Advertisement

Active Transport in Escherichia coli From Membrane to Molecule

  • H. Ronald Kaback

Abstract

Although the 1970s is regarded as the era of molecular genetics, when exciting breakthroughs made possible the isolation, cloning, and sequencing of genetic material from viruses to man, another revolution in our concepts of energy transduction in biological membranes also occurred over the same period of time, but without the same drama. Thus, in much the same way that the Crick-Watson double helix provided the backbone for many advances in molecular biology, the chemiosmotic hypothesis, formulated and refined by Peter Mitchell during the 1960s, (1–5) is now the conceptual framework for a wide array of bioenergetic phenomena from photophosphorylation to the uptake and storage of neurogenic amines in the adrenal medulla. Curiously, however, the far-reaching importance of the chemiosmotic concept and the experimental evidence supporting its validity have gone relatively unnoticed because: (1) the chemiosmotic hypothesis was formulated initially to explain oxidative phosphorylation and is still strongly identified with this traditionally controversial field; (2) few biochemists are cornfortable with ephemeral entities such as electrochemical ion gradients; and (3) various disciplines within the area of bioenergetics use different terminologies to describe similar phenomena. By providing an overview of active transport, this volume will help to abolish barriers, and it is with that notion in mind that this contribution is intended.

Keywords

Active Transport Membrane Vesicle Reconstituted System Electrochemical Proton Gradient Lactose Permease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

