Computer Experiments on Electron-Ion Recombination in an Ambient Medium: Gases, Plasmas and Liquids

  • Wm. Lowell Morgan
Part of the Physics of Atoms and Molecules book series (PAMO)


Concern over the rate at which ions recombine with other ions or with electrons in an ambient medium followed very shortly the discovery of the electron itself in 1896. The papers published on recombination in the ninety years since are legion. This is largely due to the wide range of phenomena in which charged particle recombination is found to be important. Examples include the upper atmosphere, vapor lamps, lasers, and radiation chemistry. The importance of recombination lies in its frequently being the rate limiting step in the removal of charged particles or in the formation of important neutral species in a system. Ionic recombination processes can be grouped into the following categories: 2-body ion-ion mutual neutralization, 3-body ion-ion recombination, 2-body electron-ion dissociative recombination, 2-body electron-ion dielectronic recombination, 2-body electron-ion radiative recombination, 3-body electron-ion collisional radiative recombination, and 3-body neutral assisted electron-ion recombination. Much of the progress in thoretical understanding of recombination processes is attributable to Sir David Bates, whose first publication and at least fifty five of his more than two hundred sixty succeeding papers have dealt with recombination processes.


Monte Carlo Rate Coefficient Inelastic Collision Inelastic Cross Section Dissociative Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, D. A., Sennhauser, E. S., Warman, J. M., and Sowada, U., 1982, The electron-ion recombination coefficient in CO2 and NH3. Deviations from a linear density dependence at elevated pressures, Chem. Phys. Lett., 86: 281.Google Scholar
  2. Ascarelli, G., 1986, Calculation of the mobility of electrons injected in liquid methane, Phys. Rev. B, 34: 7329.Google Scholar
  3. Atrazhev, V. M., and Yakubov, I. T., 1981, Electron mobility in liquids and dense gases, High Temperature (USSR), 18: 969.Google Scholar
  4. Bardsley, J. N., and Biondi, M. A., 1970, Dissociative recombination, in: “Advances in Atomic and Molecular Physics,” D. R. Bates and I. Esterman, eds., Academic Press, New York.Google Scholar
  5. Bardsley, J. N., and Wadehra, J. M., 1980, Monte Carlo simulation of three-body ion-ion recombination, Chem. Phys. Lett., 72: 477.Google Scholar
  6. Basak, S. and Cohen, M., 1979, Deformation-potential theory for the mobility of electrons in liquid argon, Phys. Rev. B, 20: 3404.ADSCrossRefGoogle Scholar
  7. Bates, D. R., 1975, Ionic recombination in a high density ambient gas, J. Phys. B, 8: 2722.MathSciNetGoogle Scholar
  8. Bates, D. R., 1979a, Aspects of recombination, in: “Advances in Atomic and Molecular Physics,” D. R. Bates and B. Bederson, eds., Academic Press, New York.Google Scholar
  9. Bates, D. R., 1979b, Electron-ion recombination in ambient electron and neutral gases, in: “The Physics of Ionized Gases,” R. K. Janev, ed., Institute of Physics, Belgrade.Google Scholar
  10. Bates, D. R., 1980a, Classical theory of electron-ion recombination in an ambient gas, J. Phys. B, 13: 2587.ADSGoogle Scholar
  11. Bates, D. R., 1980b, Universal curve for ter-molecular ionic recombination coefficients, Chem. Phys. Lett., 75: 409.ADSGoogle Scholar
