Distribution of organelles and membranes between hepatocytes and non-hepatocytes in the rat liver parenchyma: A sterological study. J. Cell Biol. 72:441–455.PubMedGoogle Scholar
  20. 19.
    Evans, W. H. 1980. A biochemical dissection of the functional polarity of the plasma membrane of the hepatocyte. Biochim. Biophys. Acta 604:27–64.PubMedGoogle Scholar
  21. 20.
    Boyer, J. L., R. M. Allen, and O. C. Ng. 1983. Biochemical separation of Na+, K+-ATPase from a “ purified” light density, “canalicular” enriched plasma membrane fraction from rat liver. Hepatology 3:18–28.PubMedGoogle Scholar
  22. 21.
    Inoue, M., R. Kinne, T. Tran, L. Biempica, and I. M. Arias. 1983. Rat liver canalicular membrane vesicles. J. Biol. Chem, 258:5183–5188.PubMedGoogle Scholar
  23. 22.
    Meier, P. J., E. S. Sztul, A. Reuben, and J. L. Boyer. 1984. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J. Cell Biol. 98:991–1000.PubMedGoogle Scholar
  24. 23.
    Renston, R. H., A. L. Jones, W. D. Christiansen, and G. T. Hradek. 1980. Evidence for a vesicular transport mechanism in hepatocytes for biliary secretion of immunoglobulin A. Science 208:1276–1278.PubMedGoogle Scholar
  25. 24.
    LaRusso, N. F., and S. Fowler. 1979. Coordinate secretion of acid hydrolases in rat bile—Hepatocyte exocytosis of lysosomal protein?.J. Clin. Invest. 64:948–954.PubMedGoogle Scholar
  26. 25.
    Jones, A. L., D. L. Schmucker, J. S. Mooney, R. K. Ockner, and R. D. Adler. 1979. Alterations in hepatic pericanalicular cytoplasm during enhanced bile secretory activity. Lab. Invest. 40:512–517.PubMedGoogle Scholar
  27. 26.
    Phillips, M. J., M. Oda, E. Mak, M. M. Fisher, and K. N. Jeejeebhoy. 1975. Microfilament dysfunction as a possible cause of intrahepatic cholestasis. Gastroenterology 69:48–58.PubMedGoogle Scholar
  28. 27.
    Elias, E., Z. Hruban, J. B. Wade, and J. L. Boyer. 1980. Phal-loidin-induced cholestasis, a microfilament-mediated change in junctional complex permeability. Proc. Natl. Acad. Sci. USA 77: 2229–2233.PubMedGoogle Scholar
  29. 28.
    DeBrabander, M., J. C. Wanson, R. Mosselmans, G. Geuns, and P. Drochmans. 1978. Effects of antimicrotubular compounds on monolayer cultures of adult rat hepatocytes. Biol. Cell. 31:127–140.Google Scholar
  30. 29.
    Dubin, M., M. Maurice, G. Feldmann, and S. Erlinger. 1980. Influence of colchicine and phalloidin on bile secretion and hepatic ultrastructure in the rat. Gastroenterology 79:646–654.PubMedGoogle Scholar
  31. 30.
    Oshio, C., and M. J. Phillips. 1981. Contractility of bile ca-naliculi: Implications for liver function. Science 212:1041–1042.PubMedGoogle Scholar
  32. 31.
    Phillips, M. J., C. Oshio, M. Miyairi, and C. R. Smith. 1983. Intrahepatic cholestasis as a canalicular motility disorder—Evidence using cytochalasin. Lab. Invest. 48:205–211.PubMedGoogle Scholar
  33. 32.
    Boyer, J. L. 1983. Tight junctions in normal and cholestatic liver: Does the paracellular pathway have functional significance? Hepatology 3:614–617.PubMedGoogle Scholar
  34. 33.
    Lagarde, S., E. Elias, J. B. Wade, and J. L. Boyer. 1981. Structural heterogeneity of hepatocyte “tight junctions”: A quantitative analysis. Hepatology 1:193–203.PubMedGoogle Scholar
  35. 34.
    Easter, D. W., J. B. Wade, and J. L. Boyer. 1983. Structural integrity of hepatocyte tight junctions. J. Cell Biol. 96:745–749.PubMedGoogle Scholar
  36. 35.
    Bradley, S. E., and R. Herz. 1978. Permselectivity of biliary canalicular membrane in rats: Clearance probe analysis. Am. J. Physiol. 235:E570–E576.PubMedGoogle Scholar
  37. 36.
    Rappaport, A. M. 1973. The microcirculatory hepatic unit. Mi-crovasc. Res. 6:212–228.Google Scholar
  38. 37.
    Miller, D. L., C. S. Zanolli, and J. J. Gumucio. 1979. Quantitative morphology of sinusoids of the hepatic acinus-quantimet analysis of rat liver. Gastroenterology 76:965–969.PubMedGoogle Scholar
  39. 38.
    Gumucio, J. J., C. Balabaud, D. L. Miller, L. J. Mason, H. D. Appelman, T. J. Stoecker, and D. R. Franzblau. 1978. Bile secretion and liver cell heterogeneity in the rat. J. Lab. Clin. Med. 91:350–362.PubMedGoogle Scholar
  40. 39.
    Gumucio, J. J., and D. L. Miller. 1981. Functional implications of liver cell heterogeneity. Gastroenterology 80:393–403.PubMedGoogle Scholar
  41. 40.
    Jungerman, K., and N. Katz. 1982. Functional hepatocellular heterogeneity. Hepatology 2:385–395.Google Scholar
  42. 41.
    Brauer, R. W., G. F. Leong, R. F. McElroy, and R. J. Holloway. 1954. Mechanisms of bile secretion: Effect of perfusion pressure and temperature on bile flow and secretion pressure. Am. J. Physiol. 177:103–112.PubMedGoogle Scholar
  43. 42.
    Bizard, G. 1965. Enzyme inhibitors and biliary secretion. In: The Biliary System. W. Taylor, ed. Blackwell, Oxford, pp. 315–324.Google Scholar
  44. 43.
    Moore, E. W., and J. M. Dietschy. 1964. Na and K activity coefficients in bile and bile salts determined by glass electrodes. Am. J. Physiol. 206:1111–1117.PubMedGoogle Scholar
  45. 44.
    Wheeler, H. O., and O. L. Ramos. 1960. Determinants of the flow and composition of bile in the unanesthetized dog during constant infusions of sodium taurocholate. J. Clin. Invest. 39:161–170.PubMedGoogle Scholar
  46. 45.
    Sperber, I. 1963. Biliary secretion and choleresis. In: Proc. 1st Int. Pharmacol. Meet. Volume 4. Pergamon Press, Elmsford, N.Y. pp. 137–143.Google Scholar
  47. 46.
    Sperber, I. 1965. Biliary secretion of organic anions and its influence on bile flow. In: The Biliary System. W. Taylor, ed. Black-well, Oxford. pp. 457–467.Google Scholar
  48. 47.
    Wheeler, H. O., E. D. Ross, and S. E. Bradley. 1968. Canalicular bile production in dogs. Am. J. Physiol. 214:866–874.PubMedGoogle Scholar
  49. 48.
    Preisig, R., H. L. Cooper, and H. O. Wheeler. 1962. The relationship between taurocholate secretion rate and bile production in the unanesthetized dog during cholinergic blockade and during secretin administration. J. Clin. Invest. 41:1152–1162.PubMedGoogle Scholar
  50. 49.
    Forker, E. L. 1968. Bile formation in guinea pigs: Analysis with inert solutes of graded molecular radius. Am. J. Physiol. 215:56–62.PubMedGoogle Scholar
  51. 50.
    Strasberg, S. M., R. G. Ilson, K. H. Siminovitch, D. Brenner, and J. E. Palaheimo. 1975. Analysis of the components of bile flow in the rhesus monkey. Am. J. Physiol. 228:115–121.PubMedGoogle Scholar
  52. 51.
    Strasberg, S. M., R. G. Ilson, and C. N. Petrunka. 1982. 14C-erythritol clearance and canalicular bile acid independent flow in the baboon. Am. J. Physiol. 242:G475–G480.PubMedGoogle Scholar
  53. 52.
    Barnhart, J. L., and B. Combes. 1978. Erythritol and mannitol clearances with taurocholate and secretin induced choleresis. Am. J. Physiol. 234:E146–E156.PubMedGoogle Scholar
  54. 53.
    Nicholls, R. J. 1979. Biliary mannitol clearance and bile salt output before and during secretin choleresis in the dog. Gastroenterology 76:983–987.PubMedGoogle Scholar
  55. 54.
    Lewis, M. H., A. L. Baker, J. M. Dhorajiwala, and A. R. Moos-sa. 1981. Secretin enhances 14C-erythritol clearance in unanesthetized dogs. Dig. Dis. Sci. 27:57–64.Google Scholar
  56. 55.
    Smith, N. D., and J. L. Boyer. 1982. Permeability characteristics of bile duct in the rat. Am. J. Physiol. 242:G52–G57.PubMedGoogle Scholar
  57. 56.
    Javitt, N. B. 1977. Bile formation. In: Chemistry and Physiology of Bile Pigments. P. D. Berk and N. Berlin, eds. Fogarty Int. Cent. Proc. No. 35. U.S. Government Printing Office. Bethesda. pp. 377–382.Google Scholar
  58. 57.
    Lorenzini, I., T. liter, P. Meier, and J. L. Boyer. 1982. Tau-rochenodeoxycholic acid (TCDA) stimulates hepatic uptake of 3H-methoxyinulin (3HMI) into membrane bound compartments. Hepatology 2:737a.Google Scholar
  59. 58.
    Anwer, M. S., and J. L. Barnhart. 1982. Polyethylene glycol-900 (PEG-900): A possible marker for paracellular water movement. Hepatology 2:688a.Google Scholar
  60. 59.
    Krell, H., H. Hoke, and E. Pfaff. 1982. Development of intrahepatic cholestasis by α-naphthylisothiocyanate in rats. Gastroenterology 82:507–514.PubMedGoogle Scholar
  61. 60.