RSO

right-side-out

ISO

inside-out

FAD

flavin-adenine dinucleotide

D-LDH

D-lactate dehydrogenase

PMS

phenazine methosulfate

TMPD

N, N, N′, N′-tetramcthyl-phenylenediamine

DAD

diaminodurene

CCCP

carbonylcyanide-m-chlorophenylhydrazone

DCCD

N, N′-dicyclohexylcarbodiimide

DDA

dimethyldibenzylammonium

TPB

tetraphenylboron

TPMP+

triphenylmethylphosphonium

TPP+

tetraphenylphosphonium

SCN

thiocyanate

DMO

5, 5′-dimethyloxazolidine-2, 4-dione

Δ―μH

the proton electrochemical gradient across the membrane

Δψ

membrane potential

ΔpH

the pH gradient across the membrane octylglucoside, octyl-β-D-glucopyranoside

NPG

ρ-nitrophenyl-α-D-galactopyranoside

TMG

methyl- 1-thio-β-D-galactopyranoside

Q1H2

ubiquinol-1

ρ-CMBS

ρ-chloromercuribenzene-sulfonate

DEPC

di-ethylpyrocarbonate

HPLC

high-performance liquid chromatography

SP-RIA

solid-phase radioimmunoassay

ρCMBS

ρ-chloromercuriben-zenesulfonate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell, P. 1961. Coupling of phosphorylation to electron hydrogen transfer by a chemiosmotic type of mechanism. Nature (London) 191:144.CrossRefGoogle Scholar
  2. 2.
    Mitchell, P. 1963. Molecule, group, and electron translocation through natural membranes. Biochem. Soc. Symp. 22:142.Google Scholar
  3. 3.
    Mitchell, P. 1966. Chemiosmotic Coupling in Oxidative and Pho-tophosphorylation. Glynn Research Ltd., Bodmin, England.Google Scholar
  4. 4.
    Mitchell, P. 1966. Chemiosmotic Coupling and Energy Transduction. Glynn Research Ltd., Bodmin, England.Google Scholar
  5. 5.
    Mitchell, P. 1973. Performance and conservation of osmotic work by proton-coupled solute porter systems. J. Bioenerg. 4:63.PubMedCrossRefGoogle Scholar
  6. 6.
    Kaback, H. R. 1960. Uptake of amino acids by “ghosts” of mutant strains of Escherichia coli. Fed. Proc. 19:130.Google Scholar
  7. 7.
    Kaback, H. R., and E. R. Stadtman. 1966. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc. Natl. Acad. Sci. USA 55:920.PubMedCrossRefGoogle Scholar
  8. 8.
    Lombardi, F. J., and H. R. Kaback. 1972. Mechanisms of active transport in isolated bacterial membrane vesicles. J. Biol. Chem. 247:7844.PubMedGoogle Scholar
  9. 9.
    Short, S. A., D. C. White, and H. R. Kaback. 1972. Mechanisms of active transport in isolated bacterial membrane vesicles. J. Biol. Chem. 247:7452.PubMedGoogle Scholar
  10. 10.
    Ramos, S., and H. R. Kaback. 1977. The relationship between the electrochemical proton gradient and active transport in E. coli membrane vesicles. Biochemistry 16:854.PubMedCrossRefGoogle Scholar
  11. 11.
    Short, S. A., H. R. Kaback, and L. D. Kohn. 1974. D-Lactate dehydrogenase binding in E. coli dld membrane vesicles reconstituted for active transport. Proc. Natl. Acad. Sci. USA 71:1461.PubMedCrossRefGoogle Scholar
  12. 12.
    Kaback, H. R. 1971. Bacterial membranes. Methods Enzymol. 22:99.CrossRefGoogle Scholar
  13. 13.
    Owen, P., and H. R. Kaback. 1978. Molecular structure of membrane vesicles from E. coli. Proc. Natl. Acad. Sci. USA 75:3148.PubMedCrossRefGoogle Scholar
  14. 14.
    Owen, P., and H. R. Kaback. 1979. Immunochemical analysis of membrane vesicles from E. coli. Biochemistry 18:1413.PubMedCrossRefGoogle Scholar
  15. 15.
    Owen, P., and H. R. Kaback. 1979. Antigenic architecture of membrane vesicles from E. coli. Biochemistry 18:1422.PubMedCrossRefGoogle Scholar
  16. 16.
    Stroobant, P., and H. R. Kaback. 1975. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from E. coli. Proc. Natl. Acad. Sci. USA 72:3970.PubMedCrossRefGoogle Scholar
  17. 17.
    Hertzberg, E., and P. C. Hinkle. 1974. Oxidative phosphorylation and proton translocation in membrane vesicles prepared from E. coli. Biochem. Biophys. Res. Commun. 58:178.CrossRefGoogle Scholar
  18. 18.
    Rosen, B. P., and J. S. McClees. 1974. Active transport of calcium in inverted membrane vesicles of E. coli. Proc. Natl. Acad. Sci. USA 71:5042.PubMedCrossRefGoogle Scholar
  19. 19.
    Reenstra, W. W., L. Patel, H. Rottenberg, and H. R. Kaback. 1980. Electrochemical proton gradient in inverted membrane vesicles from E. coli. Biochemistry 19:1.PubMedCrossRefGoogle Scholar
  20. 20.
    Kaback, H. R. 1970. Transport. Annu. Rev. Biochem. 39:561.PubMedCrossRefGoogle Scholar
  21. 21.
    Kundig, W., S. Ghosh, and S. Roseman. 1964. Phosphate bound to histidine in a protein as an intermediate in a novel phosphotransferase system. Proc. Natl. Acad. Sci. USA 52:1067.PubMedCrossRefGoogle Scholar
  22. 22.
    Dills, S. S., A. Apperson, M. R. Schmidt, and M. H. Saier, Jr. 1980. Carbohydrate transport in bacteria. Microbiol. Rev. 44:385.PubMedGoogle Scholar
  23. 23.
    Saier, M. H. 1982. The bacterial phototransferase system in regulation of carbohydrate permease synthesis and activity. In: Membranes and Transport, Volume 2. A. Martonosi, ed. Plenum Press, New York. p. 27.Google Scholar
  24. 24.
    Kaback, H. R. 1974. Transport studies in bacterial membrane vesicles. Science 186:882.PubMedCrossRefGoogle Scholar
  25. 25.
    Futai, M. 1973. Membrane D-lactate dehydrogenase from Escherichia coli Purification and properties. Biochemistry 12:2468.PubMedCrossRefGoogle Scholar
