Advertisement

Ion and Water Transport in the Intestine

  • Don W. Powell

Abstract

Disorders of membrane function in the gastrointestinal tract are frequent and cause significant morbidity and mortality. In the developed nations, diarrheal disease is a cause of loss of productivity at work, and death of neonatal livestock; thus, it is primarily of economic significance. However, in the Third World, diarrheal diseases account for the deaths of over 5 million infants and young children each year. Whereas such economic or social issues might direct the investigator to the gastrointestinal tract, its easy accessibility is perhaps the main reason why such research has flourished. As a result, studies of gastrointestinal tissue have added much to our understanding of mechanisms of transport in all epithelia.

Keywords

Brush Border Basolateral Membrane Vasoactive Intestinal Polypeptide Brush Border Membrane Vesicle Intestinal Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Binder, H. J., ed. 1979. Mechanisms of Intestinal Secretion. Liss, New York.Google Scholar
  2. 2.
    Field, M., J. S. Fordtran, and S. G. Schultz, eds. 1980. Secretory Diarrhea. American Physiological Society, Bethesda, Md.Google Scholar
  3. 3.
    Johnson, L. R., ed.-in-chief. 1981. Physiology of the Gastrointestinal Tract. Raven Press, New York.Google Scholar
  4. 4.
    Giebisch, G., D. C. Tosteson, and H. H. Ussing, eds. 1979. Membrane Transport in Biology, Volumes I-IVB. Springer-Verlag, Berlin.Google Scholar
  5. 5.
    Koefoed-Johnsen, V., and H. H. Ussing. 1958. The nature of the frog skin potential. Acta Physiol. Scand. 42:298–308.PubMedCrossRefGoogle Scholar
  6. 6.
    Crane, R. K. 1962. Hypothesis for mechanism of intestinal active transport of sugars. Fed. Proc. 21:891–895.PubMedGoogle Scholar
  7. 7.
    Curran, P. F. 1968. Twelfth Bowditch Lecture. Coupling between transport processes in intestine. Physiologist 1:3–23.Google Scholar
  8. 8.
    Diamond, J. M. 1977. Twenty-first Bowditch Lecture. The epithelial junction: Bridge, gate, and fence. Physiologist 20:10–18.PubMedGoogle Scholar
  9. 9.
    Curran, P. F., and J. R. Macintosh. 1962. A model system for biological water transport. Nature (London) 193:347–348.CrossRefGoogle Scholar
  10. 10.
    Diamond, J. M., and W. H. Bossert. 1967. Standing-gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia. J. Gen. Physiol. 50:2061–2083.PubMedCrossRefGoogle Scholar
  11. 11.
    Field, M. 1979. Intracellular mediators of secretion in the small intestine. In: Mechanisms of Intestinal Secretion. H. J. Binder, ed. Liss, New York. pp. 83–91.Google Scholar
  12. 12.
    Frizzell, R. A., and K. Heintze. 1979. Electrogenic chloride secretion by mammalian colon. In: Mechanisms of Intestinal Secretion. H. J. Binder, ed. Liss, New York. pp. 101–110.Google Scholar
  13. 13.
    Frizzell, R. A., M. Field, and S. G. Schultz. 1979. Sodium-coupled chloride transport by epithelial tissues. Am. J. Physiol. 236:F1–F8.PubMedGoogle Scholar
  14. 14.
    Frizzell, R. A., and M. E. Duffey. 1980. Chloride activities in epithelia. Fed. Proc. 39:2860–2864.PubMedGoogle Scholar
  15. 15.
    Turnberg, L. A., F. A. Bieberdorf, S. G. Morawski, and J. S. Fordtran. 1970. Interrelationships of chloride, bicarbonate, sodium, and hydrogen transport in the human ileum. J. Clin. Invest. 49:557–567.PubMedCrossRefGoogle Scholar
  16. 16.
    Krejs, G. J., and J. S. Fordtran. 1978. Physiology and pathophysiology of ion and water movement in the human intestine. In: Gastrointestinal Disease: Pathophysiology, Diagnosis, and Management, Volume II, 2nd ed. M. J. Sleisenger and J. S. Fordtran, eds. Saunders, Philadelphia. pp. 297–312.Google Scholar
  17. 17.
    Naftalin, R. J., and N. L. Simmons. 1979. The effects of theophylline and choleragen on sodium and chloride ion movements within isolated rabbit ileum. J. Physiol. (London) 290:331–350.Google Scholar
  18. 18.
    Holman, G. D., and R.J. Naftalin. 1979. Fluid movements across rabbit ileum coupled to passive paracellular ion movements. J. Physiol. (London) 290:351–366.Google Scholar
  19. 19.
    Holman, G. D., R. J. Naftalin, N. L. Simmons, and M. Walker. 1979. Electrophysiological and electron-microscopical correlations with fluid and electrolyte secretion in rabbit ileum. J. Physiol. (London) 290:367–386.Google Scholar
  20. 20.
    Moreno, J. H. 1975. Blockage of gallbladder tight-junction cation selective channels by 2, 4, 6-triaminopyrimidine (TAP). J. Gen. Physiol. 66:97–115.PubMedCrossRefGoogle Scholar
  21. 21.
    Nellans, H. N., R. A. Frizzell, and S. G. Schultz. 1973. Coupled sodium-chloride influx across the brush border of rabbit ileum. Am. J. Physiol. 225:467–475.PubMedGoogle Scholar
  22. 22.
    Nellans, H. N., R. A. Frizzell, and S. G. Schultz. 1975. Effect of acetazolamide on sodium and chloride transport by in vitro rabbit ileum. Am. J. Physiol. 228:1808–1814.PubMedGoogle Scholar
  23. 23.
    Schultz, S. G., P. F. Curran, R. A. Chez, and R. E. Fuisz. 1967. Alanine and sodium fluxes across mucosal border of rabbit ileum. J. Gen. Physiol. 50:1241–1260.PubMedCrossRefGoogle Scholar
  24. 24.
    Frizzell, R. A., H. N. Nellans, R. C. Rose, L. Markscheid-Kaspi, and S. G. Schultz. 1973. Intracellular Cl concentrations and influxes across the brush border of rabbit ileum. Am. J. Physiol. 224: 328–337.PubMedGoogle Scholar
  25. 25.
    Frizzell, R. A., P. L. Smith, E. Vosburgh, and M. Field. 1979. Coupled sodium-chloride influx across brush border of flounder intestine. J. Membr. Biol. 46:27–39.PubMedCrossRefGoogle Scholar
  26. 26.
    Field, M., K. J. Karnaky, P. L. Smith, J. E. Bolton, and W. B. Kinter. 1978. Ion transport across the isolated intestinal mucosa of the winter flounder, Pseudopleuronectes americanus. I. Functional and structural properties of cellular and paracellular pathways for Na and Cl. J. Membr. Biol. 41:265–293.PubMedCrossRefGoogle Scholar
  27. 27.
    Field, M., P. L. Smith, and J. E. Bolton. 1980. Ion transport across the isolated intestinal mucosa of the winter flounder, Pseudopleuronectes americanus. II. Effects of cyclic AMP. J. Membr. Biol. 55:157–163.PubMedCrossRefGoogle Scholar
  28. 28.
    Frizzell, R. A., M. C. Dugas, and S. G. Schultz. 1975. Sodium chloride transport by rabbit gallbladder: Direct evidence for a coupled NaCl influx process. J. Gen. Physiol. 65:769–795.PubMedCrossRefGoogle Scholar
  29. 29.
    Murer, H., U. Hopfer, and R. Kinne. 1976. Sodium/proton anti-port in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem. J. 154:597–604.PubMedGoogle Scholar
  30. 30.
    Liedtke, C.M., and U. Hopfer. 1977. Anion transport in brush border membranes isolated from rat small intestine. Biochem. Biophys. Res. Commun. 76:579–585.CrossRefGoogle Scholar
  31. 31.
    Günther, R. D., and E. M. Wright. 1983. Na+, Li+, and Cl transport by brush border membranes from rabbit jejunum. J. Membr. Biol. 74:85–94.PubMedCrossRefGoogle Scholar
  32. 32.
    Knickelbein, R., P. S. Aronson, W. Atherton, and J. W. Dobbins. 1983. Na and Cl transport across rabbit ileal brush border. I. Evidence for Na:H exchange. Am. J. Physiol. 245:G504–G510.PubMedGoogle Scholar
  33. 33.
    Benos, D. J. 1982. Amiloride: A molecular probe of sodium transport in tissues and cells. Am. J. Physiol. 242:C131–C145.PubMedGoogle Scholar
  34. 34.
    Dubinsky, W., and R. A. Frizzell. 1983. A novel effect of amiloride on H+-dependent Na+ transport. Am. J. Physiol. 245:C157–C159.PubMedGoogle Scholar
  35. 35.
    Warnock, D. G., and J. Eveloff. 1982. NaCl entry mechanisms in the luminal membrane of the renal tubule. Am. J. Physiol. 242:F561–F574.PubMedGoogle Scholar
  36. 36.
    Aronson, P. S., and S. E. Bounds. 1980. Harmaline inhibition of Na-dependent transport in renal microvillus membrane vesicles. Am. J. Physiol. 238:F210–F217.PubMedGoogle Scholar
  37. 37.
    Kinsella, J. L., and P. S. Aronson. 1980. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am. J. Physiol. 238:F461–F469.PubMedGoogle Scholar
  38. 38.
    Reenstra, W. W., D. G. Warnock, V. J. Yee, and J. G. Forte. 1981. Proton gradients in renal cortex brush-border membrane vesicles: Demonstration of a rheogenic proton flux with acridine orange. J. Biol. Chem. 256:11663–11666.PubMedGoogle Scholar
  39. 39.
    Warnock, D.G., W.W. Reenstra, and V. J. Yee. 1982.Na+/H+ antiporter of brush border vesicles: Studies with acridine orange uptake. Am. J. Physiol. 242:F733–F739.PubMedGoogle Scholar
  40. 40.
    Ericson, A. C, and K. R. Spring. 1982. Volume regulation by Necturus gallbladder: Apical Na+-H+ and Cl-HCO3 exchange. Am. J. Physiol. 243:C146–C150.PubMedGoogle Scholar
  41. 41.
    Weinman, S. A., and L. Reuss. 1982. Na+-H+ exchange at the apical membrane of Necturus gallbladder: Extracellular and intracellular pH studies. J. Gen. Physiol. 80:299–321.PubMedCrossRefGoogle Scholar
  42. 42.
    Liedtke, C. M., and U. Hopfer. 1982. Mechanism of Cl translocation across small intestinal brush-border membrane. II. Demonstration of Cl-OH exchange and Cl conductance. Am. J. Physiol. 242:G272–G280.PubMedGoogle Scholar
  43. 43.
    Knickelbein, R. G., P. S. Aronson, and J. W. Dobbins. 1982. Na-H and Cl-HCO3 exchange in rabbit ileal brush border membrane vesicles. Fed. Proc. 41:1494.Google Scholar
  44. 44.
    Fan, C. C., R. G. Faust, and D. W. Powell. 1983. Coupled NaCl transport by rabbit ileal brush border membrane vesicles. Am. J. Physiol. 244:G375–G385.PubMedGoogle Scholar
  45. 45.
    Warnock, D. G., and V. J. Yee. 1981. Chloride uptake by brush border membrane vesicles isolated from rabbit renal cortex: Coupling to proton gradients and K+ diffusion potentials. J. Clin. Invest. 67:103–115.PubMedCrossRefGoogle Scholar
  46. 46.
    Spring, K. R., and A. Hope. 1978. Size and shape of the lateral intercellular spaces in a living epithelium. Science 200:54–58.PubMedCrossRefGoogle Scholar
  47. 47.
    Fisher, R. S., B. E. Persson, and K. R. Spring. 1981. Epithelial cell volume regulation: Bicarbonate dependence. Science 214:1357–1360.PubMedCrossRefGoogle Scholar
  48. 48.
    Ericson, A. C., and K. R. Spring. 1982. Coupled NaCl entry into Necturus gallbladder epithelial cells. Am. J. Physiol. 243:C140–C145.PubMedGoogle Scholar
  49. 49.
    Spring, K. R., and A. C. Ericson. 1982. Epithelial cell volume modulation and regulation. J. Membr. Biol. 69:167–176.PubMedCrossRefGoogle Scholar
  50. 50.
    Liedtke, C. M., and U. Hopfer. 1982. Mechanism of Cl translocation across small intestinal brush-border membrane. I. Absence of Na+Cl cotransport. Am. J. Physiol. 242:G263–G271.PubMedGoogle Scholar
  51. 51.
    Eveloff, J., M. Field, R. Kinne, and H. Murer. 1980. Sodium-cotransport systems in intestine and kidney of the winter flounder. J. Comp. Physiol. 135:175–182.Google Scholar
  52. 52.
    Eveloff, J., and R. Kinne. 1983. Sodium-chloride transport in the medullary thick ascending limb of Henle’s loop: Evidence for a sodium-cbloride cotransport system in plasma membrane vesicles. J. Membr. Biol. 72:173–181.PubMedCrossRefGoogle Scholar
  53. 53.
    Friedman, P. A., and T. E. Andreoli. 1982. CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle: Evidence for synchronous Na+/H+ and C1/HCO3 exchange in apical plasma membranes. J. Gen. Physiol. 80:683–711.PubMedCrossRefGoogle Scholar
  54. 54.
    Musch, M. W., S. A. Orellana, L. S. Kimberg, M. Field, D. R. Halm, E. J. Krasny, Jr., and R. A. Frizzell. 1982. Na+-K+-Cl co-transport in the intestine of a marine teleost. Nature (London) 300:351–353.CrossRefGoogle Scholar
  55. 55.
    Davis, C. W., and A. L. Finn. 1983. K. Biophys. J. 41:81a.Google Scholar
  56. 56.
    Heintze, K., K. U. Petersen, and J. R. Wood. 1981. Effects of bicarbonate on fluid and electrolyte transport by guinea pig and rabbit gallbladder: Stimulation of absorption. J. Membr. Biol. 62:175–181.PubMedCrossRefGoogle Scholar
  57. 57.
    Petersen, K. U., J. R. Wood, G. Schulze, and K. Heintze. 1981. Stimulation of gallbladder fluid and electrolyte absorption by butyrate. J. Membr. Biol. 62:183–193.PubMedCrossRefGoogle Scholar
  58. 58.
    Humphreys, M. H., and L. Y. N. Chou. 1983. Anion effects on fluid absorption from rat jejunum perfused in vivo. Am. J. Physiol. 244:G33–G39.PubMedGoogle Scholar
  59. 59.
    Forsyth, G. W., R. A. Kapitany, and D. L. Hamilton. 1981. Organic acid proton donors decrease intestinal secretion caused by enterotoxins. Am. J. Physiol. 241:G227–G234.PubMedGoogle Scholar
  60. 60.
    Humphreys, M. H., and L. Y. N. Chou. 1979. Anion-stimulated ATPase activity of brush border from rat small intestine. Am. J. Physiol. 236:E70–E76.PubMedGoogle Scholar
  61. 61.
    Van Os, C. H., A. K. Mircheff, and E. M. Wright. 1977. Distribution of bicarbonate-stimulated ATPase in rat intestinal epithelium. J. Cell Biol. 73:257–260.PubMedCrossRefGoogle Scholar
  62. 62.
    Gazitua, S., and J. W. L. Robinson. 1982. Ion fluxes and electrical characteristics of the short-circuited rat colon in vitro. Pflügers Arch. 394:32–37.PubMedCrossRefGoogle Scholar
  63. 63.
    Powell, D. W., P. T. Johnson, J. C. Bryson, R. C. Orlando, and C. C. Fan. 1982. Effect of Phenolphthalein on monkey intestinal water and electrolyte transport. Am. J. Physiol. 243:G268–G275.PubMedGoogle Scholar
  64. 64.
    Kimmich, G. A. 1981. Intestinal absorption of sugar. In: Physiology of the Gastrointestinal Tract. L. R. Johnson, ed. Raven Press, New York. pp. 1035–1061.Google Scholar
  65. 65.
    Kimmich, G. 1983. Coupling stoichiometry and the energetic adequacy question. In: Intestinal Transport: Fundamental Comparative Aspects. M. Gilles-Baillien and R. Gilles, eds. Springer-Verlag, Berlin, pp. 87–102.CrossRefGoogle Scholar
  66. 66.
    Freel, R. W., and A. M. Goldner. 1981. Sodium-coupled non-electrolyte transport across epithelia: Emerging concepts and directions. Am. J. Physiol. 241:G451–G460.PubMedGoogle Scholar
  67. 67.
    White, J. F., and W. M. Armstrong. 1971. Effect of transported solutes on membrane potentials in bullfrog small intestine. Am. J. Physiol. 221:194–201.PubMedGoogle Scholar
  68. 68.