    Graf, J., and M. Peterlik. 1975. Mechanism of transport of inorganic ions into bile. In: The Hepatobiliary System—Fundamental and Pathological Mechanisms. W. Taylor, ed. Plenum Press, New York. pp. 43–58.Google Scholar
  62. 61.
    Schiff, M. 1890. Gallenbildung, abhangig non der Aufsaugung der Gallenstoffe. Pfluegers Arch. Gesamte Physiol. 3:598–613.Google Scholar
  63. 62.
    Wheeler, H. O. 1972. Secretion of bile acids by the liver and their role in the formation of hepatic bile. Arch. Intern. Med. 130:533–541.PubMedGoogle Scholar
  64. 63.
    Klaassen, C.D. 1972. Species differences to the choleretic response to bile salts. J. Physiol. (London) 224:259–269.Google Scholar
  65. 64.
    Vonk, R. J., P. Jekel, and D. K. F. Meijer. 1975. Choleresis and hepatic transport mechanism. Naunyn-Schmiedebergs Arch. Pharmacol. 290:375–387.PubMedGoogle Scholar
  66. 65.
    O’Maille, E. R. L. 1980. The influence of micelle formation on bile secretion. J. Physiol. (London) 302:107–120.Google Scholar
  67. 66.
    Sewell, R. B., N. E. Hoffman, R. A. Smallwood, and S. Cockbain. 1980. Bile acid structure and bile formation: A comparison of hydroxy and keto bile acids. Am. J. Physiol. 238.G10–G17.Google Scholar
  68. 67.
    O’Maille, E. R. L., M. S. Anwer, A. F. Hofmann, E. B. Ljunge, and R. G. Danzinger. 1982. Side chain charge: A key determinant of hepatic bile acid transport. Gastroenterology 82:1140a.Google Scholar
  69. 68.
    Javitt, N. B., and S. Emerman. 1968. Effect of sodium tau-rolithocholate on bile flow and bile acid excretion. J. Clin. Invest. 47:1002–1014.PubMedGoogle Scholar
  70. 69.
    Layden, T. J., and J. L. Boyer. 1977. Taurolithocholate induced cholestasis: Taurocholate, but not dehydrocholate, reverses cholestasis and bile canalicular membrane injury. Gastroenterology 73:120–128.PubMedGoogle Scholar
  71. 70.
    Kitani, K., and S. Kanai. 1981. Biliary transport maximum of tauroursodeoxycholate is twice as high as that of taurocholate in the rat. Life Sci. 29:260–275.Google Scholar
  72. 71.
    Dumont, M., S. Uchman, S. Erlinger, and N. Dumont. 1980. Hypercholeresis induced by ursodeoxycholic acid and 7-ket-olithocholic acid in the rat: Possible role of bicarbonate transport. Gastroenterology 79:82–89.PubMedGoogle Scholar
  73. 72.
    Scharschmidt, B. F., E. B. Keefe, D. Vessey, N. M. Blankenship, and R. K. Ochner. 1981. In vitro effect of bile salts on rat liver plasma membrane lipid fluidity and ATPase activity. Hepatology 1:137–145.PubMedGoogle Scholar
  74. 73.
    Baker, A. L., R. A. B. Wood, A. R. Moossa, and J. L. Boyer. 1978. Sodium taurocholate modifies the bile acid-independent fraction of canalicular bile flow in the rhesus monkey. J. Clin. Invest. 64:312–320.Google Scholar
  75. 74.
    Boyer, J. L., and D. Reno. 1975. Properties of (Na+-K+) activated ATPase in rat liver plasma membranes enriched with bile canaliculi. Biochim. Biophys. Acta 401:59–72.PubMedGoogle Scholar
  76. 74a.
    Nemchausky, B., D. Reno, and J. L. Boyer. 1975. Synthetic and naturally occurring bile salts—Modifiers of ATPase activity in canalicular enriched liver plasma membrane. Clin. Res. 23: 254a.Google Scholar
  77. 75.
    Wannagat, F. J., R. D. Alder, and R. K. Ochner. 1978. Bile acid-induced increase in bile acid independent flow and plasma membrane Na+, K+-ATPase in the rat liver. J. Clin. Invest. 61: 297–307.PubMedGoogle Scholar
  78. 76.
    Accatino, L., A. Contreras, E. Berdichevsky, and C. Qunitana. 1981. The effect of complete biliary obstruction on bile secretion: Studies on the mechanisms of post cholestatic choleresis in the rat. J. Lab. Clin. Med. 97:525–534.PubMedGoogle Scholar
  79. 77.
    Miyai, K., and W. G. Hardison. 1979. Bile duct ligation vs. retention of bile: Pericanalicular microfilaments form bundles only with bile duct ligation. Gastroenterology 76:1292a.Google Scholar
  80. 78.
    Balabaud, C., K. A. Korn, and J. J. Gumucio. 1977. The assessment of the bile salt nondependent fraction of canalicular bile water in the rat. J. Lab. Clin. Med. 89:393–399.PubMedGoogle Scholar
  81. 79.
    Reichen, J., and G. Paumgartner. 1977. Relationship between bile flow and Na+, K+-adenosine triphosphatase in liver plasma membranes enriched in bile canaliculi. J. Clin. Invest. 60:429–434.PubMedGoogle Scholar
  82. 80.
    Layden, T. J., and J. L. Boyer. 1976. The effect of thyroid hormone on bile salt-independent bile flow and Na+, K+-ATPase activity in liver plasma membranes enriched in bile canaliculi. J. Clin. Invest. 57:1009–1018.PubMedGoogle Scholar
  83. 81.
    Simon, F. R., E. Sutherland, and L. A. Accatino. 1977. Stimulation of hepatic sodium and potassium-activated adenosine triphosphatase activity by phenobarbital—Its possible role in regulation of bile flow. J. Clin. Invest. 59:849–861.PubMedGoogle Scholar
  84. 82.
    LaRusso, N. F., M. G. Korman, N. E. Hoffman, and A. F. Hofmann. 1974. Dynamics of the enterohepatic circulation of bile acids: Postprandial serum concentrations of conjugates of cholic acid in health, cholecystectomized patients, and patients with bile acid malabsorption. N. Engl. J. Med. 291:689–692.PubMedGoogle Scholar
  85. 83.
    Angelin, B. O., I. Bjorkhem, K. Einarsson, and S. Ewerth. 1982. Hepatic uptake of bile acids in man—Fasting and postprandial concentrations of individual bile acids in portal venous and systemic blood serum. J. Clin. Invest. 70:724–731.PubMedGoogle Scholar
  86. 84.
    Ahlberg, J., B. Angelin, I. Bjorkhem, and K. Einarsson. 1979. Individual bile acids in portal venous and systemic blood of fasting man. Gastroenterology 73:1377–1382.Google Scholar
  87. 85.
    Lindblad, L., K. Lundholm, and T. Schersten. 1977. Bile acid concentrations in systemic and portal serum in presumably normal man and in cholestatic and cirrhotic conditions. Scand. J. Gastroenterol. 12:395–400.PubMedGoogle Scholar
  88. 86.
    Olivecrona, T., and J. Sjovall. 1959. Bile acids in rat portal blood. Acta Physiol. Scand. 46:284–290.PubMedGoogle Scholar
  89. 87.
    Cronholm, T., and J. Sjovall. 1967. Bile acids in portal blood of rats fed different diets and cholestyramine. Eur. J. Biochem. 2:375–383.PubMedGoogle Scholar
  90. 88.
    Matern, S., and W. Gerok. 1979. Pathophysiology of the entero-hepatic circulation. Rev. Physiol. Biochem. Pharmacol. 85:126–204.Google Scholar
  91. 89.
    Mok, H. Y. L, K. von Bergman, and S. M. Grundy. 1980. Kinetics of the enterohepatic circulation during fasting: Biliary lipid secretion and gallbladder storage. Gastroenterology 78:1023–1033.PubMedGoogle Scholar
  92. 90.
    Rudman, D., and F. E. Kendall. 1957. Bile acid content of human serum. II. The binding of cholanic acids by human plasma proteins. J. Clin. Invest. 36:538–542.PubMedGoogle Scholar
  93. 91.
    Hoffman, N. E., J. H. Iser, R. A. Smallwood. 1975. Hepatic bile acid transport: Effect of conjugation and position of hydroxyl groups. Am. J. Physiol. 229:298–302.PubMedGoogle Scholar
  94. 91a.
    Aldini, R., A. Roda, A. M. Morselli, G. Cappelleri, E. Roda, and L. Barbara. 1982. Hepatic bile acid uptake: Effect of conjugation, hydroxyl and keto groups, and albumin binding. J. Lipid Res. 23:1167–1173.PubMedGoogle Scholar
  95. 92.
    Iga, T., and C. D. Klaassen. 1982. Hepatic extraction of bile acids in rats. Biochem. Pharmacol. 31:205–209.PubMedGoogle Scholar
  96. 93.
    Kramer, W., H. P. Buscherg, W. Gerok, and G. Kurz. 1979. Bile salt binding to serum components: Taurocholate incorporation into high-density lipoproteins revealed by photoaffinity labelling. Eur. J. Biochem. 102:1–9.PubMedGoogle Scholar
  97. 94.
    Forker, E. L., and B. A. Luxon. 1981. Albumin helps mediate removal of taurocholate by rat liver. J. Clin. Invest. 67:1517–1522.PubMedGoogle Scholar
  98. 95.
    Layden, T. J., and J. L. Boyer. 1978. Influence of bile acids on bile canalicular size. Lab. Invest. 39:110–119.PubMedGoogle Scholar
  99. 96.
    Groothuis, G. M. M., M. Hardonk, K. P. T. Keulemans, P. Nieuwenhuis, and D. K. F. Meijer. 1982. Autoradiographic and kinetic demonstration of acinar heterogeneity of taurocholate transport. Am. J. Physiol. 243:G455–G462.PubMedGoogle Scholar
  100. 97.
