Experimental Puzzles beyond the Standard Model

  • A. Savoy-Navarro
Part of the NATO ASI Series book series (NSSB, volume 164)


The Standard Model is, so far, a successful attempt to combine, within the gauge invariance
$$ SU(3) \otimes SU(2) \otimes U(1), $$
the theories which try to explain the three fundamental forces between the elementary constituents [strong, weak, and electromagnetic (e.m.) forces]. In this scheme, the strong interactions are described by quantum chromo-dynamics (QCD)--the SU(3) gauge theory--and the weak and e.m. interactions are unified by the Weinberg-Salam (WS) model within SU(2) ⊗ U(1) invariance.


Higgs Mass Neutrino Oscillation Higgs Sector Transverse Energy Solar Neutrino 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. DiLella, Physics at the CERN pp Collider and status of the electroweak theory, these proceedings.Google Scholar
  2. 2.
    Talks on experimental physics given at the Int. Conf. on High-Energy Physics, Berkeley, Calif., 1986.Google Scholar
  3. 3.
    I. Hinchiiffe, these proceedings.Google Scholar
  4. 4.
    D. Gross, these proceedings.Google Scholar
  5. 5.
    G. Arnison et al. (UA1 Collab.), Phys. Lett. 139B:115 (1984).ADSGoogle Scholar
  6. C. Rubbia, Experimental observation of events with large missing transverse energy accompanied by a jet or a photon(s) in pp collisions at is = 540 GeV, in CERN 84–09, ‘Proc. 4th Topical Workshop on Proton-Antiproton Collider Physics’, Berne, March 1984, CERN, Geneva (1984), p. 218.Google Scholar
  7. A. Roussarie, Observation of electrons produced in association with hard jets and large missing transverse momentum in pp collisions at is = 540 GeV, ibid., p. 219.Google Scholar
  8. P. Bagnaia et al. (UA2 Collab.), Phys. Lett. 139B:105 (1984).ADSGoogle Scholar
  9. 6.
    For general reviews on supersymmetry, see: H. P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rep. 110:3 (1984).Google Scholar
  10. D. V. Nanopoulos and A. Savoy-Navarro (eds.), Supersymmetry confronting experiments, Phys. Rep. 105:1 (1984).Google Scholar
  11. A. Savoy-Navarro, Experimental tests of supersymmetry, Phys. Rep 105:91 (1984).Google Scholar
  12. H. E. Haber and G. L. Kane, The search for supersymmetry probing physics beyond the standard model, Phys. Rep. 117:77 (1984).Google Scholar
  13. J. Ellis, Supersymmetry, supergravity and superstring phenomenology, preprint CERN TH-4255/85, Lectures given at the 28th Scottish Universities Summer School in Physics, Edinburgh, 1985.Google Scholar
  14. 7.
    G. Bartha et al., Search for anomalous single photon production atGoogle Scholar
  15. PEP, Stanford preprint SLAC-PUB-3817 (1985).Google Scholar
  16. E. Fernandez et al. (MAC Collab.), Phys. Rev. Lett. 52:22 (1984).Google Scholar
  17. R. Hollebeek, Single photon searches at PEP, Stanford preprint SLAC-PUB-3846 (1985), presented at the SLAC Summer School Institute on Particle Physics, Stanford, Calif., 1985.Google Scholar
  18. 8.
    See all theoretical reports at the Berne (1984) and Leipzig (1985) conferences. A large number of theoretical papers written in 1984 and 1985 tried to find an overall explanation for the ‘strange signal’ found at the CERN pp Collider during the 1983 run: W events à la UA2, monojets and missing-energy events in UA1, unusual Z ‘s (both UA1 and UA2 found Z ‘s emitting a photon at a large angle). These explanations were essentially expressed in terms of supersymmetry or composite models. These signals were not confirmed by the run of 1984.Google Scholar
  19. 9.