    Armstrong. W. M., W. R. Bixenman, K. F. Frey, J. F. Garcia-Diaz, M. G. O’Regan, and J. L. Owens. 1979. Energetics of coupled Na+ and Cl entry into epithelial cells of bullfrog small intestine. Biochim. Biophys. Acta 551:207–219.PubMedCrossRefGoogle Scholar
  69. 69.
    Rose, R. C., and S. G. Schultz. 1971. Studies on the electrical potential profile across rabbit ileum: Effects of sugars and amino acids on transmural electrical potential difference. J. Gen. Physiol. 57:639–663.PubMedCrossRefGoogle Scholar
  70. 70.
    Gunter-Smith, P. J., E. Grasset, and S. G. Schultz. 1982. Sodium-coupled amino acid and sugar transport by Necturus small intestine: An equivalent electrical circuit analysis of a rheogenic co-transport system. J. Membr. Biol. 66:25–39.PubMedCrossRefGoogle Scholar
  71. 71.
    Murer, H., and U. Hopfer. 1974. Demonstration of electrogenic Na+-dependent D-glucose transport in intestinal brush border membranes. Proc. Natl. Acad. Sci. USA 71:484–488.PubMedCrossRefGoogle Scholar
  72. 72.
    Beck, J. C., and B. Sacktor. 1975. Energetics of the Na+-depen-dent transport of D-glucose in renal brush border membrane vesicles. J. Biol. Chem. 250:8674–8680.PubMedGoogle Scholar
  73. 73.
    Carter-Su, C., and G. A. Kimmich. 1980. Effect of membrane potential on Na+-dependent sugar transport by ATP-depleted intestinal cells. Am. J. Physiol. 238:C73–C80.PubMedGoogle Scholar
  74. 74.
    Schultz, S. G. 1977. Sodium-coupled solute transport by small intestine: A status report. Am. J. Physiol. 233:E249–E254.PubMedGoogle Scholar
  75. 75.
    Kimmich, G. A., and J. Randies. 1979. Energetics of sugar transport by isolated intestinal epithelial cells: Effects of cytochalasin B. Am. J. Physiol. 237:C56–C63.PubMedGoogle Scholar
  76. 76.
    Kimmich, G. A., and J. Randies. 1981. α-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium. Am. J. Physiol. 241:C227–C232.PubMedGoogle Scholar
  77. 77.
    Kimmich, G. A., and J. Randies. 1980. Evidence for an intestinal Na+:sugar transport coupling stoichiometry of 2.0. Biochim. Biophys. Acta 596:439–444.PubMedCrossRefGoogle Scholar
  78. 78.
    Hilden, S., and B. Sacktor. 1982. Potential-dependent D-glucose uptake by renal brush border membrane vesicles in the absence of sodium. Am. J. Physiol. 242:F340–F345.PubMedGoogle Scholar
  79. 79.
    Beck, J. C., and B. Sacktor. 1978. The sodium electrochemical potential-mediated uphill transport of D-glucose in renal brush border membrane vesicles. J. Biol. Chem. 253:5531–5535.PubMedGoogle Scholar
  80. 80.
    Hopfer, U., and R. Groseclose. 1980. The mechanism of Na+-dependent D-glucose transport. J. Biol. Chem. 255:4453–4462.PubMedGoogle Scholar
  81. 81.
    Kaunitz, J. D., R. Günther, and E. M. Wright. 1982. Involvement of multiple sodium ions in intestinal D-glucose transport. Proc. Natl. Acad. Sci. USA 79:2315–2318.PubMedCrossRefGoogle Scholar
  82. 82.
    Moran, A., J. S. Handler, and R. J. Turner. 1982. Na+-depen-dent hexose transport in vesicles from cultured renal epithelial cell line. Am. J. Physiol. 243:C293–C298.PubMedGoogle Scholar
  83. 83.
    Aronson, P. S. 1978. Energy-dependence of phlorizin binding to isolated renal microvillus membranes: Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient and sugar transport. J. Membr. Biol. 42:81–98.PubMedCrossRefGoogle Scholar
  84. 84.
    Turner, R. J., and M. Silverman. 1981. Interaction of phlorizin and sodium with the renal brush-border membrane D-glucose transporter: Stoichiometry and order of binding. J. Membr. Biol. 58:43–55.PubMedCrossRefGoogle Scholar
  85. 85.
    Crane, R. K., P. Malathi, and H. Preiser. 1976. Reconstitution of specific Na+-dependent D-glucose transport in liposomes by Triton X-100 extracted proteins from purified brush border membranes of hamster small intestine. Biochem. Biophys. Res. Commun. 71:1010–1016.PubMedCrossRefGoogle Scholar
  86. 86.
    Crane, R. K., P. Malathi, H. Preiser, and P. Fairclough. 1978. Some characteristics of kidney Na+-dependent glucose carrier reconstituted into sonicated liposomes. Am. J. Physiol. 234:E1–E5.PubMedGoogle Scholar
  87. 87.
    Fairclough, P., P. Malathi, H. Preiser, and R. K. Crane. 1979. Reconstitution into liposomes of glucose active transport from the rabbit renal proximal tubule: Characteristics of the system. Biochim. Biophys. Acta 553:295–306.PubMedCrossRefGoogle Scholar
  88. 88.
    Kinne, R., and R. G. Faust. 1977. Incorporation of D-glucose-, L-alanine-and phosphate-transport systems from rat renal brush-border membranes into liposomes. Biochem. J. 168:311–314.PubMedGoogle Scholar
  89. 89.
    Lin, J. T., M. E. M. Da Cruz, S. Riedel, and R. Kinne. 1981. Partial purification of hog kidney sodium-D-glucose cotransport system by affinity chromatography on a phlorizin polymer. Biochim. Biophys. Acta 640:43–54.PubMedCrossRefGoogle Scholar
  90. 90.
    Klip, A., S. Grinstein, and G. Semenza. 1979. Partial purification of the sugar carrier of intestinal brush border membranes: Enrichment of the phlorizin-binding component by selective extractions. J. Membr. Biol. 51:47–73.PubMedCrossRefGoogle Scholar
  91. 91.
    Im, W. B., K. Y. Ling, and R. G. Faust. 1982. Partial purification of the Na+-dependent D-glucose transport system from renal brush border membranes. J. Membr. Biol. 65:131–137.PubMedCrossRefGoogle Scholar
  92. 92.
    Bissonnette, J. M., J. A. Black, K. L. Thornburg, K. M. Acott, and P. L. Koch. 1982. Reconstitution of D-glucose transporter from human placental microvillous plasma membranes. Am. J. Physiol. 242:C166–C171.PubMedGoogle Scholar
  93. 93.
    Schultz, S. G., and P. F. Curran. 1970. Coupled transport of sodium and organic solutes. Physiol. Rev. 50:637–718.PubMedGoogle Scholar
  94. 94.
    Fass, S. J., M. R. Hammerman, and B. Sacktor. 1977. Transport of amino acids in renal brush border membrane vesicles: Uptake of the neutral amino acid L-alanine. J. Biol. Chem. 252:583–590.PubMedGoogle Scholar
  95. 95.
    Sigrist-Nelson, K., H. Murer, and U. Hopfer. 1975. Active alanine transport in isolated brush border membranes. J. Biol. Chem. 250:5674–5680.PubMedGoogle Scholar
  96. 96.
    Rose, R. C. 1981. Transport and metabolism of water-soluble vitamins in intestine. Am. J. Physiol. 240:G97–G101.PubMedGoogle Scholar
  97. 97.
    Hildmann, B., C. Storelli, W. Haase, M. Barac-Nieto, and H. Murer. 1980. Sodium ion/L-lactate co-transport in rabbit small-intestinal brush-border-membrane vesicles. Biochem. J. 186:169–176.PubMedGoogle Scholar
  98. 98.
    Nord, E., S. H. Wright, I. Kippen, and E. M. Wright. 1982. Pathways for carboxylic acid transport by rabbit renal brush border membrane vesicles. Am. J. Physiol. 243:F456–F462.PubMedGoogle Scholar
  99. 99.
    Corcelli, A., G. Prezioso, F. Palmieri, and C. Storelli. 1982. Electroneutral Na+/dicarboxylic amino acid cotransport in rat intestinal brush border membrane vesicles. Biochim. Biophys. Acta 689:97–105.PubMedCrossRefGoogle Scholar
  100. 100.
    Wright, S. H., S. Krasne, I. Kippen, and E. M. Wright. 1981. Na+-dependent transport of tricarboxylic acid cycle intermediates by renal brush border membranes: Effect on fluorescence of a potential-sensitive cyanine dye. Biochim. Biophys. Acta 640:767–778.PubMedCrossRefGoogle Scholar
  101. 101.
    Heyman, M., A. M. Dumontier, and J. F. Desjeux. 1980. Xylose transport pathways in rabbit ileum. Am. J. Physiol. 238:G326–G331.PubMedGoogle Scholar
  102. 102.
    Wilson, F. A. 1981. Intestinal transport of bile acids. Am. J. Physiol. 241:G83–G92.PubMedGoogle Scholar
  103. 103.
    Lücke, H., G. Stange, R. Kinne, and H. Murer. 1978. Taurocho-late-sodium co-transport by brush-border membrane vesicles isolated from rat ileum. Biochem. J. 174:951–958.PubMedGoogle Scholar
  104. 104.
    Beesley, R. C., and R. G. Faust. 1979. Sodium ion-coupled uptake of taurocholate by intestinal brush-border membrane vesicles. Biochem. J. 178:299–303.PubMedGoogle Scholar
  105. 105.
    Lücke, H., G. Stange, and H. Murer. 1981. Sulfate-sodium cotransport by brush-border membrane vesicles isolated from rat ileum. Gastroenterology 80:22–30.PubMedGoogle Scholar
  106. 106.
    Smith, P. L., S. A. Orellana, and M. Field. 1981. Active sulfate absorption in rabbit ileum: Dependence on sodium and chloride and effects of agents that alter chloride transport. J. Membr. Biol. 63:199–206.PubMedCrossRefGoogle Scholar
  107. 107.
    Langridge-Smith, J. E., and M. Field. 1981. Sulfate transport in rabbit ileum: Characterization of the serosal border anion exchange process. J. Membr. Biol. 63:207–214.PubMedCrossRefGoogle Scholar
  108. 108.
    Langridge-Smith, J. E., J. H. Sellin, and M. Field. 1983. Sulfate influx across the rabbit ileal brush border membrane: Sodium and proton dependence, and substrate specificities. J. Membr. Biol. 72:131–139.PubMedCrossRefGoogle Scholar
  109. 109.
    Cheng, L., and B. Sacktor. 1981. Sodium gradient-dependent phosphate transport in renal brush border membrane vesicles. J. Biol. Chem. 256:1556–1564.PubMedGoogle Scholar
  110. 110.
    Berner, W., R. Kinne, and H. Murer. 1976. Phosphate transport into brush-border membrane vesicles isolated from rat small intestine. Biochem. J. 160:467–474.PubMedGoogle Scholar
  111. 111.
    Hoffmann, N., M. Thees, and R. Kinne. 1976. Phosphate transport by isolated renal brush border vesicles. Pflügers Arch. 362: 147–156.PubMedCrossRefGoogle Scholar
  112. 112.
    Danisi, G., J. P. Bonjour, and R. W. Straub. 1980. Regulation of Na-dependent phosphate influx across the mucosal border of duodenum by 1, 25-dihydroxycholecalciferol. Pflügers Arch. 388: 227–232.PubMedCrossRefGoogle Scholar
  113. 113.
    Murer, H., and B. Hildmann. 1981. Transcellular transport of calcium and inorganic phosphate in the small intestinal epithelium. Am. J. Physiol. 240:G409–G416.PubMedGoogle Scholar
  114. 114.
    Sellin, J. H., and M. Field. 1981. Physiologic and pharmacologic effects of glucocorticoids on ion transport across rabbit ileal mucosa in vitro. J. Clin. Invest. 67:770–778.PubMedCrossRefGoogle Scholar
  115. 115.
    Powell, D. W. 1978. Transport in large intestine. In: Membrane Transport in Biology. G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds. Springer-Verlag, Berlin, pp. 781–809.Google Scholar
  116. 116.
    Fromm, M., U. Hegel, S. Lüderitz. 1978. Segmental heterogeneity of epithelial transport in rat large intestine. Pflügers Arch. 378:71–83.PubMedCrossRefGoogle Scholar
  117. 117.
    Dawson, D. C., and P. F. Curran. 1976. Sodium transport by the colon of Bufo marinus: Na uptake across the mucosal border. J. Membr. Biol. 28:295–307.PubMedCrossRefGoogle Scholar
  118. 118.
    Dawson, D. C. 1977. Na and CI transport across the isolated turtle colon: Parallel pathways for transmural ion movement. J. Membr. Biol. 37:213–233.PubMedCrossRefGoogle Scholar
  119. 119.
    Thompson, S. M., and D. C. Dawson. 1978. Sodium uptake across the apical border of the isolated turtle colon: Confirmation of the two-barrier model. J. Membr. Biol. 42:357–374.PubMedCrossRefGoogle Scholar
  120. 120.
    Frizzell, R. A., M. J. Koch, and S. G. Schultz. 1976. Ion transport by rabbit colon. I. Active and passive components. J. Membr. Biol. 27:297–316.PubMedCrossRefGoogle Scholar
  121. 121.
    Schultz, S. G., R. A. Frizzell, and H. N. Nellans. 1977. Active sodium transport and the electrophysiology of rabbit colon. J. Membr. Biol. 33:351–384.PubMedCrossRefGoogle Scholar
  122. 122.
    Bindslev, N., A. W. Cuthbert, J. M. Edwardson, and E. Skadhauge. 1982. Kinetics of amiloride action in the hen coprodaeum in vitro. Pflügers Arch. 392:340–346.PubMedCrossRefGoogle Scholar
  123. 123.
    Binder, H. J., and C. L. Rawlins. 1973. Electrolyte transport across isolated large intestinal mucosa. Am. J. Physiol. 225:1232–1239.PubMedGoogle Scholar
  124. 124.
    Hawker, P. C., K. E. Mashiter, and L. A. Turnberg. 1978. Mechanisms of transport of Na, Cl, and K in the human colon. Gastroenterology 74:1241-1247.Google Scholar
  125. 125.
    Rask-Madsen, J., and K. Hjelt. 1977. Effect of amiloride on electrical activity and electrolyte transport in human colon. Scand. J. Gastroenterol. 12:1–6.PubMedGoogle Scholar
  126. 126.
    Frizzell, R. A., and K. Turnheim. 1978. Ion transport by rabbit colon. II. Unidirectional sodium influx and the effects of amphotericin B and amiloride. J. Membr. Biol. 40:193–211.PubMedCrossRefGoogle Scholar
  127. 127.
    Thompson, S. M., Y. Suzuki, and S. G. Schultz. 1982. The electrophysiology of rabbit descending colon. I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism. J. Membr. Biol. 66:41–54.PubMedCrossRefGoogle Scholar
  128. 128.
    Thompson, S. M., Y. Suzuki, and S. G. Schultz. 1982. The electrophysiology of rabbit descending colon. II. Current-voltage relations of the apical membrane, the basolateral membrane, and the parallel pathways. J. Membr. Biol. 66:55–61.PubMedCrossRefGoogle Scholar
  129. 129.
    Thompson, S. M., and D. C. Dawson. 1978. Cation selectivity of the apical membrane of the turtle colon: Sodium entry in the presence of lithium. J. Gen. Physiol. 72:269–282.PubMedCrossRefGoogle Scholar
  130. 130.
    Sarracino, S. M., and D. C. Dawson. 1979. Cation selectivity in active transport: Properties of the turtle colon in the presence of mucosal lithium. J. Membr. Biol. 46:295–313.CrossRefGoogle Scholar
  131. 131.
    Lindemann, B., and W. van Driessche. 1976. Sodium-specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover. Science 195:292–294.CrossRefGoogle Scholar
  132. 132.
    Aceves, J., and A. W. Cuthbert. 1979. Uptake of [3H] benzamil at different sodium concentrations: Inferences regarding the regulation of sodium permeability. J. Physiol. (London) 295:491–504.Google Scholar
  133. 133.
    Palmer, L. G. 1982. Na4” transport and flux ratio through apical Na+ channels in toad bladder. Nature (London) 297:688–690.CrossRefGoogle Scholar
  134. 134.
    Legris, G. J., P. C. Will, and U. Hopfer. 1982. Inhibition of amiloride-sensitive sodium conductance by indoleamines. Proc. Natl. Acad. Sci. USA 79:2046–2050.PubMedCrossRefGoogle Scholar
  135. 135.
    Schultz, S. G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through.” Am. J. Physiol. 241:F579–F590.PubMedGoogle Scholar
  136. 136.
    Turnheim, K., R. A. Frizzell, and S. G. Schultz. 1977. Effect of anions on amiloride-sensitive, active sodium transport across rabbit colon, in vitro: Evidence for “trans-inhibition” of the Na entry mechanism. J. Membr. Biol. 37:63–84.PubMedCrossRefGoogle Scholar
  137. 137.