    Jones, A. L., G. T. Hradek, R. H. Renston, K. W. Wong, G. Karlaganis, and G. Paumgartner. 1980. Autoradiographic evidence for hepatic lobular concentration gradient of bile acid derivative. Am. J. Physiol. 238:G233–G237.PubMedGoogle Scholar
  101. 98.
    Suchy, F. J., W. F. Balistreri, J. Hung, P. Miller, and S. A. Garfield. 1983. Intracellular bile acid transport in rat liver as visualized by electron microscope autoradiography using a bile acid analogue. Am. J. Physiol. 245:G681–G689.PubMedGoogle Scholar
  102. 99.
    Elias, E., and J. L. Boyer. 1979. Mechanisms of intrahepatic cholestasis. Prog. Liver Dis. 6:457–470.PubMedGoogle Scholar
  103. 100.
    Reichen, J., and G. Paumgartner. 1975. Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterology 68:132–136.PubMedGoogle Scholar
  104. 101.
    Glasinovic, J. C., M. Dumont, M. Duval, and S. Erlinger. 1975. Hepatocellular uptake of taurocholate in the dog. J. Clin. Invest. 55:419–426.Google Scholar
  105. 102.
    Reichen, J., and G. Paumgartner. 1976. Uptake of bile acids by perfused rat liver. Am. J. Physiol. 231:734–742.PubMedGoogle Scholar
  106. 103.
    Schwartz, L. R., R. Burr, M. Schwenk, E. Pfaff, and H. Greim. 1975. Uptake of taurocholic acid into isolated rat liver cells. Eur. J. Biochem. 55:617–623.Google Scholar
  107. 104.
    Anwer, M. S., and D. Hegner. 1978. Effect of Na+ on bile acid uptake by isolated rat hepatocytes. Hoppe-Seylers Z. Physiol. Chem. 359:181–192.PubMedGoogle Scholar
  108. 105.
    Blitzer, B. L., S. L. Ratoosh, C. B. Donovan, and J. L. Boyer. 1982. Effects of inhibitors of Na+-coupled ion transport on bile acid uptake by isolated rat hepatocytes. Am. J. Physiol. 243: G48–G53.PubMedGoogle Scholar
  109. 106.
    Scharschmidt, B. F., and J. E. Stephens. 1981. Transport of sodium, chloride, and taurocholate by cultured rat hepatocytes. Proc. Natl. Acad. Sci. USA 78:986–990.PubMedGoogle Scholar
  110. 107.
    von Dippe, P., and D. Levy. 1983. Characterization of the bile acid transport system in normal and transformed hepatocytes— Photoaffinity labelling of the taurocholate carrier proteins. J. Biol. Chem. 258:8896–8901.Google Scholar
  111. 107a.
    Abberger, H., U. Bickel, H. P. Buscher, K. Fuchte, W. Gerok, W. Krammer, and G. Kurz. 1981. Transport of bile acids: Lipoproteins, membrane polypeptides and cytosolic proteins as carriers. In: Bile Acids and Lipids. G. Paumgartner, A. Stiehl, and W. Gerok, eds. MTP Press, Lancaster. pp. 233–246.Google Scholar
  112. 108.
    Inoue, M., R. Kinne, T. Tran, and I. M. Arias. 1982. Taurocho-late transport by rat liver sinusoidal membrane vesicles: Evidence for sodium cotransport. Hepatology 2:572–579.PubMedGoogle Scholar
  113. 109.
    Duffy, M. C., B. L. Blitzer, and J. L. Boyer. 1983. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J. Clin. Invest. 72:1470–1481.PubMedGoogle Scholar
  114. 110.
    Van Dyke, R. W., J. E. Stephens, and B. F. Scharschmidt. 1982. Bile acid transport in cultured rat hepatocytes. Am. J. Physiol. 243:G484–G492.PubMedGoogle Scholar
  115. 111.
    Meier, P. J., A. S. Meier-Abt, C. Barrett, and J. L. Boyer. 1984. Mechanisms of taurocholate transport in canalicular and basolat-eral rat liver plasma membrane vesicles. J. Biol. Chem. 259: 10614–10622.PubMedGoogle Scholar
  116. 112.
    Okishio, T., and P. P. Nair. 1966. Studies on bile acids: Some observations on the intracellular localization of major bile acids in rat liver. Biochemistry 5:3662–3668.PubMedGoogle Scholar
  117. 113.
    Boyer, J. L., M. Itabashi, and Z. Hruban. 1979. Formation of pericanalicular vacuoles during sodium dehydrocholate cho-leresis—A mechanism for bile acid transport: In: The Liver: Quantitative Aspects of Structure and function. R. Preisig and J. Bircher, eds. Editio Cantor Aulendorf, Berne. pp. 163–178.Google Scholar
  118. 114.
    Reichen, J., M. D. Berman, and P. D. Berk. 1981. The role of microfilaments and of microtubules in taurocholate uptake by isolated rat liver cells. Biochim. Biophys. Acta 643:126–133.PubMedGoogle Scholar
  119. 115.
    Reuben, A., R. M. Allen, and J. L. Boyer. 1983. Intrahepatic source of “biliary-like” bile acid-phospholipid-cholesterol micelles. In: Bile Acids and Cholesterol in Health and Disease. G. Paumgartner, A. Stiehl, and W. Gerok, eds. MTP Press, Lancaster, pp. 61–66.Google Scholar
  120. 116.
    Strange, R. C., R. Cramb, J. D. Hayes, and I. W. Percy-Robb. 1977. Partial purification of two lithocholic acid-binding proteins from rat liver 100, 000g supernatants. Biochem. J. 165:425–429.PubMedGoogle Scholar
  121. 117.
    Strange, R. C., I. A. Nimmo, and I. W. Percy-Robb. 1977. Binding of bile acids by 100, 000g supernatants from rat liver. Biochem. J. 162:659–664.PubMedGoogle Scholar
  122. 118.
    Kaplowitz, N. 1980. Physiological significance of glutathione S-transferases. Am. J. Physiol. 239:G439–G444.PubMedGoogle Scholar
  123. 119.
    Sugiyama, Y., T. Yamada, and N. Kaplowitz. 1983. Newly identified bile acid binders in rat liver cytosol—Purification and comparison with glutathione transferases. J. Biol. Chem. 258:3602–3607.PubMedGoogle Scholar
  124. 120.
    Accatino, L., and F. R. Simon. 1976. Identification and characterization of a bile acid receptor in isolated liver surface membranes. J. Clin. Invest. 57:496–508.PubMedGoogle Scholar
  125. 121.
    Gonzalez, M., E. Sutherland, and F. R. Simon. 1979. Regulation of hepatic transport of bile salts: Effects of protein synthesis inhibition on excretion of bile salts and their binding to liver surface membrane fractions. J. Clin. Invest. 63:684–694.PubMedGoogle Scholar
  126. 122.
    Graf, J., and O. H. Peterson. 1978. Cell membrane potential and resistance in liver. J. Physiol. (London) 284:105–126.Google Scholar
  127. 123.
    Rollins, D. E., J. W. Freston, and D. M. Woodbury. 1980. Transport of organic anions into liver cells and bile. Biochem. Pharmacol. 29:1023–1028.PubMedGoogle Scholar
  128. 124.
    Graf, J., A. Gautam, and J. L. Boyer. 1984. Isolated rat hepatocyte couplets: A primary secretory unit for electrophysiologic studies of bile secretory function. Proc. Natl. Acad. Sci. 81:6516–6520.PubMedGoogle Scholar
  129. 125.
    Inoue, M., R. Kinne, J. Tran, and I. M. Arias. 1984. Taurocholate transport by rat liver canalicular membrane vesicles-evidence for the presence of an Na+-independent transport system. J. Clin. Invest. 73:659–663.PubMedGoogle Scholar
  130. 126.
    Scharschmidt, B. F., and R. Schmid. 1978. The micellar sink: A quantitative assessment of the association of organic anions with mixed micelles and other macromolecular aggregates in rat bile. J. Clin. Invest. 62:1122–1131.PubMedGoogle Scholar
  131. 127.
    Tavoloni, N., J. S. Reed, and J. L. Boyer. 1978. Hemodynamic effects on determinants of bile secretion in isolated rat liver. Am. J. Physiol. 234:E584–E592.PubMedGoogle Scholar
  132. 128.
    Reed, J. S., N. D. Smith, and J. L. Boyer. 1982. Hemodynamic effects on oxygen consumption and bile flow in isolated skate liver. Am. J. Physiol. 242:G313–G318.PubMedGoogle Scholar
  133. 129.
    Reed, J.S., N. D. Smith, and J. L. Boyer. 1982. Determinants of biliary secretion in isolated perfused skate liver. Am. J. Physiol. 242:G319–G325.PubMedGoogle Scholar
  134. 130.
    Erlinger, S., and D. Dhumeaux. 1974. Mechanism and control of secretion of bile water and electrolytes. Gastroenterology 66:281–304.PubMedGoogle Scholar
  135. 131.
    Keeffe, E. B., B. F. Scharschmidt, N. M. Blankenship, and R. K. Ockner. 1979. Studies of relationships among bile flow, liver plasrha membrane Na+, K+-ATPase, and membrane micro-viscosity in the rat. J. Clin. Invest. 64:1590–1598.Google Scholar
  136. 132.
    Shaw, H. M., and T. J. Heath. 1974. Regulation of bile formation in rabbits and guinea pigs. Q. J. Exp. Physiol. 53:93–102.Google Scholar
  137. 133.
    Graf, J., and M. Peterlik. 1976. Quabain-mediated sodium uptake and bile formation by isolated perfused liver. Am. J. Phvsiol. 230:876–885.Google Scholar
  138. 134.
    Blitzer, B. L., and J. L. Boyer. 1978. Cytochemical localization of Na+K+-ATPase in the rat hepatocyte. J. Clin. Invest. 62:1104–1108.PubMedGoogle Scholar
  139. 135.
    Latham, P. S., and M. Kashgarian. 1979. The ultrastructural localization of transport ATPase in the rat liver at non-bile canalicular plasma membrane. Gastroenterology 76:988–996.PubMedGoogle Scholar
  140. 136.