    R. Batley (UA1 Collab.), Missing-energy results from the UA1 experiment, talk given at the 6th Topical Workshop on Proton-Antiproton Collider Physics, Aachen, 1986.Google Scholar
  20. 10.
    A. Astbury et al., The UA1 calorimeter trigger, Rutherford preprint RAL-84–025 (1984).Google Scholar
  21. 11.
    F. E. Paige and S. P. Protopopescu, ISAJET Monte Carlo, Brookhaven report BNL-29777, 1983.Google Scholar
  22. 12.
    A. Savoy-Navarro, Experimental evidence for the decay W 4 TV of the charged intermediate vector boson at the CERN pp Collider,T in ‘Proc. 5th Topical Workshop on Proton-Antiproton Collider Physics’, Saint-Vincent, 1985, World Scientific, Singapore (1985), p. 196.Google Scholar
  23. 13.
    Y. Giraud-Héraud, A. Savoy-Navarro, C. Tao and N. Zaganidis, Using fragmentation to interpret the origin of monojets, internal note UA1-TN/85–86 (1985).Google Scholar
  24. 14.
    UA1 Collaboration, paper in preparation on the study of the W 4 TVT decay.Google Scholar
  25. For the search for supersymmetric particles at pp colliders, see among others: M. J. Herrero, L. E. Ibanez, C. Lopez and F. J. Yndurain, Phys. Lett. 132B:199 (1983); Erratum in 142B:455 (1984).Google Scholar
  26. G. Altarellí, B. Mele and S. Petrarca, preprint CERN-TH-3822 (1984).Google Scholar
  27. I. Antoniadis, L. Baulieu and F. Delduc, Z. Phys. C23:119 (1984).ADSGoogle Scholar
  28. S. Dawson, E. Eichten and C. Quigg, Fermilab and Berkeley preprint Fermilab-PUB-83/82-THY and LBL-16540 (1984).Google Scholar
  29. S. Dawson and A. Savoy-Navarro, in Ref. 63.Google Scholar
  30. J. Ellis and H. Kowalski, Phys. Lett. 1428:441 (1984).Google Scholar
  31. E. Reya and D. P. Roy, Phys. Lett. 141B:442 (1984) and Phys. Rev. Lett. 53:881 (1984).Google Scholar
  32. A. Savoy-Navarro, Supersymmetry and (Super)hadron-hadron colliders, ‘Proc. 19th Rencontre de Moriond’, La Plagne, 1984, Ed. Frontières, Gif-sur-Yvette (1984), vol. 2, p. 95.Google Scholar
  33. J. Ellis and H. Kowalski, Nucl. Phys. 8259:109 (1985).Google Scholar
  34. A. Savoy-Navarro, Hadron-hadron colliders: SUSY now or later, Saclay preprint DPhPE 86–01 (1986), ‘Proc. 3rd CSIC Workshop on SUSY and Grand Unification from Strings to Collider Phenomenology’, Madrid, 1985, World Scientific, Singapore (1986), p. 1.Google Scholar
  35. R. M. Barnett, H. E. Haber and G. Kane, Nucl. Phys. B267:625 (1986).ADSCrossRefGoogle Scholar
  36. 16.
    A. Bouquet, J. Kaplan and C. A. Savoy, Phys. Lett. 1488:69 (1984) and Nucl. Phys. B262:299 (1985).Google Scholar
  37. F. Delduc, H. Navelet, P. Peschanski and C. A. Savoy, Squark pair production mechanism in pp collisions, Phys. Lett. 155B:173 (1985).ADSGoogle Scholar
  38. 17.
    Refer to your usual manual of classical mechanics.Google Scholar
  39. 18.
    The results on geophysical experiments, plotted in Fig. 24, have been provided by S. H. Aronson and A. De Röjula (private communications). For more information see also:Google Scholar
  40. F. D. Stacey and G. J. Tuck, Nature 292:230 (1981).ADSCrossRefGoogle Scholar
  41. S. C. Holding and G.J. Tuck, Nature 307:714 (1984).ADSCrossRefGoogle Scholar
  42. F. D. Stacey, Sci. Prog. (Oxford) 69:1 (1984).Google Scholar
  43. 19.