  26. 26.
    Kohn, L. D., and H. R. Kaback. 1973. Mechanisms of active transport in isolated bacterial membrane vesicles. XV. Purification and properties of the membrane-bound D-lactate dehydrogenase from E. coli. J. Biol. Chem. 248:7012.PubMedGoogle Scholar
  27. 27.
    Santos, E., H. F. Kung, I. G. Ylung, and H. R. Kaback. 1982. In vitro synthesis of the membrane-bound D-lactate dehydrogenase of Escherichia coli. Biochemistry 21:2085.PubMedCrossRefGoogle Scholar
  28. 28.
    Young, I. G., A. Jaworowski, and M. Poulis. 1982. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry 21:2092.PubMedCrossRefGoogle Scholar
  29. 29.
    Stroobant, P., and H. R. Kaback. 1979. Reconstitution of ubiq-uinone-linked function in membrane vesicles from a double quinone mutant of Escherichia coli. Biochemistry 18:226.PubMedCrossRefGoogle Scholar
  30. 30.
    Konings, W. N., E. M. Barnes, Jr., and H. R. Kaback. 1971. Mechanisms of active transport in isolated membrane vesicles. J. Biol. Chem. 246:5857.PubMedGoogle Scholar
  31. 31.
    Konings, W. N., and J. Boonstra. 1976. Anaerobic electron transfer and active transport in bacteria. Curr. Top. Membr. Transp. 9:177.CrossRefGoogle Scholar
  32. 32.
    Konings, W. N., and H. R. Kaback. 1973. Anaerobic transport in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 70:3376.PubMedCrossRefGoogle Scholar
  33. 33.
    Kaback, H. R. 1976. Molecular biology and energetics of membrane transport. J. Cell. Physiol. 89:575.PubMedCrossRefGoogle Scholar
  34. 34.
    Hugenholtz, J., J. S. Hong, and H. R. Kaback. 1981. ATP-driven active transport in right-side-out bacterial membrane vesicles. Proc. Natl. Acad. Sci. USA 78:3446.PubMedCrossRefGoogle Scholar
  35. 35.
    Saier, M. H., Jr., D. L. Wentzel, B. U. Feucht, and J. J. Justice. 1975. A transport system for phosphoenolpyruvate, 2-phos-phoglycerate, and 3-phosphoglycerate in Salmonella ty-phimurium. J. Biol. Chem. 250:5089.PubMedGoogle Scholar
  36. 36.
    Hirata, H., K. H. Altendorf, and F. M. Harold. 1973. Role of an electrical potential in the coupling of metabolic energy to active transport by membrane vesicles of Escherichia coli. Proc. Natl. Acad. Sci. USA 70:1804.PubMedCrossRefGoogle Scholar
  37. 37.
    Hirata, H., K. H. Altendorf, and F. M. Harold. 1974. Energy coupling in membrane vesicles of Escherichia coli. J. Biol. Chem. 249:2939.PubMedGoogle Scholar
  38. 38.
    Kaczorowski, G. J., D. E. Robertson, and H. R. Kaback. 1979. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed ゔψ, ApH and τ―μH +. Biochemistry 18:3697.PubMedCrossRefGoogle Scholar
  39. 39.
    Schuldiner, S., and H. R. Kaback. 1975. Membrane potential and active transport in membrane vesicles from Escherichia coli. Biochemistry 14:5451.PubMedCrossRefGoogle Scholar
  40. 40.
    Greville, G. D. 1969. Scrutiny of Mitchell’s chemiosmotic hypothesis of respiratory chain and photosynthetic phosphorylation. Curr. Top. Bioenerg. 3:1.Google Scholar
  41. 41.
    Harold, F. M. 1972. Conservation and transformation of energy by bacterial membranes. Bacteriol. Rev. 36:172.PubMedGoogle Scholar
  42. 42.
    Harold, F. M. 1978. Vectorial metabolism. In: The Bacteria, Volume 61. C. Gunsalus, L. N. Ornston, and T. R. Sokatch, eds. Academic Press, New York. p. 463.Google Scholar
  43. 43.
    Hinkle, P. C., and R. E. McCarty. 1978. How cells make ATP. Sci. Am. 238:104.PubMedCrossRefGoogle Scholar
  44. 44.
    Skulachev, V. P., and P. C. Hinkle, eds. 1981. Chemiosmotic Proton Circuits in Biological Membranes. Addison-Wesley, Reading, Mass.Google Scholar
  45. 45.
    Doetsch, R. N., and R. D. Sjoblad. 1980. Flagellar structure and function in eubacteria. Annu. Rev. Microbiol. 34:69.PubMedCrossRefGoogle Scholar
  46. 46.
    Laane, C., W. Krone, W. Konings, H. Haaker, and C. Veeger. 1980. Short-term effect of ammonium chloride on nitrogen fixation by Azotobacter vinelandii and by bacteroids of Rhizobium leguminosarum. Eur. J. Biochem. 103:39.PubMedCrossRefGoogle Scholar
  47. 47.
    Grinius, L., and J. Bervinskiene. 1976. Studies on DNA transport during bacterial conjugation: Role of protonmotive force-generating H+-ATPase and respiratory chain. FEBS Lett. 72:151.PubMedCrossRefGoogle Scholar
  48. 48.
    Grinius, L. 1980. Nucleic acid transport driven by ion gradient across cell membrane. FEBS Lett. 113:1.PubMedCrossRefGoogle Scholar
  49. 49.
    Kalasauskaite, E., and L. Grinius. 1979. The role of energy-yielding ATPase and respiratory chain at early stages of bacteriophage T4 infection. FEBS Lett. 99:297.CrossRefGoogle Scholar
  50. 50.
    Labedan, G., and E. B. Goldberg. 1979. Requirement for membrane potential in injection of phage T4 DNA. Proc. Natl. Acad. Sci. USA 76:4669.PubMedCrossRefGoogle Scholar
  51. 51.
    Santos, E., and H. R. Kaback. 1981. Involvement of the proton electrochemical gradient in genetic transformation in Escherichia coli. Biochem. Biophys. Res. Commun. 99:1153.PubMedCrossRefGoogle Scholar
  52. 52.
    Wagner, E. F., H. Ponta, and M. Schweiger. 1980. Development of Escherichia coli virus T1: The role of the proton-motive force. J. Biol. Chem. 255:534.PubMedGoogle Scholar