    Frizzell, R. A., and S. G. Schultz. 1978. Effect of aldosterone on ion transport by rabbit colon in vitro. J. Membr. Biol. 39:1–26.PubMedCrossRefGoogle Scholar
  138. 138.
    Turnheim, K., R. A. Frizzell, and S. G. Schultz. 1978. Interaction between cell sodium and the amiloride-sensitive sodium entry step in rabbit colon. J. Membr. Biol. 39:233–256.PubMedCrossRefGoogle Scholar
  139. 139.
    Stirling, C. E. 1972. Radioautographic localization of sodium pump sites in rabbit intestine. J. Cell Biol. 53:704–714.PubMedCrossRefGoogle Scholar
  140. 140.
    Quigley, J. P., and G. S. Gotterer. 1969. Distribution of (Na+-K+)-stimulated ATPase activity in rat intestinal mucosa. Biochim. Biophys. Acta 173:456–468.PubMedCrossRefGoogle Scholar
  141. 141.
    Harms, V., and E. M. Wright. 1980. Some characteristics of Na/K-ATPase from rat intestinal basal lateral membranes. J. Membr. Biol. 53:119–128.PubMedCrossRefGoogle Scholar
  142. 142.
    Hokin, L. E. 1981. Topical review: Reconstitution of “carriers” in artificial membranes. J. Membr. Biol. 60:77–93.PubMedCrossRefGoogle Scholar
  143. 143.
    Hilden, S., H. M. Rhee, and L. E. Hokin. 1974. Sodium transport by phospholipid vesicles containing purified sodium and potassium ion-activated adenosine triphosphatase. J. Biol. Chem. 249:7432–7440.PubMedGoogle Scholar
  144. 144.
    Hilden, S., and L. E. Hokin. 1975. Active potassium transport coupled to active sodium transport in vesicles reconstituted from purified sodium and potassium ion-activated adenosine triphosphatase from the rectal gland of Squalus acanthias. J. Biol. Chem. 250:6296–6303.PubMedGoogle Scholar
  145. 145.
    Anner, B. M., L. K. Lane, A. Schwartz, and B. J. R. Pitts. 1977. A reconstituted Na+ +K+ pump in liposomes containing purified (Na++K+ )-ATPase from kidney medulla. Biochim. Biophys. Acta 467:340–345.PubMedCrossRefGoogle Scholar
  146. 146.
    Anner, B. M. 1980. Reconstitution of the Na+, K+-transport system in artificial membranes. Acta. Physiol. Scand. Suppl. 481:15–19.PubMedGoogle Scholar
  147. 147.
    Dixon, J. F., and L. E. Hokin. 1980. The reconstituted (Na, K)-ATPase is electrogenic. J. Biol. Chem. 255:10681–10686.PubMedGoogle Scholar
  148. 148.
    Kirk, K.L., D.R. Halm, and D. C. Dawson. 1980. Active sodium transport by turtle colon via an electrogenic Na-K exchange pump. Nature (London) 287:237–239.CrossRefGoogle Scholar
  149. 149.
    Thomas, R. C. 1972. Electrogenic sodium pump in nerve and muscle cells. Physiol. Rev. 52:563–593.PubMedGoogle Scholar
  150. 150.
    Nellans, H. N., and S. G. Schultz. 1976. Relations among trans-epithelial sodium transport, potassium exchange, and cell volume in rabbit ileum. J. Gen. Physiol. 68:441–463.PubMedCrossRefGoogle Scholar
  151. 151.
    Schultz, S. G. 1978. Is a coupled Na-K exchange “pump” involved in active transepithelial Na transport? A status report. Membr. Transp. Process 1:213–227.Google Scholar
  152. 152.
    Charney, A. N., and M. Donowitz. 1978. Functional significance of intestinal Na+-K+-ATPase: In vivo ouabain inhibition. Am. J. Physiol. 234:E629–E636.PubMedGoogle Scholar
  153. 153.
    Hafkenscheid, J. C. M. 1973. Occurrence and properties of a (Na +-K+) activated ATPase in the mucosa of the rat intestine. Pflügers Arch. 338:289–294.CrossRefGoogle Scholar
  154. 154.
    Mandel, L. J., and R. S. Balaban. 1981. Stoichiometry and coupling of active transport to oxidative metabolism in epithelial tissues. Am. J. Physiol. 240:F357–F371.PubMedGoogle Scholar
  155. 155.
    Esposito, G., A. Faelli, and V. Capraro. 1966. Metabolism and sodium transport in the isolated rat intestine. Nature (London) 210:307–308.CrossRefGoogle Scholar
  156. 156.
    Jackson, M. J., and L. M. Kutcher. 1977. Influence of ionic environment on intestinal oxygen consumption. Experientia 33:1061.PubMedCrossRefGoogle Scholar
  157. 157.
    Frizzell, R. A., L. Markscheid-Kaspi, and S. G. Schultz. 1974. Oxidative metabolism of rabbit ileal mucosa. Am. J. Physiol. 226:1142–1148.PubMedGoogle Scholar
  158. 158.
    Lester, R. G., and E. Grim. 1975. Substrate utilization and oxygen consumption by canine jejunal mucosa in vitro. Am. J. Physiol. 229:139–143.PubMedGoogle Scholar
  159. 159.
    Gilman, A., and E. S. Koelle. 1960. Substrate requirements for ion transport by rat intestine studied in vitro. Am. J. Physiol. 199:1025–1029.PubMedGoogle Scholar
  160. 160.
    Srivastava, L. M., and G. Hübscher. 1966. Glucose metabolism in the mucosa of the small intestine: Glycolysis in subcellular preparations from the cat and rat. Biochem. J. 100:458–466.PubMedGoogle Scholar
  161. 161.
    Nakayama, H., and E. Weser. 1972. Adaptation of small bowel after intestinal resection: Increase in the pentose phosphate pathway. Biochim. Biophys. Acta 279:416–423.PubMedCrossRefGoogle Scholar
  162. 162.
    Watford, M., P. Lund, and H. A. Krebs. 1979. Isolation and metabolic characteristics of rat and chicken enterocytes. Biochem. J. 178:589–596.PubMedGoogle Scholar
  163. 163.
    Windmueller, H. G., and A. E. Spaeth. 1978. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J. Biol. Chem. 253:69–76.PubMedGoogle Scholar
  164. 164.
    Henning, S. J., and F. J. R. Hird. 1972. Ketogenesis from buty-rate and acetate by the caecum and the colon of rabbits. Biochem. J. 130:785–790.PubMedGoogle Scholar
  165. 165.
    Roediger, W. E., and S. C. Truelove. 1979. Method of preparing isolated colonic epithelial cells (colonocytes) for metabolic studies. Gut 20:484–488.PubMedCrossRefGoogle Scholar
  166. 166.
    Roediger, W. E. W. 1980. Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21:793–798.PubMedCrossRefGoogle Scholar
  167. 167.
    Roediger, W. E. W. 1980. The colonic epithelium in ulcerative colitis: An energy-deficiency disease? Lancet 2:712–718.PubMedCrossRefGoogle Scholar
  168. 168.
    Reuss, L. E. 1979. Electrical properties of the cellular trans-epithelial pathway in Necturus gallbladder. III. Ionic permeability of the basolateral cell membrane. J. Membr. Biol. 47:239–259.PubMedCrossRefGoogle Scholar
  169. 169.
    Diamond, J. M. 1968. Transport mechanisms in the gallbladder. In: Handbook of Physiology, Section 6, Volume V. W. Heidel, ed. American Physiological Society, Washington, D.C. pp. 2451–2482.Google Scholar
  170. 170.
    Cremaschi, D., S. Henin, and G. Meyer. 1979. Stimulation by HCO3 of Na+ transport in rabbit gallbladder. J. Membr. Biol. 47:145–170.PubMedCrossRefGoogle Scholar
  171. 171.
    Heintze, K., K. U. Petersen, P. Olles, S. H. Saverymuttu, and J. R. Wood. 1979. Effects of bicarbonate on fluid and electrolyte transport by the guinea pig gallbladder: A bicarbonate-chloride exchange. J. Membr. Biol. 45:43–59.PubMedCrossRefGoogle Scholar
  172. 172.
    Duffey, M. E., K. Turnheim, R. A. Frizzell, and S. G. Schultz. 1978. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “uphill” chloride transport. J. Membr. Biol. 42:229–245.PubMedCrossRefGoogle Scholar
  173. 173.
    Armstrong, W. M., and S. J. Youmans. 1980. The role of bicarbonate ions and of adenosine 3′, 5′-monophosphate (cAMP) in chloride transport by epithelial cells of bullfrog small intestine. Ann. N.Y. Acad. Sci. 341:139–154.PubMedCrossRefGoogle Scholar
  174. 174.
    White, J. F. 1980. Bicarbonate-dependent chloride absorption in small intestine: Ion fluxes and intracellular chloride activities. J. Membr. Biol. 53:95–107.PubMedCrossRefGoogle Scholar
  175. 175.
    Wright, E. M., V. Harms, A. K. Mircheff, and C. H. Van Os. 1981. Transport properties of intestinal basolateral membranes. Ann. N.Y. Acad. Sci. 372:626–636.PubMedCrossRefGoogle Scholar
  176. 176.
    Hopfer, U., K. Sigrist-Nelson, E. Ammann, and H. Murer. 1976. Differences in neutral amino acid and glucose transport between brush border and basolateral plasma membrane of intestinal epithelial cells. J. Cell. Physiol. 89:805–810.PubMedCrossRefGoogle Scholar
  177. 177.
    Wright, E. M., C. H. Van Os, and A. K. Mircheff. 1980. Sugar uptake by intestinal basolateral membrane vesicles. Biochim. Biophys. Acta 597:112–124.PubMedCrossRefGoogle Scholar
  178. 178.
    Ling, K. Y., W. B. Im, and R. G. Faust. 1981. Na+-independent sugar uptake by rat intestinal and renal brush border and basolateral membrane vesicles. Int. J. Biochem. 13:693–700.PubMedCrossRefGoogle Scholar
  179. 179.
    Ling, K. Y., and R. G. Faust. 1983. Reconstitution of a partially purified Na+-independent D-glucose transport system from rat jejunal basolateral membranes. Int. J. Biochem. 15:27–34.PubMedCrossRefGoogle Scholar
  180. 180.
    Mircheff, A. K., C. H. Van Os, and E. M. Wright. 1980. Pathways for alanine transport in intestinal basal lateral membrane vesicles. J. Membr. Biol. 52:83–92.PubMedCrossRefGoogle Scholar
  181. 181.
    Christensen, H. N. 1979. Exploiting amino acid structure to learn about membrane transport. Adv. Enzymol. 49:41–101.PubMedGoogle Scholar
  182. 182.
    Davis, G. R., C. A. SantaAna, S. Morawski, and J. S. Fordtran. 1980. Active chloride secretion in the normal human jejunum. J. Clin. Invest. 66:1326–1333.PubMedCrossRefGoogle Scholar
  183. 183.
    Kuo, J. F. 1980. Cyclic nucleotide-dependent protein kinases: An overview. In: Progress in Pharmacology, Volume 4/1. H. Vapaatalo, ed. Fischer Verlag, Stuttgart, pp. 21–30.Google Scholar
  184. 184.
    De Jonge, H. R. 1981. Cyclic GMP-dependent protein kinase in intestinal brushborders. Adv. Cyclic Nucleotide Res. 14:315–333.PubMedGoogle Scholar
  185. 185.
    Berridge, M. J. 1981. Phosphatidylinositol hydrolysis: A multifunctional transducing mechanism. Mol. Cell. Endocrinol. 24:115–140.PubMedCrossRefGoogle Scholar
  186. 186.
    Donowitz, M. 1983. Ca+ + in the control of active intestinal Na and Cl transport: Involvement in neurohumoral action. Am. J. Physiol. 245:G165–G177.PubMedGoogle Scholar
  187. 187.
    Cheung, W. Y. 1980. Calmodulin plays a pivotal role in cellular regulation. Science 207:19–27.PubMedCrossRefGoogle Scholar
  188. 188.
    Powell, D. W., R. K. Farris, and S. T. Carbonetto. 1974. Theophylline, cyclic AMP, choleragen, and electrolyte transport by rabbit ileum. Am. J. Physiol. 227:1428–1435.PubMedGoogle Scholar
  189. 189.
    Powell, D. W. 1974. Intestinal conductance and permselectivity changes with theophylline and choleragen. Am. J. Physiol. 227:1436–1443.PubMedGoogle Scholar
  190. 190.
    Heintze, K., C. P. Stewart, and R. A. Frizzell. 1983. Sodium-dependent chloride secretion across rabbit descending colon. Am. J. Physiol. 244:G357–G365.PubMedGoogle Scholar
  191. 191.
    Al-Awqati, Q., M. Field, and W. B. Greenough, III. 1974. Reversal of cyclic AMP-mediated intestinal secretion by ethacrynic acid. J. Clin. Invest. 53:687–692.PubMedCrossRefGoogle Scholar
  192. 192.
    Heintze, K., M. Lies, H. Dohnen, and K. H. Sehring. 1982. Inhibition of chloride secretion and sodium absorption of rabbit colonic mucosa by ethacrynic acid. In: Electrolyte and Water Transport across Gastrointestinal Epithelia. R. M. Case, A. Garner, L. A. Turnberg, and J. A. Young, eds. Raven Press, New York. pp. 77–84.Google Scholar
  193. 193.
    Heintze, K., K. U. Petersen, and O. Heidenreich. 1982. Ster-eospecific inhibition by ozolinone of stimulated chloride secretion in rabbit colon descendens. Naunyn-Schmiedeberg’s Arch. Pharmacol. 318:363–367.CrossRefGoogle Scholar
  194. 194.
    Klyce, S. D., and R. K. S. Wong. 1977. Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium. J. Physiol. (London) 266:777–799.Google Scholar
  195. 195.
    Welsh, M. J., P. L. Smith, and R. A. Frizzell. 1982. Chloride secretion by canine tracheal epithelium. II. The cellular electrical potential profile. J. Membr. Biol. 70:227–238.PubMedCrossRefGoogle Scholar
  196. 196.
    Hyun, C. S., and G. A. Kimmich. 1982. Effect of cholera toxin on cAMP levels and Na+ influx in isolated intestinal epithelial cells. Am. J. Physiol. 243:C107–C115.PubMedGoogle Scholar
  197. 197.
    Diez de los Rios, A., N. E. DeRose, and W. M. Armstrong. 1981. Cyclic AMP and intracellular ionic activities in Necturus gallbladder. J. Membr. Biol. 63:25–30.CrossRefGoogle Scholar
  198. 198.
    Petersen, K. U., and L. Reuss. 1983. Cyclic AMP-induced chloride permeability in the apical membrane of Necturus gallbladder epithelium. J. Gen. Physiol. 81:705–729.PubMedCrossRefGoogle Scholar
  199. 199.
    De Jonge, H. R., and F. S. Van Dommelen. 1981. Cyclic GMP-dependent phosphorylation and ion transport in intestinal microvilli. Cold Spring Harbor Conference on Cell Proliferation—Protein Phosphorylation 8:1313–1332.Google Scholar
  200. 200.
    Fan, C. C., and D.W. Powell. 1983. Calcium-calmodulin inhibition of coupled NaCl transport in brush border membrane vesicles from rabbit ileum. Proc. Natl. Acad. Sci. USA 80:5248–5252.PubMedCrossRefGoogle Scholar
  201. 201.
    Rector, F. C., Jr. 1983. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am. J. Physiol. 244:F461–F471.PubMedGoogle Scholar
  202. 202.
    Flemström, G., A. Garner, O. Nylander, B. C. Hurst, and J. R. Heylings. 1982. Surface epithelial HCO3 transport by mammalian duodenum in vivo. Am. J. Physiol. 243:G348–G358.PubMedGoogle Scholar
  203. 203.
    Flemström, G., and A. Garner. 1982. Gastroduodenal HCO3 transport: Characteristics and proposed role in acidity regulation and mucosal protection. Am. J. Physiol. 242:G183–G193.PubMedGoogle Scholar
  204. 204.
    Turnberg, L. A., J. S. Fordtran, N. W. Carter, and F. C. Rector, Jr. 1970. Mechanism of bicarbonate absorption and its relationship to sodium transport in the human jejunum. J. Clin. Invest. 49:548–556.PubMedCrossRefGoogle Scholar
  205. 205.
    Powell, D. W., L. I. Solberg, G. R. Plotkin, D. H. Catlin, R. M. Maenza, and S. B. Formal. 1971. Experimental diarrhea. III. Bicarbonate transport in rat salmonella enterocolitis. Gastroenterology 60:1076–1086.PubMedGoogle Scholar
  206. 206.