    Poupon, R. E., and W. H. Evans. 1979. Biochemical evidence that Na+, K+-ATPase is located at the lateral region of the hepatocyte surface membrane. FEBS Lett. 108:374–378.PubMedGoogle Scholar
  141. 137.
    Scharschmidt, B. F., and E. B. Keeffe. 1981. Isolation of a rat liver plasma membrane fraction of probable canalicular origin— Preparative technique, enzymatic profile, composition, and solute transport. Biochim. Biophys. Acta 646:369–381.PubMedGoogle Scholar
  142. 138.
    Claret, M. 1979. Transport of ions in liver cells. In: Membrane Transport in Biology, Volume IV B. G. Giebisch, D.C. Tosteson, and H. H. Ussing, eds. Springer-Verlag, Berlin, pp. 899–920.Google Scholar
  143. 139.
    Dambach, G., and N. Friedmann. 1974. The effects of varying ionic composition of the perfusate on liver membrane potential, gluconeogenesis and cyclic AMP responses. Biochim. Biophvs. Acta 332:374–386.Google Scholar
  144. 140.
    Claret, B., M. Claret, and J. L. Mazet. 1973. Ionic transport and membrane potential of rat liver cells in normal and low chloride solutions. J. Physiol. (London) 230:87–101.Google Scholar
  145. 141.
    Graf, J., and O. H. Petersen. 1974. Electrogenic sodium transport in mouse liver parenchymal cells. Proc. R. Soc. London Ser. B 187:363–367.Google Scholar
  146. 142.
    van Rossum, G. D. V., and M. A. Russo. 1981. Ouabain-resistant mechanism of volume control and the ultrastructural organization of liver slices recovering from swelling in vivo. J. Membr. Biol. 59:191–209.PubMedGoogle Scholar
  147. 143.
    Haylett, D. G., and D. H. Jenkinson. 1972. Effects of noradrenaline on potassium efflux, membrane potential and electrolyte levels in tissue slices prepared from guinea pig liver. J. Physiol. (London) 225:721–750.Google Scholar
  148. 144.
    Graf, J. 1976. Sodium pumping and bile secretion. In: The Liver: Quantitative Aspects of Structure and function. R. Preisig, J. Bircher, and G. Paumgartner, eds. Edito Cantor, Aulendorf. pp. 370–385.Google Scholar
  149. 145.
    Sips, H. J., M. M. van Amelsvoort, and F. van Dam. 1980. Amino acid transport in plasma-membrane vesicles from rat liver—Characterization of L-alanine transport. Eur. J. Biochem. 105:217–224.PubMedGoogle Scholar
  150. 146.
    Ernst, S.A., and J. W. Mills. 1977. Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland. J. Cell Biol. 75:74–94.PubMedGoogle Scholar
  151. 147.
    Epstein, F. H. 1979. The shark rectal gland: A model for the active transport of chloride. Yale J. Biol. Med. 52:517–523.PubMedGoogle Scholar
  152. 148.
    Eveloff, J., R. Kinne, E. Kinne-Saffran, H. Murer, P. Silva, F. Epstein, J. Stoff, and W. B. Kinter. 1978. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish rectal gland. Pfluegers Arch. 378:87–92.Google Scholar
  153. 149.
    Frizzell, R. A., M. Field, and S. G. Schultz. 1979. Sodium-coupled chloride transport by epithelial tissues. Am. J. Physiol. 236:F1–F8.PubMedGoogle Scholar
  154. 150.
    Anwer, M. S., and D. Hegner. 1982. Importance of solvent drag and diffusion in bile acid-dependent bile formation: Ion sbustitu-tion studies in isolated perfused rat liver. Hepatology 2:580–586.PubMedGoogle Scholar
  155. 151.
    Anwer, M. S., and D. Hegner. 1983. Role of inorganic electrolytes in bile acid-independent canalicular bile formation. Am. J. Physiol. 244:116–124.Google Scholar
  156. 152.
    Van Dyke, R. W., J. E. Stephens, and B. F. Scharschmidt. 1982. Effect of ion substitution on bile formation by the isolated perfused rat liver. J. Clin. Invest. 70:505–517.PubMedGoogle Scholar
  157. 152a.
    Arias, I. M., and M. Forgac. 1984. The sinusoidal domain of the plasma membrane of rat hepatocytes contains an amiloride-sen-sitive Na+/H+ antiport. J. Biol. Chem. 259:5406–5408.PubMedGoogle Scholar
  158. 152b.
    Fuchs, R., J. Graf, M. Peterlick, and T. Thalhammer. 1984. Sodium-proton antiport in sinusoidal liver cell membrane. Hepatology 4:761a.Google Scholar
  159. 152c.
    Mosley, R. H., P. J. Meier, R. Knickelbein, P. S. Aronson, and J. L. Boyer. 1984. Evidence for Na+-H+ exchange in rat liver basolateral but not canalicular membrane vesicles. Hepatology 4: 1040a.Google Scholar
  160. 153.
    Williams, J. A., C. D. Withrow, and D. M. Woodbury. 1971. Effects of ouabain and diphenylhydantoin on transmembrane potentials, intracellular electrolytes, and cell pH of rat muscle and liver in vivo. J. Physiol. (London) 212:101–115.Google Scholar
  161. 154.
    Scharschmidt, B. F., and R. W. Van Dyke. 1983. Mechanisms of hepatic electrolyte transport. Gastroenterology 85:1199–1214.PubMedGoogle Scholar
  162. 154a.
    Meier, P. J., R. Knickelbein, R. H. Mosley, J. W. Dobbins, and J. L. Boyer. 1985. Evidence for carrier modiated C1:HCO3 exchange in canalicular rat liver plasma membrane vesicles. J. Clin Invest. 75:1256–1263.Google Scholar
  163. 155.
    Hardison, W. G. M., and C. A. Wood. 1978. Importance of bicarbonate in bile salt-independent fraction of bile flow. Am. J. Physiol. 235:E158–E164.PubMedGoogle Scholar
  164. 156.
    Klos, C., G. Paumgartner, and J. Reichen. 1979. Cation-anion gap and choleretic properties of rat bile. Am. J. Physiol. 236: E434–E440.PubMedGoogle Scholar
  165. 157.
    Eberle, D., R. Clarke, and N. Kaplowitz. 1981. Rapid oxidation in vitro of endogenous and exogenous glutathione in bile of rats. J. Biol. Chem. 256:2115–2117.PubMedGoogle Scholar
  166. 158.
    Inoue, M., R. Kinne, T. Tran, and I. M. Arias. 1983. The mechanism of biliary secretion of reduced glutathione—Analysis of transport process in isolated rat-liver canalicular membrane vesicles. Eur. J. Biochem. 134:467–471.PubMedGoogle Scholar
  167. 159.
    Gregory, D. H., Z. R. Vlahcevic, M. F. Prugh, and T. Swell. 1978. Mechanism of secretion of biliary lipids: Role of a micro-tubular system in hepatocellular transport of biliary lipids in the rat. Gastroenterology 74:93-100.Google Scholar
  168. 160.
    Godfrey, P. P., L. Lembra, and R. Coleman. 1982. Effects of colchicine and vinblastine on output of proteins into bile. Biochem. J. 208:153–157.PubMedGoogle Scholar
  169. 161.
    Layden, T. J., E. Elias, and J. L. Boyer. 1978. Bile formation in the rat: The role of the paracellular shunt pathway. J. Clin. Invest. 62:1375–1385.PubMedGoogle Scholar
  170. 162.
    Boyer, J. L., E. Elias, and T. J. Layden. 1979. The paracellular pathway and bile formation. Yale J. Biol. Med. 52:61–67.PubMedGoogle Scholar
  171. 163.
    Wade, J. B., J. P. Revel, and V. A. DiScala. 1973. Effect of osmotic gradients on intercellular junctions of the toad bladder. Am. J. Physiol. 224:407–415.PubMedGoogle Scholar
  172. 164.
    DiBona, D. R., and M. M. Civian. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways. J. Membr. Biol. 12:101–128.Google Scholar
  173. 165.
    Graf, J. 1976. Some aspects of the role of cyclic AMP and calcium in bile formation: Studies in the isolated perfused rat liver. In: Stimulus Secretion Coupling in the Gastrointestinal Tract. M. Case and H. Goebell, eds. MTP, Lancaster, pp. 305–328.Google Scholar
  174. 166.
    Chenderovitch, J., E. Phocas, and M. Matureau. 1963. Effects of hypertonic solutions on bile formation. Am. J. Physiol. 205:863–867.PubMedGoogle Scholar
  175. 167.
    Guzelian, P., and J. L. Boyer. 1974. Glucose reabsorption from bile: Evidence for a biliohepatic circulation. J. Clin. Invest. 53:526–535.PubMedGoogle Scholar
  176. 168.
    Owen, C.A. 1977. Isolated rat liver needs calcium to make bile. Proc. Soc. Exp. Biol. Med. 155:314–317.PubMedGoogle Scholar
  177. 169.
    Baker, A. L., and M. M. Kaplan. 1976. Effects of cholera entero-toxin, glucagon, and dibutyryl cyclic AMP on rat liver alkaline phosphatase, bile flow, and bile composition. Gastroenterology 70:577–581.PubMedGoogle Scholar
  178. 170.
    Poupon, R. E., M. L. Dol, M. Dumont, and S. Erlinger. 1978. Evidence against a physiological role of cAMP in choleresis in dogs and rats. Biochem. Pharmacol. 27:2413–2416.PubMedGoogle Scholar
  179. 171.
    Morris, T. Q. 1972. Choleretic responses to cyclic AMP and theophylline in the dog. Gastroenterology 62:187a.Google Scholar
  180. 172.
    Barnhart, J. L., and B. Combes. 1975. Characteristics common to choleretic increments of bile induced by theophylline, glucagon, and SQ-2009 in the dog. Proc. Soc. Exp. Biol. Med. 150:591–596.PubMedGoogle Scholar
  181. 173.
    Klaassen, C. D. 1971. Does bile acid secretion determine bile production in rats? Am. J. Physiol. 220:667–673.PubMedGoogle Scholar
  182. 174.