    C. Zachos, Phys. Lett. 76B:329 (1978); PhD Thesis, CalTech (1979). J. Scherk, Phys. Lett. 88B:265 (1979);Google Scholar
  44. J. Scherk, Ecole Normale Sup. preprint LPTENS 79/19, Lecture given at the Int. Conf. on Mathematical Physics, Lausanne, 1979;Google Scholar
  45. J. Scherk, ‘Proc. Supergravity Workshop’, Stony Brook, NY, 1979, North-Holland, Amsterdam (1979), p. 43.Google Scholar
  46. J. Scherk, ‘Proc. Ecole d’Eté de Physique des Particules’, Gif-sur-Yvette, 1979, IN2P3, Paris (1980), p. 175.Google Scholar
  47. J. Scherk, Gravitation at short range and supergravity, Ecole Normale Sup. preprint LPTENS 80/15, presented at the Europhysics Study Conf. on Unification of the Fundamental Interactions, Erice, 1980.Google Scholar
  48. 20.
    E. Fischbach et al., Reanalysis of the Eötvös experiment, Phys. Rev. Lett. 56:3 (1986).ADSCrossRefGoogle Scholar
  49. 21.
    It is interesting to note that similar results are obtained by the ‘conventional approach’ [see S. Aronson’s papers in Refs. (25), (26) and (30), and references therein].Google Scholar
  50. 22.
    A. De Rujula, private communication.Google Scholar
  51. 23.
    P. Fayet, Phys. Lett. 171B:261 and 172B:363 (1986).Google Scholar
  52. 24.
    R. Eötvös, D. Pekär and E. Fakete, Ann. Phys. (Leipzig) 68:11 (1922).Google Scholar
  53. 25.
    S. H. Aronson et al., Phys. Rev. Lett. 48:1306 (1982) and Phys. Rev. D28:476, 495 (1983).Google Scholar
  54. E. Fischbach et al., Phys. Lett. 1168:73 (1982).Google Scholar
  55. 26.
    C. Talmadge, S. H. Aronson and E. Fischbach, Effects of local mass anomalies in Eötvös-type experiments, Prep. 40048–12-N6, presented at the 21st Rencontre de Moriond, Les Arcs, 1986.Google Scholar
  56. 27.
    D. P. Coupal et al., Phys. Rev. Lett. 55:566 (1985).ADSCrossRefGoogle Scholar
  57. 28.
    D. C. Cundy et al., Measurement of 1noo12/In+ 12, CERN Proposal SPSC/81/110, P174 (1981).Google Scholar
  58. P. Clarke et al., A ieasurement of the phase difference of n and n in CP violation K + 2n decays, CERN proposal SPSC/86/6, $174 Addy-2 (1986).Google Scholar
  59. 29.
    P. G. Roll, R. Krotkov and R. H. Dicke, Ann. Phys. (NY) 26:442 (1964). R. H. Dicke, Sci. Amer. 205:84 (1961).Google Scholar
  60. 30.
    C. Bouchiat and J. Iliopoulos, On the possible existence of a light vector meson coupled to the hypercharge current, Phys. Lett. 169B:447 (1986).ADSGoogle Scholar
  61. S. Aronson et al., Experimental signals for hyperphotons, Phys. Rev. Lett. 56:1342 (1986).ADSCrossRefGoogle Scholar
  62. 31.
    Y. Asano et al., Phys. Lett. 107B:159 (1981) and 113B:195 (1982).Google Scholar
  63. 32.
    An example of a new experiment to study very rare Kr decays at Brookhaven can be found in the proposal for the gNL expt. 791, by R. D. Cousins et al. (UCLA-Los Alamos-Pennsylvania-Stanford-TempleWilliam and Mary Collab.).Google Scholar
  64. 33.