    White, J. F., and M. A. Imon. 1981. Bicarbonate absorption by in vitro amphibian small intestine. Am. J. Physiol. 241:G389–G396.PubMedGoogle Scholar
  207. 207.
    Fordtran, J. S., F. C. Rector, Jr., and N. W. Carter. 1968. The mechanisms of sodium absorption in the human small intestine. J. Clin. Invest. 47:884–900.PubMedCrossRefGoogle Scholar
  208. 208.
    Sladen, G. E., and A.M. Dawson. 1968. Effect of bicarbonate on sodium absorption by the human jejunum. Nature (London) 218:267–268.CrossRefGoogle Scholar
  209. 209.
    Hubel, K. A. 1973. Effect of luminal sodium concentration on bicarbonate absorption in rat jejunum. J. Clin. Invest. 52:3172–3179.PubMedCrossRefGoogle Scholar
  210. 210.
    Podesta, R. B., and D. F. Mettrick. 1977. HCO3 transport in rat jejunum: Relationship to NaCl and H2O transport in vivo. Am. J. Physiol. 232:E62–E68.PubMedGoogle Scholar
  211. 211.
    Lucas, M. L., W. Schneider, F. J. Haberich, and J. A. Blair. 1975. Direct measurement by pH-microelectrode of the pH microclimate in rat proximal jejunum. Proc. R. Soc. London Ser. B 192:39–48.CrossRefGoogle Scholar
  212. 212.
    Jackson, M. J., and B. N. Morgan. 1975. Relations of weak-electrolyte transport and acid-base metabolism in rat small intestine in vitro. Am. J. Physiol. 228:482–487.PubMedGoogle Scholar
  213. 213.
    Blair, J. A., M. L. Lucas, and A. J. Matty. 1975. Acidification in the rat proximal jejunum. J. Physiol. (London) 245:333–350.Google Scholar
  214. 214.
    Lucas, M. L. 1976. The association between acidification and electrogenic events in the rat proximal jejunum. J. Physiol. (London) 257:645–662.Google Scholar
  215. 215.
    White, J. F. 1982. Intestinal electrogenic HCO3 absorption localized to villus epithelium. Biochim. Biophys. Acta 687:343–345.PubMedCrossRefGoogle Scholar
  216. 216.
    White, J. F., and M. A. Imon. 1983. A role for basolateral anion exchange in active jejunal absorption of HCO3 . Am. J. Phvsiol. 244:G397–G405.Google Scholar
  217. 217.
    Imon, M. A., and J. F. White. 1984. Association between HC03 absorption and K+ uptake by Amphiuma jejunum: Relation among HCO3 absorption, luminal K+ and intracellular K+ activity. Am. J. Physiol. 246:G732–G744.PubMedGoogle Scholar
  218. 218.
    Fiddian-Green, R. G., and W. Silen. 1975. Mechanisms of disposal of acid and alkali in rabbit duodenum. Am. J. Phvsiol. 229:1641–1648.Google Scholar
  219. 219.
    Fromm, D. 1973. Na and Cl transport across isolated proximal small intestine of the rabbit. Am. J. Physiol. 224:110–116.PubMedGoogle Scholar
  220. 220.
    Lew, V.L., and N.J. Carlisky. 1967. Evidence for a special type of bicarbonate transport in the isolated colonic mucosa of Bufo arenarum. Biochim. Biophys. Acta 135:793–796.PubMedCrossRefGoogle Scholar
  221. 221.
    Carlisky, N. J., and V. L. Lew. 1970. Bicarbonate secretion and non-Na component of the short-circuit current in the isolated colonic mucosa of Bufo arenarum. J. Physiol. (London) 206:529–541.Google Scholar
  222. 222.
    Lew, V. L. 1970. Short-circuit current and ionic fluxes in the isolated colonic mucosa of Bufo arenarum. J. Physiol. (London) 206:509–528.Google Scholar
  223. 223.
    Simson, J. N. L., A. Merhav, and W. Silen. 1981. Alkaline secretion by amphibian duodenum. I. General characteristics. Am. J. Physiol. 240:G401–G408.PubMedGoogle Scholar
  224. 224.
    Tai, Y., and R. A. Decker. 1980. Mechanisms of electrolyte transport in rat ileum. Am. J. Physiol. 238:G208–G212.PubMedGoogle Scholar
  225. 225.
    Powell, D. W., H. J. Binder, and P. F. Curran. 1972. Electrolyte secretion by the guinea pig ileum in vitro. Am. J. Phvsiol. 223:531–537.Google Scholar
  226. 226.
    Field, M., D. Fromm, and I. McColl. 1971. Ion transport in rabbit ileal mucosa. I. Na and Cl fluxes and short-circuit current. Am. J. Physiol. 220:1388–1396.PubMedGoogle Scholar
  227. 227.
    Sheerin, H. E., and M. Field. 1975. Ileal HCO3 secretion: Relationship to Na and Cl transport and effect of theophylline. Am. J. Physiol. 228:1065–1074.PubMedGoogle Scholar
  228. 228.
    Dietz, J., and M. Field. 1973. Ion transport in rabbit ileal mucosa. IV. Bicarbonate secretion. Am. J. Physiol. 225:858–861.PubMedGoogle Scholar
  229. 229.
    Hubel, K. A. 1974. The mechanism of bicarbonate secretion in rabbit ileum exposed to choleragen. J. Clin. Invest. 53:964–970.PubMedCrossRefGoogle Scholar
  230. 230.
    Donowitz, M., and H. J. Binder. 1976. Effect of enterotoxins of Vibrio cholerae, Escherichia coli, and Shigella dysenterize type 1 on fluid and electrolyte transport in the colon. J. Infect. Dis. 134:135–143.PubMedCrossRefGoogle Scholar
  231. 231.
    Field, M., and I. McColl. 1973. Ion transport in rabbit ileal mucosa. III. Effects of catecholamines. Am. J. Physiol. 225:852–857.PubMedGoogle Scholar
  232. 232.
    Davis. G. R.. S. G. Morawski. C. A. Santa Ana. and J. S. For-Google Scholar
  233. 233.
    Hubel, K. A. 1967. Bicarbonate secretion in rat ileum and its dependence on intraluminal chloride. Am. J. Physiol. 213:1409–1413.PubMedGoogle Scholar
  234. 234.
    Hubel, K. A. 1969. Effect of luminal chloride concentration on bicarbonate secretion in rat ileum. Am. J. Physiol. 217:40–45.PubMedGoogle Scholar
  235. 235.
    Phillips, S. F., and P. F. Schmalz. 1970. Bicarbonate secretion by the rat colon: Effect of intraluminal chloride and acetazolamide. Proc. Soc. Exp. Biol. Med. 135:116–121.PubMedGoogle Scholar
  236. 236.
    Binder, H. J., D. W. Powell, Y. H. Tai, and P. F. Curran. 1973. Electrolyte transport in rabbit ileum. Am. J. Physiol. 225:776–780.PubMedGoogle Scholar
  237. 237.
    Maren, T. H. 1977. Use of inhibitors in physiological studies of carbonic anhydrase. Am. J. Physiol. 232:F291–F297.PubMedGoogle Scholar
  238. 238.
    Gunter, P. J., and J. F. White. 1978. Evidence for electrogenic bicarbonate transport in Amphiuma small intestine. Biochim. Bi-ophys. Acta 507:549–551.CrossRefGoogle Scholar
  239. 239.
    Gunter-Smith, P. J., and J. F. White. 1979. Contribution of villus and intervillus epithelium to intestinal transmural potential difference and response to theophylline and sugar. Biochim. Biophys. Acta 557:425–435.PubMedCrossRefGoogle Scholar
  240. 240.
    White, J. F. 1980. Bicarbonate-dependent chloride absorption in small intestine: Ion fluxes and intracellular chloride activities. J. Membr.Biol. 53:95–107.PubMedCrossRefGoogle Scholar
  241. 241.
    Imon, M. A., and J. F. White. 1981. Intestinal bicarbonate secretion in Amphiuma measured by pH stat in vitro: Relationship with metabolism and transport of sodium and chloride ions. J. Physiol. (London) 314:429–443.Google Scholar
  242. 242.
    White, J. F. 1981. Chloride transport and intracellular chloride activity in the presence of theophylline in amphiuma small intestine. J. Physiol. (London) 321:331–341.Google Scholar
  243. 243.
    Imon, M. A., and J. F. White. 1981. The effect of theophylline on intestinal bicarbonate transport measured by pH stat in amphiuma. J. Physiol. (London) 321:343–354.Google Scholar
  244. 244.
    Imon, M. A., and J. F. White. 1981. Intestinal bicarbonate secretion in amphiuma measured by pH in vitro: Relationship with metabolism and transport of sodium and chloride ions. J. Physiol. (London) 314:429–443.Google Scholar
  245. 245.
    White, J. F., and M. A. Imon. 1982. Intestinal HCO3 secretion in Amphiuma: Stimulation by mucosal Cl and serosal Na+. J. Membr. Biol. 68:207–214.PubMedCrossRefGoogle Scholar
  246. 246.
    Simson, J. N. L., A. Merhav, and W. Silen. 1981. Alkaline secretion by amphibian duodenum. II. Short-circuit current and Na+ and Cl fluxes. Am. J. Physiol. 240:G472–G479.PubMedGoogle Scholar
  247. 247.
    Cummings, J. H. 1981. Short chain fatty acids in the human colon. Gut 22:763–779.PubMedCrossRefGoogle Scholar
  248. 248.
    Jackson, M. J. 1973–1974. Transport of short chain fatty acids. Biomembranes 4B:673–709.Google Scholar
  249. 249.
    Jackson, M. J., C. Y. Tai, and J. E. Steane. 1981. Weak electrolyte permeation in alimentary epithelia. Am. J. Physiol. 240:G191–G198.PubMedGoogle Scholar
  250. 250.
    Umesaki, Y., T. Yajima, T. Yokokura, and M. Mutai. 1979. Effect of organic acid absorption on bicarbonate transport in rat colon. Pflügers Arch. 379:43–47.PubMedCrossRefGoogle Scholar
  251. 251.
    Schmitt, M. G., Jr., K. H. Soergel, C. M. Wood, and J. J. Steff. 1977. Absorption of short-chain fatty acids from the human ileum. Dig. Dis. 22:340–347.CrossRefGoogle Scholar
  252. 252.
    Ruppin, H., S. Bar-Meir, K. H. Soergel, C. M. Wood, and M. G. Schmitt, Jr. 1980. Absorption of short-chain fatty acids by the colon. Gastroenterology 78:1500–1507.PubMedGoogle Scholar
  253. 253.
    McNeil, N. I., J. H. Cummings, and W. P. T. James. 1978. Short chain fatty acid absorption by the human large intestine. Gut 19:819–822.PubMedCrossRefGoogle Scholar
  254. 254.
    McNeil, N. I., J. H. Cummings, and W. P. T. James. 1979. Rectal absorption of short chain fatty acids in the absence of chloride. Gut 20:400–403.PubMedCrossRefGoogle Scholar
  255. 255.
    Argenzio, R. A., M. Southworth, J. E. Lowe, and C. E. Stevens. 1977. Interrelationship of Na, HCO3, and volatile fatty acid transport by equine large intestine. Am. J. Physiol. 233:E469–E478.PubMedGoogle Scholar
  256. 256.
    Hayslett, J. P., and H. J. Binder. 1982. Mechanism of potassium adaptation. Am. J. Physiol. 243:F103–F112.PubMedGoogle Scholar
  257. 257.
    Turnberg, L. A. 1971. Potassium transport in the human small bowel. Gut 12:811–818.PubMedCrossRefGoogle Scholar
  258. 258.
    Fromm, M., and S. G. Schultz. 1981. Potassium transport across rabbit descending colon in vitro: Evidence for single-file diffusion through a paracellular pathway. J. Membr. Biol. 63:93–98.PubMedCrossRefGoogle Scholar
  259. 259.
    Schultz, S. G. 1981. Potassium transport by rabbit descending colon, in vitro. Fed. Proc. 40:2408–2411.PubMedGoogle Scholar
  260. 260.
    Edmonds, C. J. 1967. The gradient of electrical potential difference and of sodium and potassium of the gut contents along the caecum and colon of normal and sodium-depleted rats. J. Physiol. (London) 193:571–588.Google Scholar
  261. 261.
    Edmonds, C. J. 1967. Transport of sodium and secretion of potassium and bicarbonate by the colon of normal and sodium-depleted rats. J. Physiol. (London) 193:589–602.Google Scholar
  262. 262.
    Edmonds, C. J. 1967. Transport of potassium by the colon of normal and sodium depleted rats. J. Physiol. (London) 193:603–617.Google Scholar
  263. 263.
    Edmonds, C. J., and T. Smith. 1979. Epithelial transport pathways of rat colon determined in vivo by impulse response analysis. J. Physiol. (London) 269:471–485.Google Scholar
  264. 264.
    Kliger, A. S., H. J. Binder, C. Basti, and J. P. Hayslett. 1981. Demonstration of active potassium transport in the mammalian colon. J. Clin. Invest. 67:1189–1196.PubMedCrossRefGoogle Scholar
  265. 265.
    Silva, P., A. N. Charney, and F. H. Epstein. 1975. Potassium adaptation and Na-K-ATPase activity in mucosa of colon. Am. J. Physiol. 229:1576–1579.PubMedGoogle Scholar
  266. 266.
    Fisher, K. A., H. J. Binder, and J. P. Hayslett. 1976. Potassium secretion by colonic mucosal cells after potassium adaptation. Am. J. Physiol. 231:987–994.PubMedGoogle Scholar
  267. 267.
    Binder, H. J. 1978. Effect of dexamethasone on electrolyte transport in the large intestine of the rat. Gastroenterology 75:212–217.PubMedGoogle Scholar
  268. 268.
    Basti, C. P., A. S. Kliger, H. J. Binder, and J. P. Hayslett. 1978. Characteristics of potassium secretion in the mammalian colon. Am. J. Physiol. 234:F48–F53.Google Scholar
  269. 269.
    Basti, C. P., H. J. Binder, and J. P. Hayslett. 1980. Role of glucocorticoids and aldosterone in maintenance of colonic cation transport. Am. J. Physiol. 238:F181–F186.Google Scholar
  270. 270.
    Hayslett, J. P., N. Myketey, H. J. Binder, and P. S. Aronson. 1980. Mechanism of increased potassium secretion in potassium loading and sodium deprivation. Am. J. Physiol. 239:F378–F382.PubMedGoogle Scholar
  271. 271.
    Foster, E. S., T. W. Zimmerman, J. P. Hayslett, and H. J. Binder. 1983. Corticosteroid alteration of active electrolyte transport in rat distal colon. Am. J. Physiol. 245:G668–G675.PubMedGoogle Scholar
  272. 272.
    Foster, E. S., G. I. Sandle, J. P. Hayslett, and H. J. Binder. 1983. Cyclic adenosine monophosphate stimulates active potassium secretion in the rat colon. Gastroenterology 84:324–330.PubMedGoogle Scholar
  273. 273.
    Archampong, E. Q., J. Harris, and C. G. Clark. 1972. The absorption and secretion of water and electrolytes across the healthy and the diseased human colonic mucosa measured in vitro. Gut 13:880–886.PubMedCrossRefGoogle Scholar
  274. 274.
    Bentley, P. J., and M. W. Smith. 1975. Transport of electrolytes across the helicoidal colon of the new-born pig. J. Physiol. (London) 249:103–117.Google Scholar
  275. 275.
    Yorio, T., and P. J. Bentley. 1977. Permeability of the rabbit colon in vitro. Am. J. Physiol. 232:F5–F9.PubMedGoogle Scholar
  276. 276.
    McCabe, R., H. J. Cooke, and L. P. Sullivan. 1982. Potassium transport by rabbit descending colon. Am. J. Physiol. 242:C81–C86.PubMedGoogle Scholar
  277. 277.
    Wills, N. K., and B. Biagi. 1982. Active potassium transport by rabbit descending colon epithelium. J. Membr. Biol. 64:195–203.PubMedCrossRefGoogle Scholar
  278. 278.
    Hayslett, J. P., J. Halevy, P. E. Pace, and H. J. Binder. 1982. Demonstration of net potassium absorption in mammalian colon. Am. J. Physiol. 242:G209–G214.PubMedGoogle Scholar
  279. 279.
    Civan, M. M. 1980. Potassium activities in epithelia. Fed. Proc. 39:2865–2870.PubMedGoogle Scholar
  280. 280.
    White, J. F. 1976. Intracellular potassium activities in Amphiuma small intestine. Am. J. Physiol. 231:1214–1219.PubMedGoogle Scholar
  281. 281.
    Wills, N. K., S. A. Lewis, and D. C. Eaton. 1979. Active and passive properties of rabbit descending colon: A microelectrode and mystatin study. J. Membr. Biol. 45:81–108.PubMedCrossRefGoogle Scholar
  282. 282.