  53. 53.
    Mates, S., E. S. Eisenberg, L. J. Mandel, L. Patel, H. R. Kaback, and M. H. Miller. 1982. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 79:6693.PubMedCrossRefGoogle Scholar
  54. 54.
    Loftfield, R. B., E. H. Eigner, A. Pastuszyn, T. N. E. Lovgren, and H. Jakubowski. 1980. Conformational changes during enzyme catalysis: Role of water in the transition state. Proc. Natl. Acad. Sci. USA 77:3374.PubMedCrossRefGoogle Scholar
  55. 55.
    Delmer, D. P., M. Benziman, and E. Padan. 1982. Requirement for a membrane potential for cellulose synthesis in intact cells of Acetoabacter xylinum. Proc. Natl. Acad. Sci. USA 79:5282.PubMedCrossRefGoogle Scholar
  56. 56.
    Daniels, C. J., D. G. Bole, S. C. Quay, and D. L. Oxender. 1981. Role for membrane potential in the secretion of protein into the periplasm of Escherichia coli. Proc. Natl. Acad. Sci. USA 78:5396.PubMedCrossRefGoogle Scholar
  57. 57.
    Date, T., C. Zwizniski, S. Ludmerer, and W. Wickner. 1980. Mechanisms of membrane assembly. Effects of energy poisons on the conversion of soluble M13-coliphage procoat to membrane-bound coat protein. Proc. Natl. Acad. Sci. USA 77:827.PubMedCrossRefGoogle Scholar
  58. 58.
    Enequist, H. G., T. R. Hirst, S. J. S. Hardy, S. Harayama, and L. L. Randall. 1981. Energy is required for maturation of exported proteins in Escherichia coli. Eur. J. Biochem. 116:227.PubMedCrossRefGoogle Scholar
  59. 59.
    Kaczorowski, G. J., and H. R. Kaback. 1979. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 1. Effect of pH on efflux, exchange and counterflow. Biochemistry 18:3691.PubMedCrossRefGoogle Scholar
  60. 60.
    Mitchell, P. 1976. Possible molecular mechanisms of the proton-motive function of cytochrome systems. J. Theor. Biol. 62:327.PubMedCrossRefGoogle Scholar
  61. 61.
    Mitchell, P., and J. Moyle. 1979. Respiratory chain protonmotive stoichiometry. Biochem. Soc. Trans. 7:887.PubMedGoogle Scholar
  62. 62.
    Brand, M. D., B. Reynafarje, and A. L. Lehninger. 1976. Re-evaluation of the H+ /site ratio of mitochondrial electron transport with oxygen pulse technique. J. Biol. Chem. 251:5670.PubMedGoogle Scholar
  63. 63.
    Lawford, H. G. 1977. Energy transduction in the mitochondrial-like bacterium Paracoccus denitrifficans during carbon-or sulphate-limited aerobic growth in continuous culture. Can. J. Biochem. 56:13.Google Scholar
  64. 64.
    Papa, S., F. Guerrieri, M. Lorusso, G. Izzo, D. Boffoli, and R. Stefanelli. 1970. Reversible effects of chaotropic agents on the proton permeability of Escherichia coli membrane vesicles. FEBS Symp. 45:37.Google Scholar
  65. 65.
    Reynafarje, B., M. D. Brand, and A. L. Lehninger. 1976. Evaluation of the H+ /site ratio of mitochondrial electron transport from rate measurements. J. Biol. Chem. 251:7442.PubMedGoogle Scholar
  66. 66.
    Reynafarje, B., and A. L. Lehninger. 1978. The K+ /site and H+/site stoichiometry of mitochondrial electron transport. J. Biol. Chem. 253:6331.PubMedGoogle Scholar
  67. 67.
    Sigel, E., and E. Carafoli. 1978. The proton pump of cytochrome c oxidase and its stoichiometry. Eur. J. Biochem. 89:119.PubMedCrossRefGoogle Scholar
  68. 68.
    Wikström, M., and H. T. Saari. 1977. The mechanism of energy conservation and transduction by mitochondrial cytochrome c oxidase. Biochim. Biophys. Acta 462:347.PubMedCrossRefGoogle Scholar
  69. 69.
    Wikström, M., and K. Krab. 1978. Cytochrome c oxidase is a proton pump. FEBS Lett. 91:8.PubMedCrossRefGoogle Scholar
  70. 70.
    Short, S. A., H. R. Kaback, and L. D. Kohn. 1975. Localization of D-lactate dehydrogenase in native and reconstituted Escherichia coli membrane vesicles. J. Biol. Chem. 250:4291.PubMedGoogle Scholar
  71. 71.
    Kaback, H. R., and E. M. Barnes, Jr. 1971. Mechanisms of active transport in isolated membrane vesicles. J. Biol. Chem. 246:5523.PubMedGoogle Scholar
  72. 72.
    Haldar, K., P. J. Olsiewski, C. Walsh, G. J. Kaczorowski, A. Bhaduri, and H. R. Kaback. 1982. Simultaneous reconstitution of Escherichia coli membrane vesicles with D-lactate and D-amino acid dehydrogenases. Biochemistry 21:4590.PubMedCrossRefGoogle Scholar
  73. 73.
    Olsiewski, P. J., G. Kaczorowski, C. T. Walsh, and H. R. Kaback. 1981. Reconstitution of Escherichia coli membrane vesicles with D-amino acid dehydrogenase. Biochemistry 20:6272.PubMedCrossRefGoogle Scholar
  74. 74.
    Wikström, M., and K. Krab. 1979. Proton-pumping cytochrome c oxidase. Biochim. Biophys. Acta 549:177.PubMedGoogle Scholar
  75. 75.
    Solioz, M., E. Carafoli, and B. Ludwig. 1982. The cytochrome c oxidase of Paracoccus denitrificans pumps protons in a reconstituted system. J. Biol. Chem. 257:1579.PubMedGoogle Scholar
  76. 76.
    Sone, N., and P. C. Hinkle. 1982. Proton transport of cytochrome c oxidase from the thermophilic bacterium PS3 reconstituted in liposomes. J. Biol. Chem. 257:12600.PubMedGoogle Scholar
  77. 77.
    Kita, K., M. Kasahara, and Y. Anraku. 1982. Formation of a membrane potential by reconstituted liposomes made with cytochrome b562-o complex, a terminal oxidase of Escherichia coli K12. J. Biol. Chem. 257:7933.PubMedGoogle Scholar
  78. 78.