    M. Banner et al., Phys. Rev. 188:2033 (1969).ADSCrossRefGoogle Scholar
  65. 34.
    For general reviews on v-physics, see Ching Cheng-rui and Ho Tso-hsiu, On the determination of the neutrino mass - A critical status report, Phys. Rep. 112:1 (1984).Google Scholar
  66. J. D. Vergados, The neutrino mass and family, lepton and baryon number non-conservation in gauge theories, Phys. Rep. 133:1 (1986).ADSCrossRefGoogle Scholar
  67. V. Flaminio and B. Saitta, Neutrino oscillation experiments, Pisa preprint INFN PI/AE’ 85/6 (1985), submitted to Rivista del Nuovo Cimento.Google Scholar
  68. D. R. O. Morrison, Review of neutrino masses and oscillations, preprint CERN-EP/86–44 (1986), lecture given at the 10th Hawai Conference on High-Energy Physics, 1985.Google Scholar
  69. M. Spiro, Particle physics without accelerators (selected topics) CEA-Saclay preprint DPhPE 85–08 (1985), lectures given at the Institut d’Etudes Scientifiques de Cargèse, 1985.Google Scholar
  70. K. Winter, Neutrino properties, preprint CERN-EP/86–61 (1986), invited talk given at the 2nd ESO/CERN Symposium on Cosmology, Astronomy and Fundamental Physics, Garching, 1986.Google Scholar
  71. 35.
    V. A. Lyubimov et al., 2h. Exp. Teor. Fiz. 81:1158 (1981), and contribution to the VIth Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics, Tignes, 1986.Google Scholar
  72. 36.
    J. J. Simpson, Phys. Rev. D23:649 (1981) and Phys. Rev. Lett. 54:1891 (1985).Google Scholar
  73. 37.
    See for instance, the results of the Princeton group in T. Altzitzoglou, Phys. Rev. Lett. 55:799 (1985). _Google Scholar
  74. 38.
    T. J. Bowles et al., A limit on the v mass, in free molecular tritium 8 decay, talk given at the Int. Conf. on Weak and Electromagnetic Interactions in Nuclei, Heidelberg, 1986.Google Scholar
  75. J. F. Wilkerson et al., The Los Alamos free molecular and atomic tritium s-decay experiment, Los Alamos preprint LA-UR-86–1054, contribution to the VIth Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics, Tignes, 1986.Google Scholar
  76. 39.
    For a review on the geochemical method in double 8 decay detection, see: T. Kirsten, Double 9 decay detection: geochemical methods, ‘Proc. Fifth Workshop on Grand Unification, Providence, RI, 1984, World Scientific, Singapore (1984), p. 268, and references therein.Google Scholar
  77. 40.
    For a review on direct experiments on double ß: decay, see E. Fiorini, Direct experiments on double ß decay, ‘Proc. Fifth Workshop on Grand Unification, Providence, RI, 1984, World Scientific, Singapore (1984), p. 283, and references therein.Google Scholar
  78. 41.
    E. Fiorini, A. Pullia, G. Bertolini, F. Cappellani and G. Rastelli, Nuovo Cimento 13A:747 (1973).ADSGoogle Scholar
  79. 42.
    E. Bellotti et al., Xenon time projection chamber for 99 decay, ‘Proc. Workshop on the Time Projection Chamber’, Vancouver, B.C., Canada, 1983, Amer. Inst. Phys., New York (1984), p. 42.Google Scholar
  80. 43.
    C. H. Chen, S. D. Kramer, S. L. Allmann and G. S. Hurst, Selective counting of krypton atoms using resonance ionization spectroscopy, unpublished.Google Scholar
  81. 44.
    V. Zacek et al., Improved limits on oscillation parameters from v-disappearance measurements at the Gösgen power reactor, Phys. Lett. 164B:193 (1985).ADSGoogle Scholar
  82. 45.
    J. F. Cavaignac et al., Phys. Lett. 148B:387,(1984).ADSGoogle Scholar
  83. 46.