    Gunter-Smith, P. J., and S. G. Schultz. 1982. Potassium transport and intracellular potassium activities in rabbit gallbladder. J. Membr. Biol. 65:41–47.PubMedCrossRefGoogle Scholar
  283. 283.
    Gustin, M. C., and D. B. P. Goodman. 1981. Isolation of brush-border membrane from the rabbit descending colon epithelium. J. Biol. Chem. 256:10651–10656.PubMedGoogle Scholar
  284. 284.
    Gustin, M. C., and D. B. P. Goodman. 1982. Characterization of the phosphorylated intermediate of the K+-ouabain-insensitive ATPase of the rabbit colon brush-border membrane. J. Biol. Chem. 257:9629–9633.PubMedGoogle Scholar
  285. 285.
    Fordtran, J. S., F. C. Rector, Jr., M. F. Ewton, N. Soter, and J. Kinney. 1965. Permeability characteristics of the human small intestine. J. Clin. Invest. 44:1935–1944.PubMedCrossRefGoogle Scholar
  286. 286.
    Soergel, K. H., G. E. Whalen, and J. A. Harris. 1968. Passive movement of water and sodium across the human small intestinal mucosa. J. Appl. Physiol. 24:40–48.PubMedGoogle Scholar
  287. 287.
    Davis, G. R., C. A. Santa Ana, S. G. Morawski, and J. S. For-dtran. 1982. Permeability characteristics of human jejunum, ileum, proximal colon and distal colon: Results of potential difference measurements and unidirectional fluxes. Gastroenterology 83:844–850.PubMedGoogle Scholar
  288. 288.
    Powell, D.W. 1981. Barrier function of epithelia. Am. J. Physiol. 241:G275–G288.PubMedGoogle Scholar
  289. 289.
    Bentzel, C. J., B. Hainau, S. Ho, S. W. Hui, A. Edelman, T. Anagnostopolus, and E. L. Benedetti. 1980. Cytoplasmic regulation of tight-junction permeability: Effect of plant cytokinins. Am. J. Physiol. 239:C75–C89.PubMedGoogle Scholar
  290. 290.
    Goerg, K. J., M. Gross, G. Nell, W. Rummel, and L. Schulz. 1980. Comparative study of the effect of cholera toxin and sodium deoxycholate on the paracellular permeability and on net fluid and electrolyte transfer in rat colon. Naunyn-Schmiedebergs Arch. Pharmacol. 312:91–97.PubMedCrossRefGoogle Scholar
  291. 291.
    Boulpaep, E. L., and H. Sackin. 1977. Role of the paracellular pathway in isotonic fluid movement across the renal tubule. Yale J. Biol. Med. 50:115–131.PubMedGoogle Scholar
  292. 292.
    Diamond, J. M. 1978. Solute-linked water transport in epithelia. In: Membrane Transport Processes. J. F. Hoffman, ed. Raven Press, New York. pp. 257–276.Google Scholar
  293. 293.
    Hill, A. 1980. Salt-water coupling in leaky epithelia. J. Membr. Biol. 56:177–182.PubMedCrossRefGoogle Scholar
  294. 294.
    Persson, B. E., and K. R. Spring. 1982. Gallbladder epithelial cell hydraulic water permeability and volume regulation. J. Gen. Physiol. 79:481–505.PubMedCrossRefGoogle Scholar
  295. 295.
    Feldman, G. M., and A. N. Charney. 1980. Effect of acute metabolic alkalosis and acidosis on intestinal electrolyte transport in vivo. Am. J. Physiol. 239:G427–G436.PubMedGoogle Scholar
  296. 296.
    Feldman, G. M., and A. N. Charney. 1982. Effect of acute respiratory alkalosis and acidosis on intestinal ion transport in vivo. Am. J. Physiol. 242:G486–G492.PubMedGoogle Scholar
  297. 297.
    Charney, A. N., and L. P. Haskell. 1983. Relative effects of systemic pH, PCO2 and HCO3 concentration on ileal ion transport. Am. J. Physiol. 245:G230–G235.PubMedGoogle Scholar
  298. 298.
    Kurtin, P., and A. N. Charney. 1984. Intestinal ion transport and intercellular pH during acute respiratory alkalosis and acidosis. Am. J. Physiol. 247:G24–G31.PubMedGoogle Scholar
  299. 299.
    Charney, A. N., M. Arnold, and N. Johnstone. 1983. Acute respiratory alkalosis and acidosis and rabbit intestinal ion transport in vivo. Am. J. Physiol. 244:G145–G150.PubMedGoogle Scholar
  300. 300.
    Aronson, P. S., J. Nee, and M. A. Suhm. 1982. Modifier role of internal H+ in activating the Na+-H+ exchanger in renal microvillus membrane vesicles. Nature (London) 299:161–163.CrossRefGoogle Scholar
  301. 301.
    Haynes, D. H. 1983. Mechanism of Ca2+ transport by Ca2+-Mg2+-ATPase pump: Analysis of major states and pathways. Am. J. Physiol. 244:G3–G12.PubMedGoogle Scholar
  302. 302.
    Mailman, D. 1982. Blood flow and intestinal absorption. Fed. Proc. 41:2096–2100.PubMedGoogle Scholar
  303. 303.
    Granger, D. N., P. D. I. Richardson, P. R. Kvietys, and N. A. Mortillaro. 1980. Intestinal blood flow. Gastroenterology 78:837–863.PubMedGoogle Scholar
  304. 304.
    Kvietys, P. R., and D. N. Granger. 1982. Regulation of colonic blood flow. Fed. Proc. 41:2106–2110.PubMedGoogle Scholar
  305. 305.
    Winne, D. 1979. Influence of blood flow on intestinal absorption of drugs and nutrients. J. Pharmacol. Exp. Ther. 6:333–393.CrossRefGoogle Scholar
  306. 306.
    Jacobson, E. D. 1982. Physiology of the mesenteric circulation. Physiologist 25:439–443.PubMedGoogle Scholar
  307. 307.
    Cedgard, S., D. A. Hallback, M. Jodal, O. Lundgren, and S. Redfors. 1978. The effects of cholera toxin on intramural blood flow distribution and capillary hydraulic conductivity in the cat small intestine. Acta Physiol. Scand. 102:148–158.PubMedCrossRefGoogle Scholar
  308. 308.
    Cassuto, J., M. Jodal, R. Turtle, and O. Lundgren. 1981. On the role of intramural nerves in the pathogenesis of cholera toxin-induced intestinal secretion. Scand. J. Gastroenterol. 16:377–384.PubMedCrossRefGoogle Scholar
  309. 309.
    Cassuto, J., M. Jodal, H. Sjövall, and O. Lundgren. 1981. Nervous control of intestinal secretion. Clin. Res. Rev. l(Suppl. 1):11–21.Google Scholar
  310. 310.
    Mainoya, J. R. 1975. Further studies on the action of prolactin on fluid and ion absorption by the rat jejunum. Endocrinology 96:1158–1164.PubMedCrossRefGoogle Scholar
  311. 311.
    Mainoya, J. R., H. A. Bern, and J. W. Regan. 1974. Influence of ovine prolactin on transport of fluid and sodium chloride by the mammalian intestine and gall bladder. J. Endocrinol. 63:311–317.PubMedCrossRefGoogle Scholar
  312. 312.
    Gray, T. K., P. Brannan, D. Juan, S. G. Morawski, and J. S. Fordtran. 1976. Ion transport changes during calcitonin-induced intestinal secretion in man. Gastroenterology 71:392–398.PubMedGoogle Scholar
  313. 313.
    Kisloff, B., and E. W. Moore. 1977. Effects of intravenous calcitonin on water, electrolyte, and calcium movement across in vivo rabbit jejunum and ileum. Gastroenterology 72:462–468.PubMedGoogle Scholar
  314. 314.
    Walling, M. W., T. A. Brasitus, and D. V. Kimberg. 1977. Effects of calcitonin and substance P on the transport of Ca, Na, and CI across rat ileum in vitro. Gastroenterology 73:89–94.PubMedGoogle Scholar
  315. 315.
    Blickenstaff, D. D. 1954. Increase in intestinal absorption of water from isosmotic saline following pitressin administration. Am. J. Physiol. 179:471–472.PubMedGoogle Scholar
  316. 316.
    Green, K., and A. J. Matty. 1966. Effects of vasopressin on ion transport across intestinal epithelia. Life Sci. 5:205–209.CrossRefGoogle Scholar
  317. 317.
    Cofré, G., and J. Crabbé. 1967. Active sodium transport by the colon of Bufo marinus: Stimulation by aldosterone and antidiuretic hormone. J. Physiol. (London) 188:177–190.Google Scholar
  318. 318.
    Bridges, R. J., G. Nell, and W. Rummel. 1983. Influence of vasopressin and calcium on electrolyte transport across isolated colonic mucosa of the rat. J. Physiol. (London) 338:463–475.Google Scholar
  319. 319.
    Field, M., G. R. Plotkin, and W. Silen. 1968. Effects of vasopressin, theophylline and cyclic adenosine monophosphate on short-circuit current across isolated rabbit ileal mucosa. Nature (London) 217:469–471.CrossRefGoogle Scholar
  320. 320.
    Soergel, K. H., G. E. Whalen, J. A. Harris, and J. E. Geenen. 1968. Effect of antidiuretic hormone on human small intestinal water and solute transport. J. Clin. Invest. 47:1071–1082.PubMedCrossRefGoogle Scholar
  321. 321.
    Levitan, R., and I. Mauer. 1968. Effect of intravenous antidiuretic hormone administration on salt and water absorption from the human colon. J. Lab. Clin. Med. 72:739–746.PubMedGoogle Scholar
  322. 322.
    Bentley, P. J. 1962. Studies on the permeability of the large intestine and urinary bladder of the tortoise (Testudo graeca) with special reference to the effects of neuro-hypophysial and adrenocortical hormones. Gen. Comp. Endocrinol. 2:323–328.CrossRefGoogle Scholar
  323. 323.
    Will, P. C., J. L. Lebowitz, and U. Hopfer. 1980. Induction of amiloride-sensitive sodium transport in the rat colon by miner-alocorticoids. Am. J. Physiol. 238:F261–F268.PubMedGoogle Scholar
  324. 324.
    Ferguson, D.R., P. S. James, J. Y. F. Paterson, J. C. Saunders, and M. W. Smith. 1979. Aldosterone induced changes in colonic sodium transport occurring naturally during development in the neonatal pig. J. Physiol. (London) 292:495–504.Google Scholar
  325. 325.
    Charney, A. N., J. Wallach, S. Ceccarelli, M. Donowitz, and C. L. Costenbader. 1981. Effects of spironolactone and amiloride on corticosteroid-induced changes in colonic function. Am. J. Physiol. 241:G300–G305.PubMedGoogle Scholar
  326. 326.
    Edmonds, C. J. 1972. Effect of aldosterone on mammalian intestine. J. Steroid Biochem. 3:143–149.PubMedCrossRefGoogle Scholar
  327. 327.
    Will, P. C., R. C. DeLisle, R. N. Cortright, and U. Hopfer. 1981. Induction of amiloride-sensitive sodium transport in the intestines by adrenal steroids. Ann. N.Y. Acad. Sci. 372:64–78.PubMedCrossRefGoogle Scholar
  328. 328.
    Lewis, S. A., and N. K. Wills. 1981. Localization of the aldosterone response in rabbit urinary bladder by-electrophysiological techniques. Ann. N.Y. Acad. Sci. 372:56–63.PubMedCrossRefGoogle Scholar
  329. 329.
    Charney, A. N., M. D. Kinsey, L. Myers, R. A. Giannella, and R. E. Gots. 1975. Na+-K+-activated adenosine triphosphatase and intestinal electrolyte transport: Effect of adrenal steroids. J. Clin. Invest. 56:653–660.PubMedCrossRefGoogle Scholar
  330. 330.
    Charney, A. N., J. D. Wallach, M. Donowitz, and N. Johnstone. 1982. Effect of cycloheximide on corticosteroid-induced changes in colonic function. Am. J. Physiol. 243:G112–G116.PubMedGoogle Scholar
  331. 331.
    Charney, A. N., and M. Donowitz. 1976. Prevention and reversal of cholera enterotoxin-induced intestinal secretion by methylpred-nisolone induction of Na+-K+-ATPase. J. Clin. Invest. 57:1590–1599.PubMedCrossRefGoogle Scholar
  332. 332.
    Marnane, W.G., Y. H. Tai, R.A. Decker, E.C. Boedeker, A.N. Charney, and M. Donowitz. 1981. Methylprednisolone stimulation of guanylate cyclase activity in rat small intestinal mucosa: Possible role in electrolyte transport. Gastroenterology 81:90–100.PubMedGoogle Scholar
  333. 333.
    Tai, Y. H., R. A. Decker, W. G. Marnane, A. N. Charney, and M. Donowitz. 1981. Effects of methylprednisolone on electrolyte transport in vitro rat ileum. Am. J. Physiol. 240:G365–G370.PubMedGoogle Scholar
  334. 334.
    Marusic, E. T., J. P. Hayslett, and H. J. Binder. 1981. Cor-ticosteroid-binding studies in cytosol of colonic mucosa of the rat. Am. J. Physiol. 240:G417–G423.PubMedGoogle Scholar
  335. 335.
    Fromm, D., M. Field, and W. Silen. 1969. Effects of insulin on sugar, amino acid, and ion transport across isolated small intestine. Surgery 66:145–151.PubMedGoogle Scholar
  336. 336.
    Crabbé, J. 1981. Stimulation by insulin of transepithelial sodium transport. Ann. N.Y. Acad. Sci. 372:220–234.PubMedCrossRefGoogle Scholar
  337. 337.
    Binder, H. J., J. Reinprecht, K. Dharmsathaphorn, and J. W. Dobbins. 1980. Intestinal peptide receptors. Regul. Pept. Suppl. 1:S10.CrossRefGoogle Scholar
  338. 338.
    Hicks, T., and L. A. Turnberg. 1973. The influence of secretin on ion transport in the human jejunum. Gut 14:485–490.PubMedCrossRefGoogle Scholar
  339. 339.
    Moritz, M., G. Finkelstein, H. Meshkinpour, J. Fingerut, and S. H. Lorber. 1973. Effect of secretin and cholecystokinin on the transport of electrolyte and water in human jejunum. Gastroenterology 64:76–80.PubMedGoogle Scholar
  340. 340.
    Gardner, J. D., G. W. Peskin, J.J. Cerda, and F. P. Brooks. 1966. Alterations of in vitro fluid and electrolyte absorption by gastrointestinal hormones. Am. J. Surg. 113:57–64.CrossRefGoogle Scholar
  341. 341.
    Hubel, K. A. 1972. Effects of secretin and glucagon on intestinal transport of ions and water in the rat. Proc. Soc. Exp. Biol. Med. 139:656–658.PubMedGoogle Scholar
  342. 342.
    Binder, H. J., G. F. Lemp, and J. D. Gardner. 1980. Receptors for vasoactive intestinal peptide and secretin on small intestinal epithelial cells. Am. J. Physiol. 238:G190–G196.PubMedGoogle Scholar
  343. 343.
    Smith, M. C., and M. J. Dunn. 1981. Renalkallikrein, kinins, and prostaglandins in hypertension. In: Hypertension. B. M. Brenner and J. H. Stein, eds. Churchill Livingstone, London, pp. 168–202.Google Scholar
  344. 344.
    Seki, T., T. Nakajima, and E. G. Erdös. 1972. Colon kallikrein, its relation to the plasma enzyme. Biochem. Pharmacol. 21:1227–1235.PubMedCrossRefGoogle Scholar
  345. 345.
    Al-Dhahir, H. A. R., and I. J. Zeitlin. 1982. Bile-induced colonic motility increase may be mediated by activation of a kallikrein-like enzyme. Br. J. Pharmacol. 76:188p.Google Scholar
  346. 346.
    Ward, P. E., M. A. Sheridan, K. J. Hammon, and E. G. Erdos. 1980. Angiotensin I converting enzyme (kininase II) of the brush border of human and swine intestine. Biochem. Pharmacol. 29:1525–1529.PubMedCrossRefGoogle Scholar
  347. 347.
    Regoli, D., and J. Barabé. 1980. Pharmacology of bradykinin and related kinins. Pharmacol. Rev. 32:1–46.PubMedGoogle Scholar
  348. 348.
    Crocker, A. D., and S. P. Willavoys. 1975. Effect of bradykinin on transepithelial transfer of sodium and water in vitro. J. Physiol. (London) 253:401–410.Google Scholar
  349. 349.
    Hardcastle, J., P. T. Hardcastle, R. J. Flower, and P. A. Sanford. 1978. The effect of bradykinin on the electrical activity of rat jejunum. Experientia 34:617–618.PubMedCrossRefGoogle Scholar
  350. 350.
    Cuthbert, A. W., and H. S. Margolius. 1982. Kinins stimulate net chloride secretion by the rat colon. Br. J. Pharmacol. 75:587–598.PubMedGoogle Scholar
  351. 351.