  12. Bates, D. R., 1981a, Electron-ion recombination in an ambient molecular gas, J. Phys. B, 14: 3525.Google Scholar
  13. Bates, D. R., 1981b, Effect of inelastic collisions on rate of termolecular ionic recombination, J. Phys. B, 14: 2853.ADSGoogle Scholar
  14. Bates, D. R., 1982, Electron-ion collisional dissociative recombination at high ambient ammonia densities, Chem. Phys. Lett., 89: 294.ADSGoogle Scholar
  15. Bates, D. R., 1983, Termolecular ionic recombination at high ambient gas density, J. Phys. B, 16: L295.Google Scholar
  16. Bates, D. R., 1985, Ion-ion recombination in an ambient gas, in: “Advances in Atomic and Molecular Physics,” D. R. Bates and B. Bederson, eds., Academic Press, New York.Google Scholar
  17. Bates, D. R., and Khare, S. P., 1965, Recombination of positive ions and electrons in a dense neutral gas, Proc. Phys. Soc., 85: 231.ADSGoogle Scholar
  18. Bates, D. R., Malaviya, V., and Young, N. A., 1971, Electron-ion recombination in a dense molecular gas, Proc. Roy. Soc. Lond. A, 320: 437.ADSGoogle Scholar
  19. Bates, D. R., and Mendas, I., 1978, Ionic recombination in an ambient gas II. Computer experiment with specific allowance for binary recombination, Proc. Roy. Soc. Lond. A, 359: 287.ADSGoogle Scholar
  20. Bates, D. R., and Mendas, I., 1982, Rate coefficients for ter-molecular ionic recombination, Chem. Phys. Lett., 88: 528.ADSGoogle Scholar
  21. Berlin, Y. A., Nyikos, L., and Schiller, R., 1978, Mobility of localized and quasifree excess electrons in liquid hydrocarbons, J. Chem. Phys., 69: 2401.ADSGoogle Scholar
  22. Braglia, G. L., and Dallacasa, V., 1982, Theory of electron mobility in dense gases, Phys. Rev. A, 26: 902.Google Scholar
  23. Christophorou, L. G., and McCorkle, D. L., 1976, Experimental evidence for the existence of a Ramsauer-Townsend minimum in liquid CH4 and liquid Ar (Kr and Xe), Chem. Phys. Lett., 42: 533.Google Scholar
  24. Davis, H. T., Schmidt, L. D., and Minday, R. M., 1971, Kinetic theory of excess electrons in polyatomic gases, liquids, and solids, Phys. Rev. A, 3: 1027.Google Scholar
  25. Ferch, J., Granitza, B., and Raith, W., 1985, The Ramsauer minimum of methane, J. Phys. B, 18: L445.Google Scholar
  26. Flannery, M. R., 1976, Ionic recombination, in: “Atomic Processes and Applications,” P. G. Burke and B. L. Moiseiwitsch, eds., North-Holland, Amsterdam.Google Scholar
  27. Flannery, M. R., 1982, Ion-ion recombination in high pressure plasmas, in: “Applied Atomic Collision Physics V. 3: Gas Lasers,” E. W. McDaniel and W. L. Nighan, eds., Academic Press, New York.Google Scholar
  28. Frost, L. S., and Phelps, A. V., 1962, Rotational excitation and momentum transfer cross sections for electrons in H2 and N2 from transport coefficients, Phys. Rev., 127: 1621.Google Scholar
  29. Gee, N., and Freeman, G. R., 1986, Geminate recombination of electrons in liquid methane, J. Chem. Phys., 85: 1206.ADSGoogle Scholar
  30. Green, A. E. S., and Sawada, T., 1972, Ionization cross sections and secondary electron distributions, J. Atmos. Terrest. Phys., 34: 1719.ADSGoogle Scholar
  31. Hake, R. D., and Phelps, A. V., 1967, Momentum transfer and inelastic collision cross sections for electrons in 02, CO, and CO2,” Phys. Rev., 158: 70.Google Scholar
  32. Kline, L. E., 1982, Performance predictions for electron-beam controlled on/off switches, IEEE Trans. on Plasma Sci., 10: 224.ADSGoogle Scholar