    Macarol, V., T. Q. Morris, K. J. Baker, and S. E. Bradley. 1970. Hydrocortisone choleresis in the dog. J. Clin. Invest. 49:1714–1723.PubMedGoogle Scholar
  183. 175.
    Zsigmond, G., and B. Solymoss. 1974. Increased canalicular bile production induced by pregnenolone-16α-carbonitrile, spironolactone and Cortisol in rats. Proc. Soc. Exp. Biol. Med. 145:631–635.PubMedGoogle Scholar
  184. 176.
    Capron, J. P., M. Dumont, G. Feldmann, and S. Erlinger. 1977. Barbiturate-induced choleresis: Possible independence from microsomal enzyme induction. Digestion 15:556–565.PubMedGoogle Scholar
  185. 177.
    Chivrac, D., M. Dumont, and S. Erlinger. 1978. Lack of parallelism between microsomal enzyme induction and phenobarbital-induced hypercholeresis in the rat. Digestion 17:516–525.PubMedGoogle Scholar
  186. 178.
    Klaassen, C. D. 1969. Biliary flow after microsomal enzyme induction. J. Pharmacol. Exp. Ther. 168:218–223.PubMedGoogle Scholar
  187. 179.
    Gumucio, J. J., and V. C. Valdivieso. 1971. Studies on the mechanism of ethinylestradiol impairment of bile flow and bile salt excretion in the rat. Gastroenterology 61:339–344.PubMedGoogle Scholar
  188. 180.
    Simon, F. R., M. Gonzalez, E. Sutherland, L. Accatino, and R. A. Davis. 1980. Reversal of ethinyl estradiol-induced bile secretory failure with Triton WR-1339. J. Clin. Invest. 65:851–860.PubMedGoogle Scholar
  189. 181.
    Davis, R. A., F. Kern, R. Showalter, E. Sutherland, M. Sinensky, and F. R. Simon. 1978. Alterations of hepatic Na+, K+-ATPase and bile flow by estrogen-effects on liver surface membrane lipid structure and fonction. Proc. Natl. Acad. Sci. USA 75:4130–4134.PubMedGoogle Scholar
  190. 182.
    Kern, F. 1978. Effect of estrogens on the liver. Gastroenterology 75:512–522.Google Scholar
  191. 182a.
    Berr, F., F. R. Simon, and J. Reichen. 1984. Ethinylestradiol impairs Bile salt uptake and Na-K pump function of rat hepatocytes. Amer. J. Physiol. 247:6437–6443.Google Scholar
  192. 183.
    Boyer, J. L., S. Lagarde, O. C. Ng, and R. Groszmann. 1981. Enhanced biliary regurgitation of 14C-sucrose (14C-S) and lanthanum (La++) in ethinyl estradiol (EE) treated rats following retrograde bile duct infusions—A possible mechanism for intrahepatic cholestasis. Hepatology 1:498a.Google Scholar
  193. 184.
    Preisig, R., H. Strebel, G. Egger, and V. Macarol. 1972. Effect of vasopressin on hepatocyte and ductual bile formation in the dog. Experientia 28:1436–1437.PubMedGoogle Scholar
  194. 185.
    Lauterburg, B., G. Paumgartner, and R. Preisig. 1975. Pros-taglandin-induced choleresis in the rat. Experientia 31:1191–1193.PubMedGoogle Scholar
  195. 186.
    Kaminski, D. L., M. Ruwart, and L. L. Willman. 1974. The effect of prostaglandin A1 and E1 on canine hepatic bile flow. Surg. Res. 18:391–397.Google Scholar
  196. 187.
    Sokoloff, J., and R. N. Berk. 1973. The effect of prostaglandin E2 on bile flow and the biliary excretion of iopanoic acid. Invest. Radiol. 8:9–12.PubMedGoogle Scholar
  197. 188.
    Karup, N., J. A. Larsen, and A. Munck. 1976. Secretin like choleretic effects of prostaglandin E1 and E2 in cats. J. Physiol. (London) 254:813–820.Google Scholar
  198. 189.
    Larsen, J. A., and K. D. Christensen. 1978. Insulin-stimulated bile formation in cats. Acta Physiol. Scand. 102:301–309.PubMedGoogle Scholar
  199. 190.
    Snow, J. R., and R. S. Jones. 1978. The effect of insulin on bile salt-independent canalicular secretion. Surgery 83:458–463.PubMedGoogle Scholar
  200. 191.
    Thomsen, O. ø, and J. A. Larsen, 1981. The effect of glucagon, dibutyrlic cyclic AMP and insulin on bile production in the intact rat and the perfused rat liver. Acta Physiol. Scand. 111:23–30.PubMedGoogle Scholar
  201. 192.
    Geist, R. E., and R. S. Jones. 1971. Effect of selective and truncal vagotomy on insulin-stimulated bile secretion in dogs. Gastroenterology 60:566–571.PubMedGoogle Scholar
  202. 193.
    Thomsen, O. ø, and J. A. Larsen, 1983. Importance of perfusate hematocrit for insulin-and glucagon-induced choleresis in the perfused rat liver. Am. J. Physiol. 245:G59–G63.PubMedGoogle Scholar
  203. 194.
    Thomsen, O. ø. 1983. Stimulatory effect of bile acids on insulin-induced choleresis in the rat. Am. J. Physiol. 244:G301–G307.PubMedGoogle Scholar
  204. 194a.
    Thomsen, O. ø. 1984. Mechanism and regulation of hepatic bile production. Scand. J. Gastroenterol. 19:(Suppl 97) 1–52.Google Scholar
  205. 195.
    Dyck, W. P., and H. D. Janowitz. 1971. Effect of glucagon on hepatic bile secretion in man. Gastroenterology 60:400–404.PubMedGoogle Scholar
  206. 196.
    Jones, R. S., R. E. Geist, and A. D. Hall. 1971. The choleretic effects of glucagon and secretin in the dog. Gastroenterology 60:64–68.PubMedGoogle Scholar
  207. 197.
    Morris, T. Q., G. F. Sardi, and S. E. Bradley. 1967. Character of glucagon-induced choleresis. Fed. Proc. 26:114a.Google Scholar
  208. 198.
    Beaugie, J. M. 1972. Gastrointestinal hormones and bile flow. Ann. R. Coll. Surg. Engl. 50:164–181.PubMedGoogle Scholar
  209. 199.
    Pissidis, A. G., C. T. Bombeck, F. Merchant, and L. M. Nyhus. 1969. Hormonal regulation of bile secretion: A study in the isolated perfused liver. Surgery 66:1075–1084.PubMedGoogle Scholar
  210. 200.
    Forsmann, W. G., and S. Ito. 1977. Hepatocyte innervation in primates. J. Cell Biol. 74:299–313.Google Scholar
  211. 201.
    Sutherland, S. D. 1965. The intrinsic innervation of the liver. Rev. Int. Hepatol. 15:569–578.PubMedGoogle Scholar
  212. 202.
    Nevasaari, K., and N. T. Kaerki. 1976. The effect of acetylcholine on bile flow. Arch. Int. Pharmacodyn. Ther. 221:283–293.PubMedGoogle Scholar
  213. 203.
    Fritz, M. E., and F. B. Brooks. 1963. Control of bile flow in the cholecystectomized dog. Am. J. Physiol. 204:825–828.PubMedGoogle Scholar
  214. 204.
    Baldwin, J., F. W. Heer, R. Albo, O. Paloso, L. Ruby, and W. Silen. 1966. Effect of vagus nerve stimulation on hepatic secretion of bile in human subjects. Am. J. Surg. 111:66–69.PubMedGoogle Scholar
  215. 205.
    Harty, R. F., R. C. Rose, and D. L. Nahrwald. 1974. Stimulation of hepatic bile secretion by dopamine. J. Surg. Res. 17:359–363.PubMedGoogle Scholar
  216. 206.
    Ho, K. J., and J. L. Drummond. 1975. Orcadianrhythm of biliary excretion and its control mechanisms in rats with chronic biliary drainage. Am. J. Physiol. 229:1427–1437.PubMedGoogle Scholar
  217. 207.
    Ho, K. J. 1976. Circadian distribution of bile acids in the entero-hepatic circulatory system in rats. Am. J. Physiol. 230:1331–1335.PubMedGoogle Scholar
  218. 208.
    Mitropoulos, K. A. 1975. Diurnal variations in bile acid metabolism. In: The Hepatobiliary System. W. Taylor, ed. Plenum Press, New York. pp. 409–427.Google Scholar
  219. 209.
    Hanzon, V. 1952. Liver cell secretion under normal and pathologic conditions studied by fluorescence microscopy on living rats. Acta Physiol. Scand. Suppl. 101 28:1–268.PubMedGoogle Scholar
  220. 210.
    Gebhardt, R., and W. Jung. 1982. Primary cultures of rat hepatocytes as a model system of canalicular development, biliary secretion, and intrahepatic cholestasis. I. Distribution of filipin-cholesterol complexes during de novo formation of bile canaliculi. Eur. J. Cell Biol. 29:68–76.PubMedGoogle Scholar
  221. 211.
    Goresky, C.A. 1977. Hepatic membrane carrier transport processes: Their involvement in bilirubin uptake. In: The Chemistry and Physiology of Bile Pigments. P. D. Berk and N. I. Berlin, eds. U.S. Government Printing Office, Washington, D.C. pp. 265–281.Google Scholar
  222. 212.
    Lee, K., and L. M. Gartner. 1978. Bilirubin binding by plasma proteins: A critical evaluation of methods and clinical implications. In: Reviews in Perinatal Medicine, Volume 2. E. M. Scarpelli and E. V. Cosmi, eds. Raven Press, New York. pp. 318–343.Google Scholar
  223. 213.
    Goodman, D. S. 1958. The interaction of human serum albumin with long-chain fatty acid anions. J. Am. Chem. Sco. 80:3892–3898.Google Scholar
  224. 214.
    Baker, K. J., and S. E. Bradley. 1966. Binding of sul-fobromophthalein (BSP) sodium by plasma albumin: Its role in hepatic BSP extraction. J. Clin. Invest. 45:281–287.PubMedGoogle Scholar
  225. 215.