    Manning, D. C., S. H. Snyder, J. F. Kachur, R. J. Miller, and M. Field. 1982. Bradykinin receptor-mediated chloride secretion in intestinal function. Nature (London) 299:256–259.CrossRefGoogle Scholar
  352. 352.
    Musch, M. W., J. F. Kachur, R. J. Miller, M. Field, and J. S. Stoff. 1983. Bradykinin-stimulated electrolyte secretion in rabbit and guinea pig intestine: Involvement of arachidonic acid metabolites. J. Clin. Invest. 71:1073–1083.PubMedCrossRefGoogle Scholar
  353. 353.
    Musch, M. W., R. J. Miller, M. Field, and M. I. Siegel. 1982. Stimulation of colonic secretion by lipoxygenase metabolites of arachidonic acid. Science 217:1255–1256.PubMedCrossRefGoogle Scholar
  354. 354.
    Levens, N. R., M. J. Peach, and R. M. Carey. 1981. Interactions between angiotensin peptides and the sympathetic nervous system mediating intestinal sodium and water absorption in the rat. J. Clin. Invest. 67:1197–1207.PubMedCrossRefGoogle Scholar
  355. 355.
    Kimberg, D. V., M. Field, J. Johnson, A. Henderson, and E. Gershon. 1971. Stimulation of intestinal mucosal adenyl cyclase by cholera enterotoxin and prostaglandins. J. Clin. Invest. 50:1218–1230.PubMedCrossRefGoogle Scholar
  356. 356.
    Al-Awqati, Q., and W. B. Greenough, III. 1972. Prostaglandins inhibit intestinal sodium transport. Nature New Biol. 238:26–27.PubMedCrossRefGoogle Scholar
  357. 357.
    Racusen, L. C., and H. J. Binder. 1980. Effect of prostaglandin on ion transport across isolated colonic mucosa. Dig. Dis. Sci. 25:900–904.PubMedCrossRefGoogle Scholar
  358. 358.
    Pierce, N. F., C. C. J. Carpenter, Jr., H. L. Elliott, and W. B. Greenough, III. 1971. Effects of prostaglandins, theophylline, and cholera exotoxin upon transmucosal water and electrolyte movement in the canine jejunum. Gastroenterology 60:22–32.PubMedGoogle Scholar
  359. 359.
    Coupar, I. M., and I. McColl. 1975. Stimulation of water and sodium secretion and inhibition of glucose absorption from the rat jejunum during intraarterial infusions of prostaglandins. Gut 16:759–765.PubMedCrossRefGoogle Scholar
  360. 360.
    Bukhave, K., and J. Rask-Madsen. 1980. Saturation kinetics applied to in vitro effects of low prostaglandin E2 and F concentrations on ion transport across human jejunal mucosa. Gastroenterology 78:32–42.PubMedGoogle Scholar
  361. 361.
    Cummings, J. H., A. Newman, J. J. Misiewicz, G. J. Milton-Thompson, and J. A. Billings. 1973. Effect of intravenous prostaglandin F on small intestinal function in man. Nature (London) 243:169–171.CrossRefGoogle Scholar
  362. 362.
    Milton-Thompson, G. J., J. H. Cummings. A. Newman. J. A. Billings, and J. J. Misiewicz. 1975. Colonic and small intestinal response to intravenous prostaglandin F and E2 in man. Gut 16: 42–46.PubMedCrossRefGoogle Scholar
  363. 363.
    Robert, A., A. J. Hanchar, C. Lancaster, and J. E. Nezamis. 1979. Prostacyclin inhibits enteropooling and diarrhea. In: Prostacyclin. J. R. Vane and S. Bergström, eds. Raven Press, New York. pp. 147–158.Google Scholar
  364. 364.
    Vischer, P., and J. Casals-Stenzel. 1982. Pharmacological properties of ciloprost, a stable prostacyclin analogue, on the gastrointestinal tract. Prostaglandins Leukotrienes Med. 9:517–529.CrossRefGoogle Scholar
  365. 365.
    Simon, B., and H. Kather. 1980. Human colonic adenylate cyclase: Stimulation of enzyme activity by vasoactive intestinal peptide and various prostaglandins via distinct receptor sites. Digestion 20:62–67.PubMedCrossRefGoogle Scholar
  366. 366.
    Simon, B., H. Kather, and B. Kommerell. 1978. Prostacyclin: A potent activator of human colonic adenylate cyclase activity. Z. Gastroenterol. 12:748–751.Google Scholar
  367. 367.
    Robert, A., and M. J. Ruwart. 1982. Effects of prostaglandins on the digestive system. In: Prostaglandins. J. B. Lee, ed. Elsevier, Amsterdam, pp. 113–176.Google Scholar
  368. 368.
    Beubler, E., and H. Juan. 1977. The function of prostaglandins in transmucosal water movement and blood flow in the rat jejunum. Naunyn-Schmiedebergs Arch. Pharmacol. 299:89–94.PubMedCrossRefGoogle Scholar
  369. 369.
    Granger, D. N., P. R. Kvietys, M. A. Perry, and A. E. Taylor. 1980. Relationship between intestinal volume secretion and oxygen uptake. Dig. Dis. Sci. 27:42–48.CrossRefGoogle Scholar
  370. 370.
    Granger, D. N., J. S. Shackleford, and A. E. Taylor. 1979. PGE1 induced intestinal secretion: Mechanism of enhanced transmucosal protein efflux. Am. J. Physiol. 236:E788–E796.PubMedGoogle Scholar
  371. 371.
    Field, M., M. W. Musch, and J. S. Stoff. 1981. Role of prostaglandins in the regulation of intestinal electrolyte transport. In: Prostaglandins 21(Suppl.):73–79.Google Scholar
  372. 372.
    LeDuc, L. E., and P. Needleman. 1979. Regional localization of prostacyclin and thromboxane synthesis in dog stomach and intestinal tract. J. Pharmacol. Exp. Ther. 211:181–188.Google Scholar
  373. 373.
    LeDuc, L. E., and P. Needleman. 1980. Prostaglandin synthesis by dog gastrointestinal tract. In: Advances in Prostaglandin and Thromboxane Research, Volume 8. B. Samuelsson, P. W. Ramwell, and R. Paoletti, eds. Raven Press, New York. pp. 1515–1517.Google Scholar
  374. 374.
    Balaa, M. A., and D. W. Powell. 1983. Prostaglandin synthesis by isolated rabbit small intestinal enterocytes. Gastroenterology 84:1096a.Google Scholar
  375. 375.
    Burnstock, G. 1979. Non-adrenergic, non-cholinergic nerves in the intestine and their possible involvement in secretion. In: Mechanisms of Intestinal Secretion. H. J. Binder, ed. Liss, New York, pp. 147–174.Google Scholar
  376. 376.
    Florey, H. W., R. D. Wright, and M. A. Jennings. 1941. The secretions of the intestine. Physiol. Rev. 21:36–69.Google Scholar
  377. 377.
    Powell, D. W., and E. J. Tapper. 1979. Intestinal ion transport: Cholinergic-adrenergic interactions. In: Mechanisms of Intestinal Secretion. H. J. Binder, ed. Liss, New York. pp. 175–192.Google Scholar
  378. 378.
    Powell, D. W., and E. J. Tapper. 1979. Autonomic control of intestinal electrolyte transport. In: Frontiers of Knowledge in the Diarrheal Diseases. H. D. Janowitz and D. B. Sachar, eds. Projects in Health, Inc., Upper Montclair, N.J. pp. 37–52.Google Scholar
  379. 379.
    Gershon, M. D. 1981. The enteric nervous system: An apparatus for intrinsic control of gastrointestinal motility. Viewpoints Dig. Dis. 13:13–16.Google Scholar
  380. 380.
    Miller, R. J., J. F. Kachur, M. Field, and J. Rivier. 1981. Neurohumoral control of ileal electrolyte transport. Ann. N.Y. Acad. Sci. 372:571–593.PubMedCrossRefGoogle Scholar
  381. 381.
    Tapper, E.J. 1983. Local modulation of intestinal ion transport by enteric neurons. Am. J. Physiol. 244:G457–G468.PubMedGoogle Scholar
  382. 382.
    Furness, J. B., and M. Costa. 1980. Types of nerves in the enteric nervous system. Neurosciences 5:1–28.CrossRefGoogle Scholar
  383. 383.
    Polak, J. M., and S. R. Bloom. 1978. Peptidergic nerves of the gastrointestinal tract. Invest. Cell Pathol. 1:301–326.Google Scholar
  384. 384.
    Bishop, A. E., G. I. Ferri, L. Probert, S. R. Bloom, and J. M. Polak. 1981. Peptidergic nerves. Scand. J. Gastroenterol. Suppl. 71:43–59.Google Scholar
  385. 385.
    Furness, J. B., M. Costa, R. Murphy, A. M. Beardsley, J. R. Oliver, I. J. Llewellyn-Smith, R. L. Eskay, A. A. Shulkes, T. W. Moody, and D. K. Meyer. 1981. Detection and characterisation of neurotransmitters, particularly peptides, in the gastrointestinal tract. Scand. J. Gastroenterol. Suppl. 71:61–70.Google Scholar
  386. 386.
    Polak, J. M., A. M. J. Buchan, L. Probert, F. Tapia, J. DeMey, and S. R. Bloom. 1981. Regulatory peptides in endocrine cells and autonomic nerves. Scand. J. Gastroenterol. Suppl. 70:11–23.PubMedGoogle Scholar
  387. 387.
    Gershon, M. D. 1981. Serotonergic neurotransmission in the gut. Scand. J. Gastroenterol. Suppl. 71:27–42.Google Scholar
  388. 388.
    Mutt, V. 1982. Gastrointestinal hormones: A field of increasing complexity. Scand. J. Gastroenterol. Suppl. 77:133–152.PubMedGoogle Scholar
  389. 389.
    Dockray, G. J. 1981. Brain-gut peptides. Viewpoints Dig. Dis. 13:5–8.Google Scholar
  390. 390.
    Gabella, G. 1981. On the ultrastructure of the enteric nerve ganglia. Scand. J. Gastroenterol. Suppl. 71:15–25.Google Scholar
  391. 391.
    Lundberg, J. M., T. Hökfelt, G. Nilsson, L. Terenius, J. Rehfeld, R. Elde, and S. Said. 1978. Peptide neurons in the vagus, splanchnic and sciatic nerves. Acta Physiol. Scand. 104:499–501.PubMedCrossRefGoogle Scholar
  392. 392.
    Leeman, S. E., and R. Gamse. 1981. Substance P in sensory neurons. Trends Pharm. S. 2:119–121.CrossRefGoogle Scholar
  393. 393.
    Jiang, Z. G., N. J. Dun, and A.G. Karczmar. 1982. Substance P: A putative sensory transmitter in mammalian autonomic ganglia. Science 217:739–741.PubMedCrossRefGoogle Scholar
  394. 394.
    Wood, J. D. 1981. Physiology of the enteric nervous system. In: Physiology of the Gastrointestinal Tract. L. R. Johnson, ed. Raven Press, New York. pp. 1–37.Google Scholar
  395. 395.
    Burnstock, G. 1981. Ultrastructural identification of neurotransmitters. Scand. J. Gastroenterol. Suppl. 70:1–9.PubMedGoogle Scholar
  396. 396.
    Lundberg, J. M., A. Dahlström, A. Bylock, H. Ahlman, G. Pettersson, I. Larsson, H. A. Hansson, and J. Kewenter. 1978. Ultra-structural evidence for an innervation of epithelial entero-chromaffine cells in the guinea pig duodenum. Acta Physiol. Scand. 104:3–12.PubMedCrossRefGoogle Scholar
  397. 397.
    Newson, B., H. Ahlman, A. Dahlström, T. K. Das Gupta, and L. M. Nyhus. 1979. On the innervation of the ileal mucosa in the rat—A synapse. Acta Physiol. Scand. 105:387–389.PubMedCrossRefGoogle Scholar
  398. 398.
    Jacobowitz, D. 1965. Histochemical studies of the autonomic innervation of the gut. J. Pharmacol. Exp. Ther. 149:358–364.PubMedGoogle Scholar
  399. 399.
    Norberg, K. A. 1964. Adrenergic innervation of the intestinal wall studied by fluorescence microscopy. Int. J. Neurophar-macol. 3:379–382.CrossRefGoogle Scholar
  400. 400.
    Thomas, E. M., and D. Templeton. 1981. Noradrenergic innervation of the villi of rat jejunum. J. Auton. Nerv. Syst. 3:25–29.PubMedCrossRefGoogle Scholar
  401. 401.
    Schultzberg, M., T. Hökfelt, G. Nilsson, L. Terenius, J. F. Rehfeld, M. Brown, R. Elde, M. Goldstein, and S. Said. 1980. Distribution of peptide-and catecholamine-containing neurons in the gastro-intestinal tract of rat and guinea-pig: Immu-nohistochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gas-trin/cholecystokinin, neurotensin and dopamine β-hydroxylase. Neuroscience 5:689–744.PubMedCrossRefGoogle Scholar
  402. 402.
    Larsson, L. I. 1980. Peptide secretory pathways in GI tract: Cytochemical contributions to regulatory physiology of the gut. Am. J. Physiol. 239:G237–G246.PubMedGoogle Scholar
  403. 403.
    Solcia, E., C. Capella, R. Buffa, L. Usellini, R. Fiocca, B. Frigerio, P. Tenti, and F. Sessa. 1981. The diffuse endocrine-para-crine system of the gut in health and disease: Ultrastructural features. Scand. J. Gastroenterol. Suppl. 70:25–36.PubMedGoogle Scholar
  404. 404.
    Forsberg, E. J., and R. J. Miller. 1982. Cholinergic agonists induce vectorial release of serotonin from duodenal entero-chromaffin cells. Science 217:355–356.PubMedCrossRefGoogle Scholar
  405. 405.
    Ennis, C., P. A. J. Janssen, H. Schnieden, and B. Cox. 1979. Characterization of receptors on postganglionic cholinergic neurons in the guinea-pig isolated ileum. J. Pharm. Pharmacol. 31:217–221.PubMedCrossRefGoogle Scholar
  406. 406.
    Manber, L., and M. D. Gershon. 1979. A reciprocal adrenergic-cholinergic axoaxonic synapse in the mammalian gut. Am. J. Physiol. 236:E738–E745.PubMedGoogle Scholar
  407. 407.
    Wu, Z.A. C., and T. S. Gaginella. 1981. Functional properties of noradrenergic nervous system in rat colonic mucosa: Uptake of [3H]norepinephrine. Am. J. Physiol. 241:G137–G142.PubMedGoogle Scholar
  408. 408.
    Wu, Z. A. C., and T. S. Gaginella. 1981. Release of [3H]norepinephrine from nerves in rat colonic mucosa: Effects of norepinephrine and prostaglandin E2. Am. J. Physiol. 241:G416–G421.PubMedGoogle Scholar
  409. 409.
    Tapper, E. J., D. W. Powell, and S. M. Morris. 1978. Cholinergic-adrenergic interactions on intestinal ion transport. Am. J. Physiol. 235:E402–E409.PubMedGoogle Scholar
  410. 410.
    Crocker, A. D., and K. A. Munday. 1970. The effect of the renin-angiotensin system on mucosal water and sodium transfer in everted sacs of rat jejunum. J. Physiol. (London) 206:323–333.Google Scholar
  411. 411.
    Davies, N. T., K. A. Munday, and B. J. Parsons. 1970. The effect of angiotensin on rat intestinal fluid transfer. J. Endocrinol. 48:39–46.PubMedCrossRefGoogle Scholar
  412. 412.
    Davies, N. T., K. A. Munday, and B. J. Parsons. 1972. Studies on the mechanism of action of angiotensin on fluid transport by the mucosa of rat distal colon. J. Endocrinol. 54:483–492.PubMedCrossRefGoogle Scholar
  413. 413.
    Homych, A., P. Meyer, and P. Milliez. 1973. Angiotensin, vasopressin, and cyclic AMP: Effects on sodium and water fluxes in rat colon. Am. J. Physiol. 224:1223–1229.Google Scholar
  414. 414.
    Dolman, D., and C. J. Edmonds. 1975. The effect of aldosterone and the renin-angiotensin system on sodium, potassium and chloride transport by proximal and distal rat colon in vivo. J. Physiol. (London) 250:597–611.Google Scholar
  415. 415.
    Levens, N. R., K. A. Munday, B. J. Parsons, J. A. Poat, and C. P. Stewart. 1979. Noradrenaline as a possible mediator of the actions of angiotensin on fluid transport by rat jejunum in vivo. J. Physiol. (London) 286:351–360.Google Scholar
  416. 416.
    Levens, N. R., M. J. Peach, R. M. Carey, J. A. Poat, and K. A. Munday. 1981. Response of rat jejunum to angiotensin II: Role of norepinephrine and prostaglandins. Am. J. Physiol. 240:G17–G24.PubMedGoogle Scholar
  417. 417.