    Matsushita, K., L. Patel, R. B. Gennis, and H. R. Kaback. 1983. Reconstitution of active transport in proteoliposomes containing cytochrome o oxidase and lac carrier protein purified from Escherichia coli. Proc. Natl. Acad. Sci. USA 80:4889.PubMedCrossRefGoogle Scholar
  79. 79.
    Michels, P. A. M., J. P. J. Michels, J. Boonstra, and W. N. Konings. 1979. Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiol. Lett. 5:357.CrossRefGoogle Scholar
  80. 80.
    Otto, R., A. S. M. Sonenberg, H. Veldkamp, and W. N. Konings. 1980. Generation of an electrochemical proton gradient in Streptococcus cremoris by lactate efflux. Proc. Natl. Acad. Sci. USA 77:5502.PubMedCrossRefGoogle Scholar
  81. 81.
    Grinius, L. L., A. A. Jasaitis, Y. P. Kadziauskas, E. A. Liberman, V. P. Skulachev, L. M. Topali, L. M. Tsofina, and M. A. Vladimirova. 1971. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles. Biochim. Biophys. Acta 216:1.Google Scholar
  82. 82.
    Haydon, D. A., and S. B. Hladky. 1972. Ion transport across thin lipid-membranes: Critical discussion of mechanisms in selected systems. Q. Rev. Biophys. 5:187.PubMedCrossRefGoogle Scholar
  83. 83.
    Lombardi, F. J., J. P. Reeves, S. A. Short, and H. R. Kaback. 1974. Evaluation of the chemiosmotic interpretation of active transport in bacterial membrane vesicles. Ann. NY Acad. Sci. 227:312.PubMedCrossRefGoogle Scholar
  84. 84.
    Waggoner, A.J. 1979. The use of cyanine dyes for the determination of membrane potentials in cells, organelles, and vesicles. Methods Enzymol. LV:689.Google Scholar
  85. 85.
    Felle, H., J. S. Porter, C. L. Slayman, and H. R. Kaback. 1980. Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19:3585.PubMedCrossRefGoogle Scholar
  86. 86.
    Lichtshtein, D., H. R. Kaback, and A. J. Blume. 1979. Use of a lipophilic cation for determination of membrane potential in neu-roblastomaglioma hybrid cell suspensions. Proc. Natl. Acad. Sci. USA 76:650.PubMedCrossRefGoogle Scholar
  87. 87.
    Lichtshtein, D., K. Dunlop, H. R. Kaback, and A. J. Blume. 1979. Mechanism of monensin-induced hyperpolarization of neuroblastoma-glioma hybrid NG108-15. Proc. Natl. Acad. Sci. USA 76:2580.PubMedCrossRefGoogle Scholar
  88. 88.
    Young, J. D. E., J. C. Unkeless, H. R. Kaback, and Z. A. Cohn. 1983. Macrophage membrane potential changes associated with γ2b/γl Fc receptor-ligand binding. Proc. Natl. Acad. Sci. USA 80:1357.PubMedCrossRefGoogle Scholar
  89. 89.
    Waddel, W. J. and T. C. Butler. 1959. Calculation of intracellular pH from distribution of 5, 5′-dimethyl-2, 4-oxazolidinedione (DMO): Application to skeletal muscle of the dog. J. Clin. Invest. 38:720.CrossRefGoogle Scholar
  90. 90.
    Ramos, S., S. Schuldiner, and H. R. Kaback. 1979. The use of flow dialysis for determinations of ApH and active transport. Methods Enzymol. 55:680.PubMedCrossRefGoogle Scholar
  91. 91.
    Kaback, H. R. 1972. Transport across isolated bacterial cytoplasmic membranes. Biochim. Biophys. Acta 265:367.PubMedGoogle Scholar
  92. 92.
    Padan, E., D. Zilberstein, and H. Rottenberg. 1976. The proton electrochemical gradient in Escherichia coli cells. Eur. J. Biochem. 63:533.PubMedCrossRefGoogle Scholar
  93. 93.
    Rottenberg, H. 1975. Measurement of transmembrane electrochemical proton gradients. J. Bioenerg. 7:61.PubMedCrossRefGoogle Scholar
  94. 94.
    Colowick, S. P., and F. C. Womack. 1969. Binding of diffusible molecules by macromolecules: Rapid measurement by rate of dialysis. J. Biol. Chem. 244:774.PubMedGoogle Scholar
  95. 95.
    Ramos, S., S. Schuldiner, and H. R. Kaback. 1976. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 73:1892.PubMedCrossRefGoogle Scholar
  96. 96.
    Ramos, S., and H. R. Kaback. 1977. The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16:848.PubMedCrossRefGoogle Scholar
  97. 97.
    Ramos, S., and H. R. Kaback. 1977. pH-dependent changes in proton:substrate stoichiometrics during active transport in Escherichia coli membrane vesicles. Biochemistry 16:4271.CrossRefGoogle Scholar
  98. 98.
    Tokuda, H., and H. R. Kaback. 1977. Sodium-dependent methyl 1-thio-β-D-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium. Biochemistry 16:2130.PubMedCrossRefGoogle Scholar
  99. 99.
    Navon, G., S. Ogawa, R. G. Schulman, and T. Yamane. 1977. High resolution 31P nuclear magnetic resonance studies of metabolism in aerobic Escherichia coli cells. Proc. Natl. Acad. Sci. USA 74:888.PubMedCrossRefGoogle Scholar
  100. 100.
    Ogawa, S., R. G. Schulman, P. Glynn, T. Yamane, and G. Navon. 1978. On the measurement of pH in Escherichia coli by 31 P nuclear magnetic resonance. Biochim. Biophys. Acta 502:45.PubMedCrossRefGoogle Scholar
  101. 101.
    Zilberstein, D., S. Schuldiner, and E. Padan. 1979. Proton electrochemical gradient in Escherichia coli cells and its relation to active transport of lactose. Biochemistry 18:669.PubMedCrossRefGoogle Scholar
  102. 102.
    Schuldiner, S., and H. Fishkes. 1978. Sodium-proton antiport in isolated membrane vesicles of Escherichia coli. Biochemistry 17:706.PubMedCrossRefGoogle Scholar
  103. 103.