    Goresky, C. A. 1964. Initial distribution and rate of uptake of sulfobromophthalein in the liver. Am. J. Physiol. 207:13–26.PubMedGoogle Scholar
  226. 216.
    Stremmel, W., N. Tavoloni, and P. D. Berk. 1983. Uptake of bilirubin by the liver. Semin. Liver Dis. 3:1–10.PubMedGoogle Scholar
  227. 217.
    Weisiger, R., J. Gollan, and R. Ockner. 1981. Receptor for albumin on the liver cell surface may mediate uptake of fatty acids and other albumin-bound substances. Science 211:1048–1051.PubMedGoogle Scholar
  228. 218.
    Weisiger, R. A., J. L. Gollan, and R. K. Ockner. 1982. The role of albumin in hepatic uptake processes. Prog. Liver Dis. 7:71–85.PubMedGoogle Scholar
  229. 219.
    Weisiger, R. A., C. Zacks, N. Smith, and J. L. Boyer. 1984. Effect of albumin on extraction of sulfobromophthalein by perfused elasmobranch liver: Evidence for dissociation-limited uptake. Hepatology 4:492–501.PubMedGoogle Scholar
  230. 220.
    Goresky, C.A. 1965. The hepatic uptake and excretion of sulfobromophthalein and bilirubin. Can. Med. Assoc. J. 92:851–857.PubMedGoogle Scholar
  231. 221.
    Hunton, D. B., J. L. Bollman, and H. N. Hoffman. 1961. II. The plasma removal of indocyanine green and sulfobromophthalein: Effect of dosage and blocking agents. J. Clin. Invest. 40:1648–1655.PubMedGoogle Scholar
  232. 222.
    Bloomer, J. R., and J. Zaccaria. 1976. Effect of graded loads on bilirubin transport by perfused rat liver. Am. J. Physiol. 230:736–742.PubMedGoogle Scholar
  233. 223.
    Scharschmidt, B. F., J. G. Waggoner, and P. D. Berk. 1975. Hepatic organic anion uptake in the rat. J. Clin. Invest. 56:1280–1292.PubMedGoogle Scholar
  234. 224.
    Paumgartner, G., and J. Reichen. 1976. Kinetics of hepatic uptake of unconjugated bilirubin. Clin. Sci. Mol. Med. 51:169–176.PubMedGoogle Scholar
  235. 225.
    Laperche, Y., A. M. Preux, G. Feldmann, J. L. Maha, and P. Berthelot. 1981. Effect of fasting on organic anion uptake by isolated rat liver cells. Hepatology 1:617–621.PubMedGoogle Scholar
  236. 226.
    Anwer, M. D., and D. Hegner. 1978. Effect of organic anions on bile acid uptake by isolated rat hepatocytes. Hoppe-Seylers Z. Physiol. Chem. 359:1027–1030.Google Scholar
  237. 227.
    Maha, J. L., P. Duvaldestin, D. Dhumeaux, and P. Berthelot. 1977. Biliary transport of cholephilic dyes: Evidence for two different pathways. Am. J. Physiol. 232.E445–E450.Google Scholar
  238. 228.
    Schwarz, L. R., R. Gozt, and C. D. Klaassen. 1979. Uptake of sulfobromophthalein-glutathione conjugate by isolated hepatocytes. Am. J. Physiol. 239:G118–G123.Google Scholar
  239. 229.
    von Dippe, P., P. Drain, and D. Levy. 1983. Synthesis and transport characteristics of photo affinity probes for the hepatocyte bile acid transport system. J. Biol. Chem. 258:8890–8895.Google Scholar
  240. 230.
    Reichen, J., and P. D. Berk. 1979. Isolation of an organic anion binding protein from rat liver plasma membrane fractions by affinity chromatography. Biochem. Biophys. Res. Commun. 91:484–489.PubMedGoogle Scholar
  241. 231.
    Wolkoff, A. W., and C. T. Chung. 1980. Identification, purification and partial characterization of an organic anion binding protein from rat liver cell plasma membrane. J. Clin. Invest. 65:1152–1161.PubMedGoogle Scholar
  242. 232.
    Stremmel, W., M. Gerber, V. Glezerov, S. N. Thung, S. Kochwa, and P. D. Berk. 1982. Physicochemical and immu-nohistological studies of a sulfobromophthalein-and bilirubin-binding protein from rat liver plasma membranes. Hepatology 2: 717a.Google Scholar
  243. 233.
    Tiribelli, C., G. Lunazzi, G. L. Luciana, E. Panfivi, B. Gazzin, G. Liut, G. Sandri, and G. Sottocasa. 1978. Isolation of a sul-fobromophthalein-binding protein from hepatocyte plasma membrane. Biochim. Biophys. Acta 532:105–112.PubMedGoogle Scholar
  244. 234.
    Stremmel, W., G. Strohmeyer, F. Borchard, S. Kochwa, and P. D. Berk. 1983. Isolation and partial characterization of a fatty acid binding protein from rat liver plasma membranes. Hepatology 3:823a.Google Scholar
  245. 235.
    Kramer, W., U. Bickel, H. P. Buscher, W. Gerok, and G. Kurz. 1980. Binding proteins for bile acids in membranes of hepatocytes revealed by photo affinity labelling. Hoppe-Seylers Z. Physiol. Chem. 361:1307a.Google Scholar
  246. 236.
    Levy, D., and P. von Dippe. 1983. Reconstitution of the bile acid transport system derived from hepatocyte sinusoidal membranes. Hepatology 3:837a.Google Scholar
  247. 237.
    Berk, P.D., T.F. Blaschke, and J.G. Waggoner. 1972.Defective BSP clearance in patients with constitutional hepatic dysfunction (Gilbert’s syndrome). Gastroenterology 63:472–481.PubMedGoogle Scholar
  248. 238.
    Martin, J. F., J. M. Vierling, A. W. Wolkoff, B. F. Scharschmidt, J. Vergalla, J. G. Waggoner, and P. D. Berk. 1976. Abnormal hepatic transport of indocyanine green in Gilbert’s syndrome. Gastroenterology 70:385–391.PubMedGoogle Scholar
  249. 239.
    Nambu, M., T. Namihisa, T. Yamashiro, H. Ohama, M. Maeda, and H. Ueda. 1980. Plasma disappearance of serum bile acids in patients with constitutional hyperbilirubinemia and constitutional ICG excretory defect. Jpn. J. Gastroenterol. 77:1369–1377.Google Scholar
  250. 240.
    Ohkubo, H., K. Okuda, and S. Iida. 1981. A constitutional unconjugated hyperbilirubinemia combined with indocyanine green intolerance: A new functional disorder? Hepatology 1:319–324.PubMedGoogle Scholar
  251. 241.
    Ketterer, B., B. Neumcke, and P. Lauger. 1971. Transport mechanism of hydrophobic ions through lipid bilayer membranes. J. Membr. Biol. 5:225–245.Google Scholar
  252. 242.
    Benz, R., P. Lauger, and K. Janko. 1976. Transport kinetics of hydrophobic ions in lipid bilayer membranes: Charge-pulse relaxation studies. Biochim. Biophys. Acta 455:701–720.PubMedGoogle Scholar
  253. 243.
    Levi, A. J., Z. Gatmaitan, and I. M. Arias. 1969. Two hepatic cytoplasmic protein fractions, Y and Z and their possible role in hepatic uptake of bilirubin, sulphobromphthalein, and other anions. J. Clin. Invest. 48:2156–2167.PubMedGoogle Scholar
  254. 244.
    Littwack, G., B. Ketterer, and I. M. Arias. 1971. Ligandin, a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions. Nature (London) 234:466–467.Google Scholar
  255. 245.
    Listowsky, I., Z. Gaitmaitan, and I. M. Arias. 1978. Ligandin retains and albumin loses bilirubin binding capacity in liver cyto-sol. Proc. Natl. Acad. Sci. USA 75:1213–1216.PubMedGoogle Scholar
  256. 246.
    Hales, B. F., and A. H. Neims. 1976. Developmental aspects of glutathione S-transferase B (ligandin) in rat liver. Biochem. J. 160:231–236.PubMedGoogle Scholar
  257. 247.
    Levi, A. J., Z. Gaitmaitan, and I. M. Arias. 1970. Deficiency of hepatic organic anion binding protein, impaired organic anion uptake by liver and ‘‘physiologic” jaundice in newborn monkeys. N. Engl. J. Med. 283:1136–1139.PubMedGoogle Scholar
  258. 248.
    Fleischner, G., J. Robbins, and I. M. Arias. 1972. Immunological studies of Y protein: A major cytoplasmic organic anion-binding protein in rat liver. J. Clin. Invest. 51:677–684.PubMedGoogle Scholar
  259. 249.
    Reyes, A., A. J. Levi, Z. Gaitmaitan, and I. M. Arias. 1971. Studies of Y & Z, two hepatic cytoplasmic organic anion-binding proteins: Effect of drugs, chemicals, hormones, and cholestasis. J. Clin. Invest. 50:2242–2252.PubMedGoogle Scholar
  260. 250.
    Kamisaka, K., I. Kistowsky, Z. Gaitmaitan, and I. M. Arias. 1975. Interactions of bilirubin and other ligands with ligandin. Biochemistry 14:2175–2180.PubMedGoogle Scholar
  261. 251.
    Boyer, J. L., J. Schwarz, and N. Smith. 1976. Biliary secretion in elasmobranchs. II. Hepatic uptake and biliary excretion of organic anions. Am. J. Physiol. 230:974–981.PubMedGoogle Scholar
  262. 252.
    Wolkoff, A. W., C. A. Goresky, J. Sellin, Z. Gaitmaitan, and I. M. Arias. 1979. Role of ligandin in transfer of bilirubin from plasma into liver. Am. J. Physiol. 236:E638–E648.PubMedGoogle Scholar
  263. 253.
    Sugiyama, Y., T. Yamada, and N. Kaplowitz. 1982. Newly identified organic anion-binding proteins in rat cytosol. Biochim. Biophys. Acta 709:342–352.PubMedGoogle Scholar
  264. 254.