    Dorey, P. G., K. A. Munday, B. J. Parsons, J. A. Poat, and M. E. Upsher. 1981. Effect of chemical sympathectomy and ganglion blockade on angiotensin-stimulated fluid absorption in the rat jejunum. J. Endocrinol. 91:205–211.PubMedCrossRefGoogle Scholar
  418. 418.
    Cassuto, J., M. Jodal, R. Tuttle, and O. Lundgren. 1979. The effect of lidocaine on the secretion induced by cholera toxin in the cat small intestine. Experientia 35:1467–1468.PubMedCrossRefGoogle Scholar
  419. 419.
    Cassuto, J., J. Fahrenkrug, M. Jodal, R. Tuttle, and O. Lundgren. 1981. Release of vasoactive intestinal polypeptide from the cat small intestine exposed to cholera toxin. Gut 22:958–963.PubMedCrossRefGoogle Scholar
  420. 420.
    Karlström, L., J. Cassuto, M. Jodal, and O. Lundgren. 1980. The effect of hexamethonium on the secretion induced by sodium de-oxycholate in the rat jejunum. Experientia 37:991–992.CrossRefGoogle Scholar
  421. 421.
    Gaginella, T. S., and T. M. O’Dorisio. 1979. Vasoactive intestinal polypeptide: Neuromodulator of intestinal secretion? In: Mechanisms of Intestinal Secretion. H. J. Binder, ed. Liss, New York. pp. 231–247.Google Scholar
  422. 422.
    Powell, D. W. 1983. Neurological control mechanisms: Neurohumoral control of intestinal secretion. In: Intestinal Secretion. L. A. Turnberg, ed. Smith, Kline and French Laboratories Limited Oxford, pp. 42–45.Google Scholar
  423. 423.
    Blickenstaff, D. D., and L. J. Lewis. 1952. Effect of atropine on intestinal absorption of water and chloride. Am. J. Physiol. 170:17–23.PubMedGoogle Scholar
  424. 424.
    Hubel, K. A. 1976. Intestinal ion transport: Effect of norepinephrine, pilocarpine, and atropine. Am. J. Physiol. 231:252–257.PubMedGoogle Scholar
  425. 425.
    Morris, A. I., and L. A. Turnberg. 1980. The influence of a parasympathetic agonist and antagonist on human intestinal transport in vivo. Gastroenterology 79:861–866.PubMedGoogle Scholar
  426. 426.
    Hubel, K. A. 1977. Effects of bethanechol on intestinal ion transport in the rat. Proc. Soc. Exp. Biol. Med. 154:41–44.PubMedGoogle Scholar
  427. 427.
    Browning, J. G., J. Hardcastle, P. T. Hardcastle, and P. A. San-ford. 1977. The role of acetylcholine in the regulation of ion transport by rat colon mucosa. J. Physiol. (London) 272:737–754.Google Scholar
  428. 428.
    Wu, Z. A. C., S. D. Kisslinger, and T. S. Gaginella. 1982. Functional evidence for the presence of cholinergic nerve endings in the colonic mucosa of the rat. J. Pharmacol. Exp. Ther. 221:664–669.PubMedGoogle Scholar
  429. 429.
    Isaacs, P. E. T., C. L. Corbett, A. K. Riley, P. C. Hawker, and L. A. Turnberg. 1976. In vitro behavior of human intestinal mucosa: The influence of acetyl choline on ion transport. J. Clin. Invest. 58:535–542.PubMedCrossRefGoogle Scholar
  430. 430.
    Browning, J. G., J. Hardcastle, P. T. Hardcastle, and J. S. Red-fern. 1977. Site of action of acetylcholine in regulating intestinal epithelial ion transport in the rat. J. Physiol. (London) 270:78–79.Google Scholar
  431. 431.
    Zimmerman, T. W., J. W. Dobbins, and H. J. Binder. 1982. Mechanism of cholinergic regulation of electrolyte transport in rat colon in vitro. Am. J. Physiol. 242:G116–G123.PubMedGoogle Scholar
  432. 432.
    Zimmerman, T. W., and H. J. Binder. 1983. Effect of tetrodotox-in on cholinergic-mediated colonic electrolyte transport. Am. J. Physiol. 244:G386–G391.PubMedGoogle Scholar
  433. 433.
    Browning, J. G., J. Hardcastle, P. T. Hardcastle, and J. S. Red-fern. 1978. Localization of the effect of acetylcholine in regulating intestinal ion transport. J. Physiol. (London) 281:15–27.Google Scholar
  434. 434.
    Rimele, T. J., T. M. O’Dorisio, and T. S. Gaginella. 1981. Evidence for muscarinic receptors on rat colonic epithelial cells: Binding of [3H] quinuclidinyl benzilate. J. Pharmacol. Exp. Ther. 218:426–434.PubMedGoogle Scholar
  435. 435.
    Rimele, T. J., and T. S. Gaginella. 1982. Binding of [3H] quinuclidinyl benzilate to intestinal mucus. Biochem. Pharmacol. 31:515–520.PubMedCrossRefGoogle Scholar
  436. 436.
    Rimele, T. J., and T. S. Gaginella. 1982. In vivo identification of muscarinic receptors on rat colonic epithelial cells: Binding of [3H]quinuclidinyl benzilate. Naunyn-Schmiedebergs Arch. Pharmacol. 319:18–21.PubMedCrossRefGoogle Scholar
  437. 437.
    Zimmerman, T. W., and H.J. Binder. 1982. Muscarinic receptors on rat isolated colonic epithelial cells: A correlation between inhibition of [3H]-quinuclidinyl benzilate binding and alteration in ion transport. Gastroenterology 83:1244–1251.PubMedGoogle Scholar
  438. 438.
    Morisset, J., L. Geoffrion, L. Larose, J. Lanöe, and G. G. Poirier. 1981. Distribution of muscarinic receptors in the digestive tract organs. Pharmacology 22:189–195.PubMedCrossRefGoogle Scholar
  439. 439.
    Isaacs, P. E. T., J. S. Whitehead, and Y. S. Kim. 1982. Muscarinic acetylcholine receptors of the small intestine and pancreas of the rat: Distribution and the effect of vagotomy. Clin. Sci. 62:203–207.PubMedGoogle Scholar
  440. 440.
    Hedlund, B., J. Abens, and T. Bartfai. 1983. Vasoactive intestinal polypeptide and muscarinic receptors: Supersensitivity induced by long-term atropine treatment. Science 220:519–521.PubMedCrossRefGoogle Scholar
  441. 441.
    Wahawisan, R., L. J. Wallace, and T. S. Gaginella. 1983. Muscarinic receptors exist on ileal crypt and villus cells of the rat. Fed. Proc. 42:161.Google Scholar
  442. 442.
    Tien, X. Y., R. Wahawisan, L. J. Wallace, and T. S. Gaginella. 1985. Intestinal epithelial cells and musclulature contain different muscarinic binding sites. Life Sci. in press.Google Scholar
  443. 443.
    Bolton, J. E., and M. Field. 1977. Ca ionophore-stimulated ion secretion in rabbit ileal mucosa: Relation to actions of cyclic 3 ′, 5 ′-AMP and carbamylcholine. J. Membr. Biol. 35:159–173.PubMedCrossRefGoogle Scholar
  444. 444.
    Zimmerman, T. W., J. W. Dobbins, and H. J. Binder. 1983. Role of calcium in the regulation of colonic secretion in the rat. Am. J. Physiol. 244:G552–G560.PubMedGoogle Scholar
  445. 445.
    Donowitz, M., R. Fogel, L. Battisti, and N. Asarkof. 1982. The neurohumoral secretagogues carbachol, substance P and neurotensin increase Ca+ + influx and calcium content in rabbit ileum. Life Sci. 31:1929–1937.PubMedCrossRefGoogle Scholar
  446. 446.
    Brasitus, T. A., M. Field, and D. V. Kimberg. 1976. Intestinal mucosal cyclic GMP: Regulation and relation to ion transport. Am. J. Physiol. 231:275–282.PubMedGoogle Scholar
  447. 447.
    Hubel, K. A. 1978. The effects of electrical field stimulation and tetrodotoxin on ion transport by the isolated rabbit ileum. J. Clin. Invest. 62:1039–1047.PubMedCrossRefGoogle Scholar
  448. 448.
    Hubel, K. A. 1981. Effect of veratrine and 50 mM K on ileal transport and electrically induced secretion. Am. J. Physiol. 240:G211–G216.PubMedGoogle Scholar
  449. 449.
    Hubel, K. A., and S. Shirazi. 1982. Human ileal ion transport in vitro: Changes with electrical field stimulation and tetrodotoxin. Gastroenterology 83:63–68.PubMedGoogle Scholar
  450. 450.
    Hubel, K. A. 1983. The effects of scorpion venom on electrolyte transport by rabbit ileum. Am. J. Physiol. 244:G501–G506.PubMedGoogle Scholar
  451. 451.
    Schwartz, C. J., D. V. Kimberg, H. E. Sheerin, M. Field, and S. I. Said. 1974. Vasoactive intestinal peptide stimulation of adenylate cyclase and active electrolyte secretion in intestinal mucosa. J. Clin. Invest. 54:536–544.PubMedCrossRefGoogle Scholar
  452. 452.
    Racusen, L. C., and H. J. Binder. 1977. Alteration of large intestinal electrolyte transport by vasoactive intestinal polypeptide in the rat. Gastroenterology 73:790–796.PubMedGoogle Scholar
  453. 453.
    Mailman, D. 1978. Effects of vasoactive intestinal polypeptide on intestinal absorption and blood flow. J. Physiol. (London) 279:121–132.Google Scholar
  454. 454.
    Krejs, G. J., R. M. Barkley, N. W. Read, and J. S. Fordtran. 1977. Intestinal secretion induced by vasoactive intestinal poly-peptide: A comparison with cholera toxin in the canine jejunum in vivo. J. Clin. Invest. 78:1337–1345.Google Scholar
  455. 455.
    Wu, Z. A. C., T. M. O’Dorisio, S. Cataland, H. S. Mekhjian, and T. S. Gaginella. 1979. Effects of pancreatic polypeptide and vasoactive intestinal polypeptide on rat ileal and colonic water and electrolyte transport in vivo. Dig. Dis. Sci. 24:625–630.PubMedCrossRefGoogle Scholar
  456. 456.
    Krejs, G. J., and J. S. Fordtran. 1980. Effect of VIP infusion on water and ion transport in the human jejunum. Gastroenterology 78:722–727.PubMedGoogle Scholar
  457. 457.
    Davis, G. R., C. A. Santa Ana, S. G. Morawski, and J. S. Ford-tran. 1981. Effect of vasoactive intestinal polypeptide on active and passive transport in the human jejunum. J. Clin. Invest. 67:1687–1694.PubMedCrossRefGoogle Scholar
  458. 458.
    Beubler, E. 1980. Influence of vasoactive intestinal polypeptide on net water flux and cyclic adenosine 3′, 5′-monophosphate formation in the rat jejunum. Naunyn-Schmiedebergs Arch. Pharmacol. 313:243–247.PubMedCrossRefGoogle Scholar
  459. 459.
    Dharmsathaphorn, K., V. Harms, D.J. Yamashiro, R.J. Hughes, H. J. Binder, and E. M. Wright. 1983. Preferential binding of vasoactive intestinal polypeptide to basolateral membrane of rat and rabbit enterocytes. J. Clin. Invest. 71:27–35.PubMedCrossRefGoogle Scholar
  460. 460.
    Amiranoff, B., M. Laburthe, C. Dupont, and G. Rosselin. 1978. Characterization of a vasoactive intestinal peptide-sensitive adenylate cyclase in rat intestinal epithelial cell membranes. Biochim. Biophys. Acta 544:474–481.PubMedCrossRefGoogle Scholar
  461. 461.
    Angel, F., V. L. W. Go, and J. H. Szurszewski. 1982. Evidence for interaction between substance P and bombesin containing neurons in the muscularis mucosa of the canine colon. Gastroenterology 82:1008a.Google Scholar
  462. 462.
    Jansen, J. B. M. J., and C. B. H. W. Lamers. 1982. Bombesin releases cholecystokinin in man. Gastroenterology 82:1093a.Google Scholar
  463. 463.
    Jaffee, B. M., B. Akande, I. M. Modlin, P. Reilly, and D. Albert. 1982. Cholinergic modulation of substance P release. Dig. Dis. Sci. 27:28–32.CrossRefGoogle Scholar
  464. 464.
    Kachur, J. F., R. J. Miller, M. Field, and J. Rivier. 1982. Neurohumoral control of ileal electrolyte transport. I. Bombesin and related peptides. J. Pharmacol. Exp. Ther. 220:449–455.PubMedGoogle Scholar
  465. 465.
    Kachur, J. F., R. J. Miller, M. Field, and J. Rivier. 1982. Neurohumoral control of ileal electrolyte transport. II. Neurotensin and substance P. J. Pharmacol. Exp. Ther. 220:456–463.PubMedGoogle Scholar
  466. 466.
    Kisloff, B., and E. W. Moore. 1976. Effect of serotonin on water and electrolyte transport in the in vivo rabbit small intestine. Gastroenterology 71:1033–1038.PubMedGoogle Scholar
  467. 467.
    Sheerin, H. E. 1979. Serotonin action on short-circuit current and ion transport across isolated rabbit ileal mucosa. Life Sci. 24:1069–1616.CrossRefGoogle Scholar
  468. 468.
    Donowitz, M., A. N. Charney, and M. Heffernan. 1977. Effect of serotonin treatment on intestinal transport in the rabbit. Am. J. Physiol. 232:E85–E94.PubMedGoogle Scholar
  469. 469.
    Donowitz, M., Y. H. Tai, and N. Asarkof. 1980. Effect of serotonin on active electrolyte transport in rabbit ileum, gallbladder, and colon. Am. J. Physiol. 239:G463–G472.PubMedGoogle Scholar
  470. 470.
    Donowitz, M., N. Asarkof, and G. Pike. 1980. Calcium dependence of serotonin-induced changes in rabbit ileal electrolyte transport. J. Clin. Invest. 66:341–352.PubMedCrossRefGoogle Scholar
  471. 471.
    Hardcastle, J., P. T. Hardcastle, and J. S. Redfern. 1981. Action of 5-hydroxytryptamine on intestinal ion transport in the rat. J. Physiol. (London) 320:41–55.Google Scholar
  472. 472.
    Costa, M., and J. B. Furness. 1979. Commentary on the possibility that an indoleamine is a neurotransmitter in the gastrointestinal tract. Biochem. Pharmacol. 28:565–571.PubMedCrossRefGoogle Scholar
  473. 473.
    DeLorenzo, R. J. 1982. Calmodulin in neurotransmitter release and synaptic function. Fed. Proc. 41:2265–2272.Google Scholar
  474. 474.
    Johnson, S. M., Y. Katayama, and R. A. North. 1980. Multiple actions of 5-hydroxytryptamine on myenteric neurones of the guinea-pig ileum. J. Physiol. (London) 304:459–470.Google Scholar
  475. 475.
    Pettersson, G., H. Ahlman, A. Dahlström, J. Kewenter, I. Larsson, and P. A. Larsson. 1979. The effect of transmural field stimulation on the serotonin content in rat duodenal entero-chromaffin cells—in vitro. Acta Physiol. Scand. 107:83–87.PubMedCrossRefGoogle Scholar
  476. 476.
    Zinner, M. J., B. M. Jaffe, L. DeMagistris, A. Dahlström, and H. Ahlman. 1982. Effect of cervical and thoracic vagal stimulation on luminal serotonin release and regional blood flow in cats. Gastroenterology 82:1403–1408.PubMedGoogle Scholar
  477. 477.
    Larsson, I. 1981. Studies on the extrinsic neural control of serotonin release from the small intestine. Acta Physiol. Scand. Suppl. 499:1–43.PubMedGoogle Scholar
  478. 478.
    Kellum, J. M., M. McCabe, J. Schneier, and M. Donowitz. 1982. Neural mediation of acid-stimulated serotonin release from rabbit duodenum. Gastroenterology 82:1098.Google Scholar
  479. 479.
    Gaginella, T. S., T. J. Rimele, and M. Wietecha. 1983. Studies on rat intestinal epithelial cell receptors for serotonin and opiates. J. Physiol. (London) 335:101–111.Google Scholar
  480. 480.
    Reasbeck, P., G. Barbezat, A. Shulkes, and D. Fletcher. 1982. Effect of neurotensin at physiological blood levels on the canine small bowel. Gastroenterology 82:1156.Google Scholar
  481. 481.
    Fox, J. E. T., J. McLean, E. E. Daniel, Y. Sakai, and J. Jury. 1982. Neurotensin, evidence for multiple receptors for gastrointestinal motility action in dogs. Gastroenterology 82:1060.Google Scholar
  482. 482.