    J. M. Losecco et al. (IMB Collab.), Test of neutrino oscillations using atmospheric neutrinos, Phys. Rev. Lett. 54:2299 (1985). For a description of the IMB detector, seeGoogle Scholar
  84. R. Bionta et al., Phys. Rev. Lett. 51:27 (1983).ADSCrossRefGoogle Scholar
  85. T. W. Jones et al., Phys. Rev. Lett. 52:720’(1984).ADSCrossRefGoogle Scholar
  86. H. S. Park et al., Phys. Rev. Lett. 54:22 (1985).ADSCrossRefGoogle Scholar
  87. 47.
    S. P. Mikheyev and A. Yu. Smirnov, contribution to the Tenth Int. Workshop on Weak Interactions, Savolinna, Finland, 1985.Google Scholar
  88. 48.
    H. A. Bethe, Possible explanation of the solar-neutrino puzzle, Phys. Rev. Lett. 56:1305 (1986).ADSCrossRefGoogle Scholar
  89. M. Cribier, W. Hampel, J. Rich and D. Vignaud, MSW regeneration of solar v in the Earth, CEA-Saclay preprint DPhPE 86–17 (1986).Google Scholar
  90. W. C. Haxtón, The solar neutrino puzzle--comments, Nucl. Part. Phys. 16:95 (1986).Google Scholar
  91. 49.
    J. K. Rowley, B. T. Cleveland and R. Davis, Jr., ‘Proc. Int. Conf. on Solar Neutrinos and Neutrino Astronomy’, Homestake, 1984, AIP Conf. Proc. No. 126, New York (1985), p. 1.Google Scholar
  92. 50.
    T. Kirsten, Status report on the GALLEX solar neutrino project, contribution to the VIth Moriond Workshop on Massive Neutrinos in Particle Physics and Astrophysics, Tignes, 1986.Google Scholar
  93. D. Vignaud, The gallium solar neutrino experiment GALLEX, published in the ‘Comptes rendus du Congrès de la Société française de physique’, Nice, 1985. (GALLEX = Heidelberg-Karlsruhe-Milan-Munich-Nice-Rehovot-Rome-Saclay Collab.)Google Scholar
  94. I. R. Barabanov et al., Pilot installation of the gallium-germanium solar neutrino telescope, ‘Proc. Int. Conf. on Solar Neutrinos and Neutrino Astronomy’, Homestake, 1984, AIP Conf. Proc. No. 126, New York (1985), p. 175.Google Scholar
  95. A. E. Chudakov, talk given at the First Symposium on Underground Physics, Saint Vincent4 1985.Google Scholar
  96. 51.
    A. Böhm, Observation of e e events in a broad energy flow and isolated muons by MARK J, ‘Proc. 20th Rencontres de Moriond’, Les Arcs, 1985, Ed. Frontières, Gif-sur-Yvette (1985), p. 559.Google Scholar
  97. 52.
    . M. Mohammadi, Calculations of the limits on heavy lepton mass, number of neutrino families and cross-section for new physics, internal note UA1-TN/86–71 (1986).Google Scholar
  98. 53.
    R. Barbieri, S. Ferrara, L. Maiani, F. Palumbo and C. A. Savoy, Phys. Lett. 115B:212 (1982).ADSGoogle Scholar
  99. 54.
    C. Peck et al. (Crystal Ball Collab.), DESY report 84–064 (1984) and SLAC-PUB 3380 (1984).Google Scholar
  100. 55.
    See review of the subject by: S. Komamiya, Search for new particles in e+e annihilation, in ‘Proc. Int. Symposium on Lepton and Photon Interactions at High Energies’, Kyoto, 1985, Kyoto Univ., Kyoto (1986), p. 612.Google Scholar
  101. 56.
    S. L. Glashow and A. Manohar, Phys. Rev. Lett. 54:526 (1985).ADSCrossRefGoogle Scholar
  102. 57.