  33. Langevin, P., 1903, Ann. de Chim. et de Phys., 28:433.Google Scholar
  34. Lin, S. L., and Bardsley, J. N., 1978, The null-event method in computer simulation, Comput. Phys. Commun., 15: 161.Google Scholar
  35. Littlewood, I. M., Cornell, M. C., Clark, B. K., and Nygaard, K. J., 1983, Two- and three-body electron-ion recombination in carbon dioxide, J. Phys. D, 16: 2113.ADSGoogle Scholar
  36. Loeb, L. B., 1955, “Basic Processes in Gaseous Electronics,” University of California Press, Berkeley.Google Scholar
  37. Massey, H. S. W., and Gilbody, H. B., 1974, “Electronic and Ionic Impact Phenomena IV,” Clarendon Press, Oxford.Google Scholar
  38. Morgan, W. L., and Bardsley, J. N., 1983, Monte Carlo simulation of electron-ion recombination at high pressure, Chem. Phys. Lett., 96: 93.ADSGoogle Scholar
  39. Morgan, W. L., 1984a, Electron-ion recombination in water vapor, J. Chem. Phys., 80: 4564.Google Scholar
  40. Morgan, W. L., 1984b, Molecular dynamics simulation of electron-ion recombination in a nonequilibrium, weakly ionized plasma, Phys. Rev A, 30: 979.Google Scholar
  41. Morgan, W. L., 1986, Molecular dynamics simulation of geminate recombination by electrons in liquid methane, J. Chem. Phys., 84: 2298.Google Scholar
  42. Morgan, W. L., Bardsley, J. N., Lin, J., and Whitten, B. L., 1982, Theory of ion-ion recombination, Phys. Rev. A, 26: 1696.Google Scholar
  43. Nakamura, Y., Shinsaka, K., and Hatano, Y., 1983, Electron mobilities and electron-ion recombination rate constants in solid, liquid, and gaseous methane, J. Chem. Phys., 78: 5820.ADSGoogle Scholar
  44. Onsager, L., 1938, Initial recombination of ions,” Phys. Rev., 54: 554.Google Scholar
  45. Percival, I. C., 1982, Collisions of charged particles with highly excited atoms, in: “Atomic and Molecular Collision Theory,” F. A. Gianturco, ed., Plenum Press, New York.Google Scholar
  46. Pitchford, L. C., ONeil, S. V., and Rumble, J. R., 1981, Extended Boltzmann analysis of electron swarm experiments, Phys. Rev. A, 23: 294.Google Scholar
  47. Scofield, P., 1973, Computer simulation studies of the liquid state, Comput. Phys. Commun., 5: 17.ADSGoogle Scholar
  48. Sennhauser, E. S., and Armstrong, D. A., 1978, Ion neutralization rates in gaseous ammonia, Radiat. Phys. Chem., 11: 17.Google Scholar
  49. Sennhauser, E. S., Armstrong, D. A., and Warman, J. M., 1980, The temperature dependence of three-body electron ion recombination in gaseous H20, NH3, and CO2, Radiat. Phys. Chem., 15: 479.Google Scholar
  50. Thomson, J. J., 1924, Phil. Mag., 47:337.Google Scholar
  51. Warman, J. M., 1981, Estimates of electron thermalization times for dielectric liquids from drift velocity data, Radiat. Phys. Chem., 17: 21ADSGoogle Scholar
  52. Warman, J. M., Sennhauser, E. S., and Armstrong, D. A., 1979, Three body electron-ion recombination in molecular gases, J. Chem. Phys., 70: 995.ADSGoogle Scholar
  53. Whitten, B. L., Morgan, W. L., and Bardsley, J. N., 1983, Mutual neutralization in rare gas halides, J. Chem. Phys., 78: 1339.ADSGoogle Scholar
  54. Ziman, J. M., 1979, “Models of Disorder,” Cambridge University Press, Cambridge.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Wm. Lowell Morgan
    • 1
  1. 1.Lawrence Livermore National Laboratory and Department of Applied ScienceUniversity of California at Davis-LivermoreLivermoreUSA

Personalised recommendations