    Schuldiner, S., and E. Padan. 1982. How does Escherichia coli regulate internal pH? In: Membranes and Transport, Volume 2. A. Martonosi, ed. Plenum Press, New York. p. 65.Google Scholar
  104. 104.
    Zilberstein, D., E. Padan, and S. Schuldiner. 1980. A single locus in Escherichia coli governs growth in alkaline pH and on carbon sources whose transport is sodium dependent. FEBS Lett. 116:177.PubMedCrossRefGoogle Scholar
  105. 105.
    Krulwich, T. A. 1982. Bioenergetic problems of alkalophilic bacteria. In: Membranes and Transport, Volume 2. A. Martonosi, ed. Plenum Press, New York. p. 75.Google Scholar
  106. 106.
    Krulwich, T. A. 1983. Sodium/proton antiporters. Biochim. Biophys. Acta 726:245.PubMedGoogle Scholar
  107. 107.
    Henderson, P. J. F., R. A. Giddens, and M. C. Jones-Mortimer. 1977. Transport of galactose, glucose and their molecular analogues by Escherichia coli K12. Biochem. J. 162:309.PubMedGoogle Scholar
  108. 108.
    Kashket, E. R., and T. H. Wilson. 1973. Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. Natl. Acad. Sci. USA 70:2866.PubMedCrossRefGoogle Scholar
  109. 109.
    Lam, V. M. S., K. R. Daruwalla, P. J. F. Henderson, and M. C. Jones-Mortimer. Proton-linked D-xylose transport in Escherichia coli. J. Bacteriol. 143:396.Google Scholar
  110. 110.
    West, I. C. 1970. Lactose transport coupled to proton movements in Escherichia coli. Biochem. Biophys. Res. Commun. 41:655.PubMedCrossRefGoogle Scholar
  111. 111.
    West, I. C., and P. Mitchell. 1972. Proton-coupled ²-galactoside translocation in nonmetabolizing Escherichia coli. J. Bioenerg. 3:445.PubMedCrossRefGoogle Scholar
  112. 112.
    West, I. C., and P. Mitchell. 1973. Stoichiometry of lactose-protein symport across the plasma membrane of Escherichia coli. Biochem. J. 132:587.PubMedGoogle Scholar
  113. 113.
    West, I. C., and T. H. Wilson. 1973. Galactoside transport dissociated from proton movement in mutants in Escherichia coli. Biochem. Biophys. Res. Commun. 50:551.PubMedCrossRefGoogle Scholar
  114. 114.
    Daruwalla, K. R., A. T. Paxton, and P. J. F. Henderson. 1981. Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli. Biochem. J. 200:611.PubMedGoogle Scholar
  115. 115.
    Patel, L., M. L. Garcia, and H. R. Kaback. 1982. Direct measurement of lactose/proton symport in Escherichia coli membrane vesicles: Further evidence for the involvement of histidine residuel). Biochemistry 21:5805.PubMedCrossRefGoogle Scholar
  116. 116.
    Robertson, D. E., G. J. Kaczorowski, M. L. Garcia, and H. R. Kaback. 1980. Active transport in membrane vesicles from Escherichia coli: The electrochemical proton gradient alters the distribution by the lac carrier between two different kinetic states. Biochemistry 19:5692.PubMedCrossRefGoogle Scholar
  117. 117.
    LeBlanc, G., G. Rimon, and H. R. Kaback. 1980. Glucose 6-phosphate transport in membrane vesicles isolated from Escherichia coli: Effect of imposed electrical potential and pH gradient. Biochemistry 19:2522.CrossRefGoogle Scholar
  118. 118.
    Rottenberg, H. 1976. The driving force for proton(s)/metabolite contransport in bacterial cells. FEBS Lett. 66:159.PubMedCrossRefGoogle Scholar
  119. 119.
    Booth, I. R., W. J. Mitchell, and W. A. Hamilton. 1979. Quantitative analysis of proton-linked transport systems: The lactose permease of Escherichia coli. Biochem. J. 182:687.PubMedGoogle Scholar
  120. 120.
    Taylor, D. J., and R. C. Essenberg. 1979. Proc. 11th Int. Congr. Biochem. (abstract) p. 460.Google Scholar
  121. 121.
    Stock, J., and S. Roseman. 1971. A sodium-dependent sugar co-transport system in bacteria. Biochem. Biophys. Res. Commun. 44:132.PubMedCrossRefGoogle Scholar
  122. 122.
    Lanyi, J. K., R. Renthal, and R. E. MacDonald. 1976. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. II. Evidence that the driving force is a light-dependent sodium gradient. Biochemistry 15:1603.PubMedCrossRefGoogle Scholar
  123. 123.
    Conn, D., G. J. Kaczorowski, and H. R. Kaback. 1981. Effect of the proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles. Biochemistry 20:3308.CrossRefGoogle Scholar
  124. 124.
    Cuffanti, A. A., D. E. Cohn, H. R. Kaback, and T. A. Krulwich. 1981. Relationship between the Na+ /H+ antiporter and Na+/substrate symport in Bacillus alcalophilus. Proc. Natl. Acad. Sci. USA 78:1481.CrossRefGoogle Scholar
  125. 125.
    Cohen, G. N., and H. V. Rickenberg. 1955. Study of the fixation of an inducer of ²-galactosidase by Escherichia coli. Compt. Rendu 240:466.Google Scholar
  126. 126.
    Cohen, G. N., and J. Monad. 1957. Bacterial permeases. Bacteriol. Rev. 21:169.PubMedGoogle Scholar
  127. 127.
    Kepes, A., and G. N. Cohen. 1962. Permeation. In: The Bacteria, Volume 4. I. C. Gunsalus, and R. Stanier, eds. Academic Press, New York. p. 179.Google Scholar
  128. 128.
    Kepes, A. 1971. β-Galactoside permease of Escherichia coli. J. Membr. Biol. 4:87.CrossRefGoogle Scholar
  129. 129.
    Rickenberg, H. V., G. N. Cohen, G. Buttin, and J. Monod. 1956. Galactoside-permease of Escherichia coli. Ann. Inst. Pasteur 91:829.Google Scholar
  130. 130.