    Redick, J. A., W. B. Jakoby, and J. Baron. 1982. Immu-nohistochemical localization of glutathione S-transferases in livers of untreated rats. J. Biol. Chem. 257:15200–15203.PubMedGoogle Scholar
  265. 254a.
    Vessey, D. A., J. Whitney, and J. L. Gollan. 1983. The role of conjugation reaction in enhancing biliary excretion of bile acids. Biochem. J. 214:923–927.PubMedGoogle Scholar
  266. 255.
    Gollan, J., and R. Schmid. 1982. Bilirubin update: Formation, transport and metabolism. Prog. Liver Dis. 8:261–283.Google Scholar
  267. 256.
    Whelan, G., J. Hoch, and B. Combes. 1970. A direct assessment of the importance of conjugation for biliary transport of sul-fobromphthalein sodium. J. Lab. Clin. Med. 75:542–557.PubMedGoogle Scholar
  268. 257.
    Wolkoff, A. W. 1983. Bilirubin metabolism and hyperbilirubinemia. Semin. Liver Dis. 3:1–83.Google Scholar
  269. 258.
    Gutstein, S., S. Alpert, and I. M. Arias. 1968. Studies of hepatic excretory function. IV. Biliary excretion of sulfobromophthalein sodium in a patient with the Dubin-Johnson syndrome and a biliary fistula. Isr. J. Med. Sci. 4:36–40.PubMedGoogle Scholar
  270. 259.
    Alpert, S., M. Mosher, A. Shanske, and I. M. Arias. 1969. Multiplicity of hepatic excretory mechanisms for organic anions. J. Gen. Physiol. 53:238–247.PubMedGoogle Scholar
  271. 260.
    Cornelius, C.E. 1969. Organic anion transport in mutant sheep with congenital hyperbilirubinemia. Arch. Environ. Health 19:852–856.PubMedGoogle Scholar
  272. 261.
    Clarenberg, R., and C. C. Kao. 1973. Shared and separate pathways for biliary excretion of bilirubin and BSP in rats. Am. J. Physiol. 225:192–200.Google Scholar
  273. 262.
    Boyer, J. L., R. L. Scheig, and G. Klatskin. 1970. The effect of sodium taurocholate on the hepatic metabolism of sulfobromophthalein sodium (BSP): The role of bile flow. J. Clin. Invest. 49:206–215.PubMedGoogle Scholar
  274. 263.
    Vonk, R. J., M. Danhof, T. Coenraads, A. B. D. van Doom, K. Keulemans, A. H. J. Scaf, and D. K. F. Meijer. 1979. Influence of bile salts on hepatic transport of dibromosulphthalein. Am. J. Physiol. 237:E524–E534.PubMedGoogle Scholar
  275. 264.
    Loeb, P. M., J. L. Barnhart, and R. N. Berk. 1978. The dependence of biliary excretion of iopanoic acid on bile salts. Gastroenterology 74:174–181.PubMedGoogle Scholar
  276. 265.
    Vonk, R. J., A. B. D. van Doom, A. H. J. Scaf, and D. K. F. Meijer. 1977. Choleresis and hepatic transport mechanisms. III. Binding of ouabain and K-strophanthoiside to biliary micelles and influence of choleresis on their biliary excretion. Naunyn-Schmiedebergs Arch. Pharmacol. 300:173–177.PubMedGoogle Scholar
  277. 266.
    Delage, Y., M. Dumont, and S. Erlinger. 1976. Effect of glycodihydrofusidate on sulfobromophthalein transport maximum in the hamster. Am. J. Physiol. 231:1875–1878.PubMedGoogle Scholar
  278. 267.
    Schanker, L. S., and H. M. Solomon. 1963. Active transport of quaternary ammonium compounds in bile. Am. J. Physiol. 204:829–832.PubMedGoogle Scholar
  279. 268.
    Schanker, L. S. 1968. Secretion of organic compounds in bile. In: Handbook of Physiology, Section 6. C. F. Code, ed. American Physiological Society, Washington, D. C. pp. 2433–2449.Google Scholar
  280. 269.
    Russell, J. Q., and C. D. Klaassen. 1972. Species variation in the biliary excretion of ouabain. J. Pharmacol. Exp. Ther. 103:513–519.Google Scholar
  281. 270.
    Meijer, D. K. F., R. J. Vonk, E. J. Scholtens, and W. G. Levine. 1976. The influence of dehydrocholate on hepatic uptake and excretion of 3H-taurocholate and 3H-ouabain. Drug Metab. Dispos. 4:1–7.PubMedGoogle Scholar
  282. 271.
    Erttmann, R. R., and K. H. Damm. 1975. Influence of bile flow, theophylline and some organic anions on the biliary excretion of 3H-ouabain in rats. Arch. Int. Pharmacodyn. Ther. 218:290–298.PubMedGoogle Scholar
  283. 272.
    Balint, J. A., E. C. Kyriakides, H. L. Spitzer, and E. S. Morrison. 1965. Lecithin fatty acid composition in bile and plasma of man, dogs, rats, and oxen. J. Lipid Res. 6:96–99.PubMedGoogle Scholar
  284. 273.
    Coleman, R., S. Iqbal, P. P. Godfrey, and D. Billington. 1979. Membranes and bile formation. Biochem. J. 178:201–208.PubMedGoogle Scholar
  285. 274.
    Mazer, N. A., and M. C. Carey. 1980. Quasielastic light scattering studies of aqueous biliary lipid systems: Cholesterol solubilization and precipitation in model bile solutions. Biochemistry 19:601–615.PubMedGoogle Scholar
  286. 275.
    Reuben, A., K. E. Howell, and J. L. Boyer. 1982. Effects of taurocholate on the size of mixed lipid micelles and their associa-tions with pigment and proteins in rat bile. J. Lipid Res. 23:1039–1052.PubMedGoogle Scholar
  287. 276.
    Turley, S. D., and J. M. Dietschy. 1979. Regulation of biliary cholesterol output in the rat: Dissociation from the rate of hepatic cholesterol synthesis, the size of the hepatic cholesteryl ester pool, and the hepatic uptake of chylomicron cholesterol. J. Lipid Res. 20:923–934.PubMedGoogle Scholar
  288. 277.
    Schwartz, C. C., M. Berman, Z.R. Vlahcevic, L.G. Halloran, D. H. Gregory, and L. Swell. 1978. Multicompartmental analysis of cholesterol metabolism in man: Characterization of the hepatic bile acid and biliary cholesterol precursor sites. J. Clin. Invest. 61:408–423.PubMedGoogle Scholar
  289. 278.
    Gregory, D. H., Z. R. Vlahcevic, P. Schatzki, and L. Swell. 1975. Mechanism of secretion of biliary lipids. I. Role of bile canalicular and microsomal membranes in the synthesis and transport of biliary lecithin and cholesterol. J. Clin. Invest. 55:105–114.PubMedGoogle Scholar
  290. 279.
    Robins, S. J., and H. Brunengraber. 1982. Origin of biliary cholesterol and lecithin in the rat: Contribution of new synthesis and preformed hepatic stores. J. Lipid Res. 23:604–608.PubMedGoogle Scholar
  291. 280.
    Small, D. M. 1970. The formation of gallstones. Adv. Inter. Med. 16:243–264.Google Scholar
  292. 281.
    Gregory, D. H., Z. R. Vlahcevic, P. Schatzki, and L. Swell. 1975. Mechanism of secretion of biliary lipid. I. Role of bile canalicular and microsomal membranes in the synthesis and transport of biliary lecithin and cholesterol. J. Clin. Invest. 55:105–114.PubMedGoogle Scholar
  293. 282.
    Lafont, H., D. Lairon, N. Domingo, G. Nalbone, and J. C. Hauton. 1974. Does a lecithin-polypeptide association in bile originate from membrane structural subunits? Biochimie 56:465–468.PubMedGoogle Scholar
  294. 283.
    Sewell, R. B., S. J. T. Mao, T. Kawamoto, and N. F. LaRusso. 1983. Apolipoproteins of high, low, and very low density lipoproteins in human bile. J. Lipid Res. 24:391–401.PubMedGoogle Scholar
  295. 284.
    Turley, S. D., and J. M. Dietschy. 1982. Cholesterol metabolism and excretion. In: The Liver: Biology and Pathobiology. I. Arias, H. Popper, D. Schacter, and D. A. Shafritz, eds. Raven Press, New York. pp. 467–492.Google Scholar
  296. 285.
    Montet, J. C., A. M. Montet, A. Gerolami, and J. C. Hauton. 1975. Effect of 3-acetoxy fusidate on the biliary secretion of lipids in the rat. Biol. Gastroenterol. 8:53–62.Google Scholar
  297. 286.
    Hardison, W. G. M., and J. T. Apter. 1972. Micellar theory of biliary cholesterol excretion. Am. J. Physiol. 222:61–67.PubMedGoogle Scholar
  298. 287.
    Soloway, R. D., A. F. Hofmann, P. J. Thomas, L. J. Schoenfield, and P. D. Klein. 1973. Triketocholanic (dehydrocholic) acid: Hepatic metabolism and effect on bile flow and biliary lipid secretion in man. J. Clin. Invest. 52:715–724.PubMedGoogle Scholar
  299. 288.
    Apstein, M. D., and S.J. Robbins. 1982. Effect of organic anions on biliary lipids in the rat. Gastroenterology 83:1120–1126.PubMedGoogle Scholar
  300. 289.
    Schaffer, E. A., and R. M. Preshaw. 1981. Effects of sul-fobromophthalein excretion on biliary lipid secretion in humans and dogs. Am. J. Physiol. 240.G85–G89.Google Scholar
  301. 290.
    Apstein, M. D., and A. R. Russo. 1982. Where does bilirubin inhibit biliary phospholipid and cholesterol secretion? Hepatology 2:143a.Google Scholar
  302. 291.
    Redinger, R. N., and D. M. Small. 1973. Primate biliary physiology. VIII. The effect of phenobarbital upon bile salt synthesis and pool size, biliary lipid secretion and bile composition. J. Clin. Invest. 52:161–172.PubMedGoogle Scholar
  303. 292.