    Teitelbaum, D. H., T. M. O’Dorisio, and T. S. Gaginella. 1982. Caerulein, somatostatin, and neurotensin modulate the release of acetylcholine from the guinea-pig myenteric plexus. Gastroenterology 82:1194.Google Scholar
  483. 483.
    Sundler, F., R. Hakanson, S. Leander, and R. Uddman. 1982. Light and electron microscopic localization of neurotensin in the gastrointestinal tract. Ann. N.Y. Acad. Sci. 400:94–104.PubMedCrossRefGoogle Scholar
  484. 484.
    Hubel, K. A. 1972. Effects of pentagastrin and cholecystokinin on intestinal transport of ions and water in the rat. Proc. Soc. Exp. Biol. Med. 140:670–672.PubMedGoogle Scholar
  485. 485.
    Modigliani, R., J. Y. Mary, and J. J. Bernier. 1976. Effects of synthetic human gastrin I on movements of water, electrolytes, and glucose across the human small intestine. Gastroenterology 71:978–984.PubMedGoogle Scholar
  486. 486.
    El Masri, S. H., M. R. Lewin, and C. G. Clark. 1977. In vitro effects of gastrin on the movement of electrolytes across the human colon. Scand. J. Gastroenterol. 12:999–1002.CrossRefGoogle Scholar
  487. 487.
    Barbezat, G. O., and M. I. Grossman. 1971. Intestinal secretion: Stimulation by peptides. Science 174:422–424.PubMedCrossRefGoogle Scholar
  488. 488.
    Barbezat, G. O. 1973. Stimulation of intestinal secretion by polypeptide hormones. Scand. J. Gastroenterol. 8:1–21.Google Scholar
  489. 489.
    Helman, C. A., and G. O. Barbezat. 1977. The effect of gastric inhibitory polypeptide on human jejunal water and electrolyte transport. Gastroenterology 72:376–379.PubMedGoogle Scholar
  490. 490.
    Mitchenere, P., T. E. Adrian, R. M. Kirk, and S. R. Bloom. 1981. Effect of gut regulatory peptides on intestinal luminal fluid in the rat. Life Sci. 29:1563–1570.PubMedCrossRefGoogle Scholar
  491. 491.
    Kachel, G. W., L. L. Frase, W. Domschke, and G. J. Krejs. 1982. Effect of motilin infusion on water and ion transport in the human jejunum. Gastroenterology 82:1094.Google Scholar
  492. 492.
    Gottesbüren, H., H. Leising, H. Menge, H. Lorenz-Meyer, and E. O. Riecken. 1974. Einfluss von glucagon auf die glucose-, wasser-und elektrolytresorption des menschlichen jejunums. Klin. Wochenschr. 52:926–929.PubMedCrossRefGoogle Scholar
  493. 493.
    Hicks, T., and L. A. Turnberg. 1974. Influence of glucagon on the human jejunum. Gastroenterology 67:1114–1118.PubMedGoogle Scholar
  494. 494.
    Kaufman, M. E., M. A. Dinno, and K. C. Huang. 1980. Effect of glucagon on ion transport in mouse intestine. Am. J. Phvsiol. 238:G491–G494.Google Scholar
  495. 495.
    Granger, D. N., P. R. Kvietys, W. H. Wilborn, N. A. Mortillaro, and A. E. Taylor. 1980. Mechanism of glucagon-induced intestinal secretion. Am. J. Physiol. 239:G30–G38.PubMedGoogle Scholar
  496. 496.
    MacFerran, S. N., and D. Mailman. 1977. Effects of glucagon on canine intestinal sodium and water fluxes and regional blood flow. J. Physiol. (London) 266:1–12.Google Scholar
  497. 497.
    Isaacs, P. E. T., and L. A. Turnberg. 1977. Failure of glucagon to influence ion transport across human jejunal and ileal mucosa in vitro. Gut 18:1059–1061.PubMedCrossRefGoogle Scholar
  498. 498.
    Lee, J. S., and J. W. Silverberg. 1976. Effect of histamine on intestinal fluid secretion in the dog. Am. J. Physiol. 231:793–798.PubMedGoogle Scholar
  499. 499.
    Fromm, D., and N. Halpern. 1979. Effects of histamine receptor antagonists on ion transport by isolated ileum of the rabbit. Gastroenterology 77:1034–1038.PubMedGoogle Scholar
  500. 500.
    Linaker, B. D., J. S. McKay, N. B. Higgs, and L. A. Turnberg. Mechanisms of histamine stimulated secretion in rabbit ileal mucosa. Gut 22:964–9Google Scholar
  501. 501.
    Kohn, P. G., H. Newey, and D. H. Smyth. 1970. The effect of adenosine triphosphate on the transmural potential in rat small intestine. J. Physiol. (London) 208:203–220.Google Scholar
  502. 502.
    Korman, L. Y., G. F. Lemp, M. J. Jackson, and J. D. Gardner. 1982. Mechanism of action of ATP on intestinal epithelial cells: Cyclic AMP-mediated stimulation of active ion transport. Bio-chim. Biophys. Acta 721:47–54.CrossRefGoogle Scholar
  503. 503.
    Dobbins, J. W., J. P. Laurenson, and J. N. Forrest, Jr. 1983. Effects of adenosine and adenosine analogs on ion transport in rabbit ileum. Gastroenterology 84:1138.Google Scholar
  504. 504.
    Kimmich, G. A., and J. Randies. 1982. An ATP-and Ca2+-regulated Na+ channel in isolated intestinal epithelial cells. Am. J. Physiol. 243:C116–C123.PubMedGoogle Scholar
  505. 505.
    Kimmich, G., and J. Randies. 1980. Regulation of Na+-dependent sugar transport in intestinal epithelial cells by exogenous ATP. Am. J. Physiol. 238:C177–C183.PubMedGoogle Scholar
  506. 506.
    Richards, N. W., L. J. Wallace, and T. S. Gaginella. 1983. Effect of ATP on ion transport in isolated rat intestinal epithelial cells. Pharmacologist 25:182.Google Scholar
  507. 507.
    Frew, R., and H. J. Baer. 1979. Adenosine-α, β-methylene diphosphate effects in intestinal smooth muscle: Sites of action and possible prostaglandin involvement. J. Pharmacol. Exp. Ther. 211:525–530.PubMedGoogle Scholar
  508. 508.
    Anderson, G. F. 1982. Evidence for a prostaglandin link in the purinergic activation of rabbit bladder smooth muscle. J. Pharmacol. Exp. Ther. 220:347–352.PubMedGoogle Scholar
  509. 509.
    Aulsebrook, K. A. 1965. Intestinal absorption of glucose and sodium: Effects of epinephrine and norepinephrine. Biochem. Biophys. Res. Commun. 18:165–169.PubMedCrossRefGoogle Scholar
  510. 510.
    Aulsebrook, K. A. 1965. Intestinal transport of glucose and sodium: Stimulation by reserpine and the humoral mechanism involved. Proc. Soc. Exp. Biol. Med. 119:387–389.PubMedGoogle Scholar
  511. 511.
    Brunsson, I., S. Eklund, M. Jodal, O. Lundgren, and H. Sjövall. 1979. The effect of vasodilatation and sympathetic nerve activation on net water absorption in the cat’s small intestine. Acta Physiol. Scand. 106:61–68.PubMedCrossRefGoogle Scholar
  512. 512.
    Landsberg, L., M. B. Berardino, J. Stoff, and J. B. Young. 1978. Further studies on catechol uptake and metabolism in rat small bowel in vivo: (1) a quantitatively significant process with distinctive structural specifications; and (2) the formation of a dopamine glucuronide reservoir after chronic L-dopa feeding. Biochem. Pharmacol. 27:1365–1371.PubMedCrossRefGoogle Scholar
  513. 513.
    Cassuto, J., H. Sjövall, M. Jodal, J. Svanvik, and O. Lundgren. 1982. The adrenergic influence on intestinal secretion in cholera. Acta Physiol. Scand. 115:157–158.PubMedCrossRefGoogle Scholar
  514. 514.
    Newsome, P. M., M. N. Burgess, G. D. Holman, N. A. Mullan, D. H. Richards, and M. R. Smith. 1981. α2-Adrenoceptors controlling intestinal secretion. Biochem. Soc. Trans. 9:413–414.Google Scholar
  515. 515.
    Chang, E. B., M. Field, and R. J. Miller. 1982. α2-Adrenergic receptor regulation of ion transport in rabbit ileum. Am. J. Physiol. 242:G237–G242.PubMedGoogle Scholar
  516. 516.
    Durbin, T., L. Rosenthal, K. McArthur, D. Anderson, and K. Dharmsathaphorn. 1982. Clonidine and lidamidine (WHR-1142) stimulate sodium and chloride absorption in the rabbit intestine. Gastroenterology 82:1352–1358.PubMedGoogle Scholar
  517. 517.
    Nakaki, T., T. Nakadate, S. Yamamoto, and R. Kato. 1982. α2-Adrenoceptors inhibit the cholera-toxin-induced intestinal fluid accumulation. Naunyn-Schmiedebergs Arch. Pharmacol. 318:181–184.PubMedCrossRefGoogle Scholar
  518. 518.
    Tapper, E. J., A. S. Bloom, and D. L. Lewand. 1981. Endogenous norepinephrine release induced by tyramine modulates intestinal ion transport. Am. J. Physiol. 241:G264–G269.PubMedGoogle Scholar
  519. 519.
    Tanaka, T., and K. Starke. 1979. Binding of 3H-clonidine to an α-adrenoceptor in membranes of guinea-pig ileum. Naunyn-Schmiedebergs Arch. Pharmacol. 309:207–215.PubMedCrossRefGoogle Scholar
  520. 520.
    Cotterell, D. J., K. A. Munday, and J. A. Poat. 1982. The binding of (3H)-prazosin and (3H)-clonidine to crude basolateral membranes from rat jejunum. Br. J. Pharmacol. Proc. Suppl. 76: 277P.Google Scholar
  521. 521.
    Chang, E. B., M. Field, and R. J. Miller. 1983. Enterocyte α2-adrenergic receptors: Yohimbine and p-aminoclonidine binding relative to ion transport. Am. J. Physiol. 244:G76–G82.PubMedGoogle Scholar
  522. 522.
    Wikberg, J. E. S., and R. J. Lefkowitz. 1982. Alpha2 adrenergic receptors are located prejunctionally in the Auerbach’s plexus of the guinea pig small intestine: Direct demonstration by radioligand binding. Life Sci. 31:2899–2905.PubMedCrossRefGoogle Scholar
  523. 523.
    Racusen, L. C., and H. J. Binder. 1979. Adrenergic interaction with ion transport across colonic mucosa: Role of both α and β adrenergic agonists. In: Mechanisms of Intestinal Secretion. H. J. Binder, ed. Liss, New York. pp. 201–215.Google Scholar
  524. 524.
    Albin, D., and Y. Gutman. 1980. The effect of adrenergic agents and theophylline on sodium fluxes cross the rabbit colon in vitro. Biochem. Pharmacol. 29:1271–1273.PubMedCrossRefGoogle Scholar
  525. 525.
    Morris, A. I., and L. A. Turnberg. 1981. Influence of isoproterenol and propranolol on human intestinal transport in vivo. Gastroenterology 81:1076–1079.PubMedGoogle Scholar
  526. 526.
    Field, M., H. E. Sheerin, A. Henderson, and P. L. Smith. 1975. Catecholamine effects on cyclic AMP levels and ion secretion in rabbit ileal mucosa. Am. J. Physiol. 229:86–92.PubMedGoogle Scholar
  527. 527.
    Laburthe, M., B. Amiranoff, and C. Boissard. 1982. α-Adre-nergic inhibition of cyclic AMP accumulation in epithelial cells isolated from rat small intestine. Biochim. Biophys. Acta 721:101–108.PubMedCrossRefGoogle Scholar
  528. 528.
    Parod, R. J., B. A. Leslie, and J. W. Putney. 1980. Muscarinic and α-adrenergic stimulation of Na and Ca uptake by dispersed lacrimal cells. Am. J. Physiol. 239:G99–G105.PubMedGoogle Scholar
  529. 529.
    Atlas, D., and M. Adler. 1981. α-Adrenergic antagonists as possible calcium channel inhibitors. Proc. Natl. Acad. Sci. USA 78:1237–1241.PubMedCrossRefGoogle Scholar
  530. 530.
    Donowitz, M., S. Cusolito, L. Battisti, R. Fogel, and G. W. G. Sharp. 1982. Dopamine stimulation of active Na and CI absorption in rabbit ileum. J. Clin. Invest. 69:1008–1016.PubMedCrossRefGoogle Scholar
  531. 531.
    Donowitz, M., G. Elta, L. Battisti, R. Fogel, and E. Label-Schwartz. 1983. Effect of dopamine and bromocriptine on rat ileal and colonic transport. Gastroenterology 84:516–523.PubMedGoogle Scholar
  532. 532.
    Dharmsathaphorn, K., H. J. Binder, and J. W. Dobbins. 1980. Somatostatin stimulates sodium and chloride absorption in the rabbit ileum. Gastroenterology 78:1559–1565.PubMedGoogle Scholar
  533. 533.
    Dharmsathaphorn, K., L. Racusen, and J. W. Dobbins. 1980. The effect of somatostatin on ion transport in the rat colon. J. Clin. Invest. 66:813–820.PubMedCrossRefGoogle Scholar
  534. 534.
    Dobbins, J. W., K. Dharmsathaphorn, L. Racusen, and H. J. Binder. 1981. The effect of somatostatin and enkephalin on ion transport in the intestine. Ann. N.Y. Acad. Sci. 372:594–612.PubMedCrossRefGoogle Scholar
  535. 535.
    Guandalini, S., J.F. Kachur, P. L. Smith, R. J. Miller, and M. Field. 1980. In vitro effects of somatostatin on ion transport in rabbit intestine. Am. J. Physiol. 238:G67–G74.PubMedGoogle Scholar
  536. 536.
    Freedman, J., H. Rasmussen, and J. W. Dobbins. 1980. Somatostatin stimulates coupled sodium chloride influx across the brush border of the rabbit ileum. Biochem. Biophys. Res. Commun. 97:243–247.PubMedCrossRefGoogle Scholar
  537. 537.
    Dobbins, J., L. Racusen, and H. J. Binder. 1980. Effect of D-alanine methionine enkephalin amide on ion transport in rabbit ileum. J. Clin. Invest. 66:19–28.PubMedCrossRefGoogle Scholar
  538. 538.
    McKay, J. S., B. D. Linaker, and L. A. Turnberg. 1981. Influence of opiates on ion transport across rabbit ileal mucosa. Gastroenterology 80:279–284.PubMedGoogle Scholar
  539. 539.
    McKay, J. S., B. D. Linaker, N. B. Higgs, and L. A. Turnberg. 1982. Studies of the antisecretory activity of morphine in rabbit ileum in vitro. Gastroenterology 82:243–247.PubMedGoogle Scholar
  540. 540.
    Waterfield, A. A., R. W. J. Smokcum, J. Hughes, H. W. Kosterlitz, and G. Henderson. 1977. In vitro pharmacology of the opioid peptides, enkephalins and endorphins. Eur. J. Pharmacol. 43:107–116.PubMedCrossRefGoogle Scholar
  541. 541.
    Kromer, W., and H. Schmidt. 1982. Opioids modulate intestinal peristalsis at a site of action additional to that modulating acetylcholine release. J. Pharmacol. Exp. Ther. 223:271–274.PubMedGoogle Scholar
  542. 542.
    Gaginella, T. S., and Z. A. C. Wu. 1983. [D-Ala2, D-Met5NH2]-enkephalin inhibits acetylcholine release from the submucosal plexus of rat colon. J. Pharm. Pharmacol. 35:823–825.PubMedCrossRefGoogle Scholar
  543. 543.
    Kachur, J. F., R. J. Miller, and M. Field. 1980. Control of guinea pig intestinal electrolyte secretion by a δ-opiate receptor. Proc. Natl. Acad. Sci. USA 77:2753–2756.PubMedCrossRefGoogle Scholar
  544. 544.
    Kachur, J. F., and R. J. Miller. 1982. Characterization of the opiate receptor in the guinea-pig ileal mucosa. Eur. J. Pharmacol. 81:177–183.PubMedCrossRefGoogle Scholar
  545. 545.
    Oka, T. 1980. Enkephalin receptor in the rabbit ileum. Br. J. Pharmacol. 68:193–195.PubMedGoogle Scholar
  546. 546.
    Corbett, A. D., S. J. Paterson, A. T. McKnight, J. Magnan, and H. W. Kosterlitz. 1982. Dynorphin1–8 and dynorphin1–9 are ligands for the K-subtype of opiate receptor. Nature (London) 299:79–81.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • Don W. Powell
    • 1
  1. 1.Department of MedicineUniversity of North Carolina School of MedicineChapel HillUSA

Personalised recommendations