    Ghazi, A., and E. Shechter. 1981. Lactose transport in Escherichia coli cells: Dependence of kinetic parameters on the transmembrane electrical potential difference. Biochim. Biophvs. Acta 645:305.CrossRefGoogle Scholar
  131. 131.
    Sandermann, H., Jr. 1977. β-D-Galactoside transport in Escherichia coli: Substrate recognition. Eur. J. Biochem. 80:507.PubMedCrossRefGoogle Scholar
  132. 132.
    Hobson, A. C., D. Gho, and B. Müller-Hill. 1977. Isolation, genetic analysis, and characterization of Escherichia coli mutants with defects in the lac y gene. J. Bacteriol. 131:830.PubMedGoogle Scholar
  133. 133.
    Kennedy, E. P. 1970. The lactose permease system of Escherichia coli. In: The Lactose Operon. J. R. Beckwith and D. Zipser, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y. p. 49.Google Scholar
  134. 134.
    Padan, E., S. Schuldiner, and H. R. Kaback. 1979. Reconstitution of lac carrier function in cholate-extracted membranes from Escherichia coli. Biochem. Biophys. Res. Commun. 91:854.PubMedCrossRefGoogle Scholar
  135. 135.
    Teather, R. M., B. Müller-Hill, V. Abrutsch, G. Aichele, and P. Overath. 1978. Amplification of lactose carrier protein in Escherichia coli using a plasmid vector. Mol. Gen. Genet. 159:239.PubMedCrossRefGoogle Scholar
  136. 136.
    Teather, R. M., J. Bramhall, I. Riede, J. K. Wright, M. Fürst, G. Aichele, V. Wilhelm, and P. Overath. 1980. Lactose carrier protein of Escherichia coli: Structure and expression of plasmids carrying the γ gene of the lac operon. Eur. J. Biochem. 108: 223.PubMedCrossRefGoogle Scholar
  137. 137.
    Büchel, D. E., B. Gronenborn, and B. Müller-Hill. 1980. Sequence of the lactose permease gene. Nature (London) 283:541.CrossRefGoogle Scholar
  138. 138.
    Ehring, R., K. Beyreuther, J. K. Wright, and P. Overath. 1980. In vitro and in vivo products of Escherichia coli lactose permease gene are identical. Nature (London) 283:537.CrossRefGoogle Scholar
  139. 139.
    Newman, M. J., and T. H. Wilson. 1980. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J. Biol. Chem. 255:10583.PubMedGoogle Scholar
  140. 140.
    Racker, E., B. Violand, S. O’Neal, M. Alfonzo, and J. Telford. 1979. Reconstitution, a way of biochemical research; some new approaches to membrane-bound enzymes. Arch. Biochem. Biophys. 198:470.PubMedCrossRefGoogle Scholar
  141. 141.
    Kaczorowski, G. J., G. LeBlanc, and H. R. Kaback. 1980. Specific labeling of the lac carrier protein in membrane vesicles of Escherichia coli by a photoaffinity reagent. Proc. Natl. Acad. Sci. USA 77:6319.PubMedCrossRefGoogle Scholar
  142. 142.
    Foster, D. L., M. L. Garcia, M. J. Newman, L. Patel, and H. R. Kaback. 1982. Lactose-proton symport by purified lac carrier protein. Biochemistry 21:5634.PubMedCrossRefGoogle Scholar
  143. 143.
    Newman, M. J., D. Foster, T. H. Wilson, and H. R. Kaback. 1981. Purification and reconstitution of functional lactose carrier from Escherichia coli. J. Biol. Chem. 256:11804.PubMedGoogle Scholar
  144. 144.
    Patel, L., S. Schuldiner, and H. R. Kaback. 1975. Reversible effects of chaotropic agents on the proton permeability of Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 72:3387.PubMedCrossRefGoogle Scholar
  145. 145.
    Jones, T. H. D., and E. P. Kennedy. 1969. Characterization of the membrane protein component of the lactose transport system of Escherichia coli. J. Biol. Chem. 244:5981.PubMedGoogle Scholar
  146. 146.
    Banker, G. A., and C. W. Cotman. 1972. Measurement of free electrophoretic mobility and retardation coefficient of protein-sodium dodecyl sulfate complexes by gel electrophoresis. J. Biol. Chem. 247:5856.PubMedGoogle Scholar
  147. 147.
    Neville, D., M., Jr. Garcia, 1971. Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J. Biol. Chem. 246:6328.PubMedGoogle Scholar
  148. 148.
    König, B., and H. Sandermann, Jr. 1982. β-Galactoside transport in Escherichia coli: Mr determination of the transport protein in organic solvent. FEBS Lett. 147:31.PubMedCrossRefGoogle Scholar
  149. 149.
    Garcia, M. L., P. Viitanen, D. L. Foster, and H. R. Kaback. 1983. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. I. Effect of pH and imposed membrane potential on efflux, exchange and counterflow. Biochemistry 22:2524.PubMedCrossRefGoogle Scholar
  150. 150.
    Hong, J. S. 1977. An ecf mutation in Escherichia coli pleiotropically affecting energy coupling in active transport but not generation or maintenance of membrane potential. J. Biol. Chem. 252:8582.PubMedGoogle Scholar
  151. 151.
    Plate, C. A., and J. L. Suit. 1981. The eup genetic locus of Escherichia coli and its role in H+ /solute symport. J. Biol. Chem. 256:12974.PubMedGoogle Scholar
  152. 152.
    Villarejo, M., and C. Ping. 1978. Localization of the lactose permease protein(s) in the E. coli envelope. Biochem. Biophys. Res. Commun. 82:935.PubMedCrossRefGoogle Scholar
  153. 153.
    Villarejo, M. 1980. Evidence for the two lac y gene derived protein products in the Escherichia coli membrane. Biochem. Biophys. Res. Commun. 93:16.PubMedCrossRefGoogle Scholar
  154. 154.
    Wright, J. K., H. Schwarz, E. Straub, P. Overath, B. Bieseler and K. Beyreuther. 1982. Lactose carrier protein of Escherichia coli. Reconstitution of galactoside binding and countertransport. Eur. J. Biochem. 124:545.PubMedCrossRefGoogle Scholar