    Strasberg, S. M., R. N. Redinger, D. M. Small, and R. H. Eg-dahl. 1982. The effect of elevated biliary tract pressure on biliary lipid metabolism and bile flow in nonhuman primates. J. Lab. Clin. Med. 99:342–353.PubMedGoogle Scholar
  304. 293.
    Dive, C. H., and J. F. Heremans. 1974. Nature and origin of the proteins in bile. I. Eur. J. Clin. Invest. 4:235–239.PubMedGoogle Scholar
  305. 294.
    Mullock, B. M., M. Dobrata, and R. H. Hinton. 1978. Sources of the proteins in rat liver. Biochim. Biophys. Acta 543:497–507.PubMedGoogle Scholar
  306. 295.
    Godfrey, P. P., M. J. Warner, and R. Coleman. 1981. Enzymes and proteins in bile. Biochem. J. 196:11–16.PubMedGoogle Scholar
  307. 296.
    Evans, W. H., T. Kremmer, and J. G. Culvenor. 1976. Role of membranes in bile formation: Comparison of the composition of bile and a liver bile canalicular plasma membrane fraction. Biochem. J. 154:589–595.PubMedGoogle Scholar
  308. 297.
    Kakis, G., and I. M. Yousef. 1978. Protein composition of rat bile. Can. J. Biochem. 56:287–290.PubMedGoogle Scholar
  309. 298.
    Mullock, B. M., R. H. Hinton, M. Dobrota, J. Peppard, and E. Orlans. 1980. Distribution of secretory component in hepatocytes and its mode of transfer into bile. Biochem. J. 190:819–826.PubMedGoogle Scholar
  310. 299.
    Hinton, R. H., M. Dobrota, and B. M. Mullock. 1980. Hap-toglobin-mediated transfer of haemoglobin from serum into bile. FEBS Lett. 112:247–250.PubMedGoogle Scholar
  311. 300.
    Jones, A. L., R. H. Renston, and S. J. Burwen. 1982. Uptake and intracellular disposition of plasma-derived proteins and apoproteins by hepatocytes. Prog. Liver Dis. 8:51–69.Google Scholar
  312. 301.
    Barnwell, S. G., P. P. Godfrey, P. J. Lowe, and R. Coleman. 1983. Biliary protein output by isolated perfused rat livers. Biochem. J. 210:549–557.PubMedGoogle Scholar
  313. 302.
    Thomas, P., C. A. Toth, and N. Zamcheck. 1982. The mechanism of biliary excretion of α1-acid glycoprotein in the rat: Evidence for a molecular weight-dependent, nonreceptor-mediated pathway. Hepatology 2:800–803.PubMedGoogle Scholar
  314. 303.
    Sternlieb, I. 1972. Functional implications of human portal and bile ductular ultrastructure. Gastroenterology 63:321–327.PubMedGoogle Scholar
  315. 304.
    Hardwicke, J., J. G. Rankin, K. J. Baker, and R. Preisig. 1964. The loss of protein in human and canine hepatic bile. Clin. Sci. 26:509–517.PubMedGoogle Scholar
  316. 305.
    Dive, C. H., R. A. Nadalini, J. P. Vaerman, and J. F. Heremans. 1974. Origin and nature of the proteins in bile. II. A comparative analysis of serum, hepatic lymph and bile proteins in the dog. Eur. J. Clin. Invest. 4:241–246.PubMedGoogle Scholar
  317. 306.
    Nagura, H., P. D. Smith, P. K. Nakane, and W. R. Brown. 1981. IgA in human bile and liver. J. Immunol. 126:587–595.PubMedGoogle Scholar
  318. 307.
    Renston, R. H., D. G. Maloney, A. L. Jones, G. T. Hradek, K. Y. Wong, and I. D. Goldfine. 1980. Bile secretory apparatus: Evidence for a vesicular transport mechanism for proteins in the rat, using horseradish peroxidase and 125 I-insulin. Gastroenterology 78:1373–1388.PubMedGoogle Scholar
  319. 308.
    Lee, S. P., T. H. Lim, and A. J. Scott. 1979. Carbohydrate moieties of glycoproteins in human hepatic and gallbladder bile, gallbladder mucosa and gallstones. Clin. Sci. Mol. Med. 56:533–538.Google Scholar
  320. 309.
    LaMont, J. T., A. S. Ventola, B. W. Trotman, and R. D. Soloway. 1983. Mucin content of human pigment gallstones. Hepatology 3:377–382.PubMedGoogle Scholar
  321. 310.
    Folsch, U. R., and K. G. Wormsley. 1977. The amino acid composition of rat bile. Experientia 33:1055–1056.PubMedGoogle Scholar
  322. 311.
    Fisher, M. M., and M. Kerly. 1964. Amino acid metabolism in the perfused rat liver. J. Physiol. (London) 174:273–294.Google Scholar
  323. 312.
    Bartoli, G., and H. Sies. 1978. Reduced and oxidized glutathione efflux from liver. FEBSLett. 86:89–91.Google Scholar
  324. 313.
    Bartoli, G. M., D. Haeberle, and H. Sies. 1978. Glutathione efflux from perfused rat liver and the relation to glutatione uptake by the kidney. In: Functions of Glutathione in Liver and Kidney. H. Sies and A. Wendel, eds. Springer-Verlag, Berlin, pp. 27–31.Google Scholar
  325. 314.
    Eberle, D., R. Clarke, and N. Kaplowitz. 1981. Rapid oxidation in vitro of endogenous and exogenous glutathione in bile of rats. J. Biol. Chem. 256:2115–2117.PubMedGoogle Scholar
  326. 315.
    Kaplowitz, N., D. E. Eberle, J. Petrini, J. Touloukian, M. C. Corvasce, and J. Kuhlenkamp. 1983. Factors influencing the efflux of hepatic glutathione into bile in rats. J. Pharmacol. Exp. Ther. 244:141–147.Google Scholar
  327. 316.
    Prasad, A. S. 1976. Trace Elements in Human Health and Disease, eds. Academic Press, New York.Google Scholar
  328. 317.
    Klaassen, C. D. 1975. Biliary excretion of xenobiotics. CRC Crit. Rev. Toxicol. 4:1–30.PubMedGoogle Scholar
  329. 318.
    Klaassen, C. D. 1976. Biliary excretion of metals. Drug Metab. Rev. 5:165–196.PubMedGoogle Scholar
  330. 319.
    Frommer, D. 1974. Defective biliary excretion of copper in Wilson’s disease. Gut 15:125.PubMedGoogle Scholar
  331. 320.
    Ballatori, N., and T. W. Clarkson. 1983. Biliary transport of glutathione and methylmercury. Am. J. Physiol. 144: G435–G441.Google Scholar
  332. 321.
    Grasbeck, R., W. Nyberg, and P. Reizenstein. 1958. Biliary and fecal vit B12 excretion in man: An isotope study. Proc. Soc. Exp. Biol. Med. 97:780–784.PubMedGoogle Scholar
  333. 322.
    Green, R., D. W. Jacobsen, S. V. Van Tonder, M. C. Kew, and J. Metz. 1981. Enterohepatic circulation of cobalamin in the non-human primate. Gastroenterology 81:773–776.PubMedGoogle Scholar
  334. 323.
    Kumar, R., S. Nagubandi, V. R. Mattox, and J. M. Londowski. 1980. Enterohepatic physiology of 1, 25-dihydroxyvitamin D3. J. Clin. Invest. 65:277–284.PubMedGoogle Scholar
  335. 324.
    Aldercreutz, H., and T. Luukainen. 1967. Biochemical and clinical aspects of the enterohepatic circulation of estrogens. Acta Endocrinol. Copenhagen Suppl. 124:101-140.Google Scholar
  336. 325.
    Laatikainen, T. 1970. Excretion of neutral steroid hormones in human bile. Ann. Clin. Res. 2(Suppl. 5): 1–28.Google Scholar
  337. 326.
    Taylor, W. 1971. The excretion of steroid hormone metabolites in bile and feces. Vitam. Horm. (N.Y.) 29:201–285.Google Scholar
  338. 327.
    Avner, D. L., and M. M. Berenson. 1982. Effect of choleretics on canalicular transport of protoporphyrin in the rat liver. Am. J. Physiol. 242:G347–G353.PubMedGoogle Scholar
  339. 328.
    Plaa, G. L., and B. G. Priestly. 1976. Intrahepatic cholestasis induced by drugs and chemicals. Pharmacol. Rev. 28:207–273.PubMedGoogle Scholar
  340. 329.
    Chenderovitch, J., S. Troupel, H. Renault, and J. Caroli. 1961. Le transfert du Na24 et du K52 du sang dans la bile chez le cobaye au cours de la cholérèse a débit bloqué (“stop-flow analysis”). Rev. Fr. Etud. Clin. Biol. 6:584–589.PubMedGoogle Scholar
  341. 330.
    Levine, R. A., and R. C. Hall. 1976. cAMP in secretin choleresis: Evidence for regulatory role in man and baboons but not in dogs. Gastroenterology 70:537–544.PubMedGoogle Scholar
  342. 331.
    Rene, E., R. G. Danzinger, A. F. Hofmann, and M. Nakagaki. 1983. Pharmacologic effect of somatostatin on bile formation in the dog: Enhanced ductular reabsorption on the major mechanism of anticholeresis. Gastroenterology 84:120–129.PubMedGoogle Scholar
  343. 332.
    Lewis, M. H., A. L. Baker, and A. R. Moossa. 1982. Effect of somatostatin on determinants of bile flow in unanesthetized dogs. Ann. Surg. 195:97–103.PubMedGoogle Scholar
  344. 333.
    Ricci, G. L., and J. Fevery. 1981. Cholestatic action of somatostatin in the rat: Effect on the different fractions of bile secretion. Gastroenterology 81:555–562.Google Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • James L. Boyer
    • 1
  1. 1.Liver Study Unit, Department of MedicineYale University School of MedicineNew HavenUSA

Personalised recommendations