    R. N. Cahn, M. S. Chanowitz and N. Fleishon, Phys. Lett. 82B:113 (1979).ADSGoogle Scholar
  103. 58.
    This study is done by H. U. Bengtsson, A. Savoy-Navarro and Y. Takaiwa; see A. Savoy-Navarro, report at the Madison Workshop on Physics Simulations at the High Energy, 1986, and report of the Working Group on W, Z and Higgs at SSC at the Summer Study on the Physics of the Superconducting Super Collider, Snowmass, Colo., 1986.Google Scholar
  104. 59.
    H. U. Bengtsson and G. Ingelman, Lund preprint LUTP 84–3 and CERN TH 3820 (1984).Google Scholar
  105. T. Sjöstrand, Description of the capabilities of PYTHIA, contribution to UCLA Workshop on SSC Physics, Los Angeles, 1986.Google Scholar
  106. H. U. Bengtsson and T. Sjöstrand, paper in preparation.Google Scholar
  107. 60.
    G. Wolf, HERA: The machine and the physics, these proceedings.Google Scholar
  108. 61.
    J. Gunion and A. Savoy-Navarro, Univ. California (Davis) preprint UCD-86–11, Report of the W/Z/Higgs Working Group at the UCLA Workshop on SSC Physics, Los Angeles, 1986.Google Scholar
  109. 62.
    E. Eichten, I. Hinchliffe, K. Lane and C. Quigg, Supercollider physics, Rev. Mod. Phys. 56:579 (1984).ADSCrossRefGoogle Scholar
  110. 63.
    S. Dawson and A. Savoy-Navarro, Report of the Working Group Searching for Supersymmetry at the SSC, ‘Proc. Summer Study on the Design and Utilization of the Superconducting Super Collider’, Snowmass, Colo., 1984.Google Scholar
  111. 64.
    ’Proc. Workshop on Triggering, Data Acquisition and Offline Computing for High Energy/High Luminosity Hadron-Hadron Colliders’, Batavia, 1985, FNAL, Batavia (1985).Google Scholar
  112. 65.
    The development of this technique to recognize the (W 4 qq) system is due to J. Hauptman. The study presented in these lectures has been done by J. Hauptman and A. Savoy-Navarro. For references, see A. Savoy-Navarro, same reports as those in Ref. 58.Google Scholar
  113. 66.
    M. Abud, R. Gatto and C. A. Savoy, Prospects for high energy pp beams: study of hadronic jets and possible intermediate bosons, Ann. Phys. (USA) 122:219 (1979).Google Scholar
  114. And see difficulties to measure such a W-decay in present UA1 and UA2 experiments: A. Roussarie (UA2 Collab.), talk given at the Int. Conf on High-Energy Physics, Berkeley, Calif., 1986.Google Scholar
  115. 67.
    ’Proc. ECFA-CERN Workshop on Large Hadron Collider in the LEP Tunnel’, Geneva-Lausanne, 1984 (report ECFA 84/85, CERN 84–10), CERN, Geneva (1984).Google Scholar
  116. 68.
    SSC Central Design Group, Conceptual design of the Superconducting Super Collider, report SSC-SR-2020 (1986).Google Scholar
  117. 69.
    T. M. Liss, The CDF level 1 and level 2 trigger system, talk given at the VIth Topical Workshop on pp Physics, Aachen, 1986.Google Scholar
  118. 70.
    P. Franzini et al., Lowest level trigger for SSC general purpose detectors, in Ref. 64, p. 93.Google Scholar
  119. 71.
    L. D. Gladney, N. S. Lockyer and R. Van Berg, The CDF track processor, Prospects for the SSC, in Ref. 64, p. 152.Google Scholar
  120. 72.
    M. Abolins et al., Report of the High Level Trigger Group, in Ref. 64, p. 131.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. Savoy-Navarro
    • 1
  1. 1.DPhPE-CEASaclayFrance

Personalised recommendations