  155. 155.
    Viitanen, P., M. L. Garcia, D. L. Foster, G. J. Kaczorowski, and H. R. Kaback. 1983. Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli. 2. Deuterium solvent isotope effects. Biochemistry 22:2531.PubMedCrossRefGoogle Scholar
  156. 156.
    Jencks, W. P. 1969. Catalysis in Chemistry and Enzymology. McGraw-Hill, New York.Google Scholar
  157. 157.
    Foster, D. L., M. Boublik, and H. R. Kaback. 1983. Structure of the lac carrier protein of Escherichia coli. J. Biol. Chem. 258:31.PubMedGoogle Scholar
  158. 158.
    Kyte, J., and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105.PubMedCrossRefGoogle Scholar
  159. 159.
    Chou, P. Y., and G. D. Fasman. 1974. Prediction of protein conformation. Biochemistry 13:222.PubMedCrossRefGoogle Scholar
  160. 160.
    Engleman, D. M., P. Henderson, A. D. McLachlan, and B. A. Wallace. 1980. Path of the polypeptide in bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 77:2023.CrossRefGoogle Scholar
  161. 161.
    Henderson, R. and P. N. T. Unwin. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature (London) 257:28.CrossRefGoogle Scholar
  162. 162.
    Goldkorn, T., G. Rimon, and H. R. Kaback. 1983. Topology of the lac carrier protein in the membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 80:3322.PubMedCrossRefGoogle Scholar
  163. 163.
    Seckler, R., J. K. Wright, and P. Overath. 1983. Peptide-specific antibody locates the COOH terminus of the lactose carrier of Escherichia coli on the cytoplasmic side of the plasma membrane. J. Biol. Chem. 258:10817.PubMedGoogle Scholar
  164. 164.
    Carrasco, N., D. Herzlinger, S. DeChiara, W. Danho, T. F. Gabriel, and H. R. Kaback. 1984. Topology of the lac carrier protein in the membrane of Escherichia coli. Biophys. J. 45:83a.Google Scholar
  165. 165.
    Carrasco, N., D. Herzlinger, R. Mitchell, S. DeChiara, W. Danho, T. F. Gabriel, and H. R. Kaback. 1984. Intramolecular dislocation of the C-terminus of the lac carrier protein in reconstituted proteoliposomes. Proc. Natl. Acad. Sci. USA 81:4672.PubMedCrossRefGoogle Scholar
  166. 166.
    Carrasco, N., P. Viitanen, D. Herzlinger, and H. R. Kaback. 1984. Monoclonal antibodies against the lac carrier protein from Escherichia coli. I. Functional studies. Biochemistry 23:3681.PubMedCrossRefGoogle Scholar
  167. 167.
    Herzlinger, D., P. Viitanen, N. Carrasco, and H. R. Kaback. 1984. Monoclonal antibodies against the lac carrier protein from Escherichia coli. II. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein. Biochemistry 23:3688.PubMedCrossRefGoogle Scholar
  168. 168.
    Seckler, R., and J. K. Wright. 1984. Sidedness of native membrane vesicles of Escherichia coli and orientation of the reconstituted lactose:H+ carrier. Eur. J. Biochem. 142:269.PubMedCrossRefGoogle Scholar
  169. 169.
    Herzlinger, D., N. Carrasco, and H. R. Kaback. 1984. Functional and immunochemical characterization of a mutant of Escherichia coli energy-uncoupled for lactose transport. Biochemistry, in press.Google Scholar
  170. 170.
    Wong, P. T. S., E. R. Kashket, and T. H. Wilson. 1970. Energy-coupling in the lactose transport system of Escherichia coli. Proc. Natl. Acad. Sci. USA 65:63.PubMedCrossRefGoogle Scholar
  171. 171.
    Wright, J. K., U. Weigel, A. Lustig, H. Bocklage, M. Mieschen-dahl, B. Müller-Hill, and P. Overath. 1983. Does the lactose carrier of Escherichia coli function as a monomer? FEBS Lett. 162:11.PubMedCrossRefGoogle Scholar
  172. 172.
    Goldkorn, T., G. Rimon, and H. R. Kaback. 1983. Topology of the lac carrier protein in the membrane of Escherichia coli. Proc. Natl. Acad. Sci. USA 80:3322.PubMedCrossRefGoogle Scholar
  173. 173.
    Mieschendahl, M., D. Büchel, H. Bocklage, B. Müller-Hill. 1981. Mutations in the lac y gene of Escherichia coli define functional organization of lactose permease. Proc. Natl. Acad. Sci. USA 78:7652.PubMedCrossRefGoogle Scholar
  174. 174.
    Fox, C. F., and E. P. Kennedy. 1965. Specific labeling and partial purification of the M protein, a component of the β-galactoside transport system of Escherichia coli. Proc. Natl. Acad. Sci. USA 54:891.PubMedCrossRefGoogle Scholar
  175. 175.
    Beyreuther, K., B. Bieseler, R. Ehring, and B. Müller-Hill. 1981. Identification of internal residues of lactose permease of Escherichia coli by radiolabel of peptide mixtures. In: Methods in Protein Sequence Analysis. M. Elzina, ed. Humana Press, Clifton, N.J. p. 139.Google Scholar
  176. 176.
    Zoller, M. J., and M. Smith. 1983. Oligonucleotide-directedmutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 100:468.PubMedCrossRefGoogle Scholar
  177. 177.
    Trumble, W. R., P. V. Viitanen, H. K. Sarkar, M. S. Poonian, and H. R. Kaback. 1984. Site-directed mutagenesis of Cys l48in the lac carrier protein of Escherichia coli. Biochem. Biophys. Res. Commun. 119:860.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1987

Authors and Affiliations

  • H. Ronald Kaback
    • 1
  1. 1.Roche Research CenterRoche Institute of Molecular BiologyNutleyUSA

Personalised recommendations