Spectral Solar Irradiances and Aeronomic Photolytic Processes in the Mesosphere

  • Marcel Nicolet
Part of the Physics of Atoms and Molecules book series (PAMO)


The advances in space observations during the past thirty years have overshadowed many fundamental aspects of aeronomy which dominated the first days of rocket observations. In particular, the mesosphere has suffered from a lack of attention before the development of the MAP (Middle Atmosphere Programme). On the other hand, the mass of material obtained by the SME (Solar Mesosphere Explorer) satellite should lead the progress in our understanding of the mesosphere with its various aeronomic processes.


Absorption Cross Section Solar Irradiance Solar Zenith Angle Solar Spectral Irradiance Photodissociation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerman, M., 1971, Ultraviolet solar radiation related to mesospheric processes, in Mesospheric Models and Related Experiments, edited by G. Fiocco pp. 149–159, D. Reidel, Dordrecht, Netherlands.Google Scholar
  2. Ackerman, M., Biaumé, F. and Kockarts, G., 1970, Absorption cross sections of the Schumann-Runge bands of molecular oxygen, Planet. Space Sci., 18: 1639.ADSGoogle Scholar
  3. Allen, M., and Frederick, J.E., 1982, Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge bands, J. Atmos. Sci., 39: 2066.ADSGoogle Scholar
  4. Bates, D.R., 1984, Rayleigh scattering by air, Planet. Space Sci., 32: 785.ADSGoogle Scholar
  5. Bates, D.R., and Nicolet, M., 1950a, Théorie de l’émission du spectre de la molécule OH dans le ciel nocturne, C.R. Acad. Sci. Paris, 230: 1943.Google Scholar
  6. Bates, D.R., and Nicolet, M., 1950b, Atmospehric hydrogen, Publ. Astron. Soc. Pacific, 62: 106.ADSCrossRefGoogle Scholar
  7. Bates, D.R., and Nicolet, M., 1950c, The photochemistry of water vapour, J. Geophys. Res., 55: 301.ADSGoogle Scholar
  8. Blake A.J., Gibson, S.T., and McCoy, D.G., 1984, Photodissociation of 160180 in the atmosphere, J. Geophys. Res., 89: 7277.CrossRefGoogle Scholar
  9. Bucchia, M., Megie, G., and Nicolet, M., 1985, Atmospheric transmittance and photodissociation rates in the 185–240 nm spectral range: Sensitivity of 02 absorption cross sections in the Herzberg continuum and Schumann-Runge bands, Ann. Geophys., 3: 429.Google Scholar
  10. Chapman, S., 1930a, On ozone and atomic oxygen in the upper atmosphere, Philos. Mag., 10: 369.Google Scholar
  11. Chapman, S., 1930b, A theory of upper atmospheric ozone, Mem. Roy. Meteorol. Soc., 3: 103.Google Scholar
  12. Cheung, A.S.C., Yoshino, K., Parkinson, W.H., Guberman, S.L., and Freeman, D.E., 1986, Absorption cross section measurements of oxygen in the wavelength region 195–241 nm of the Herzberg continuum, Planet. Space Sci., 34: 1007.Google Scholar
  13. Cicerone, R.J., and McCrumb, J.L., 1980, Photodissociation of isotópically heavy O2 as a source of atmospheric 03, Geophys. Res. Lett., 7: 251.Google Scholar
  14. Dickinson, P.H.G., Bain, W.C., Thomas, L., Williams, E.R., Jenkins, D.B., and Twiddy, N.D., 1980, The determination of the atomic concentration and associated parameters in the lower ionosphere, Proc. R. Soc. London, A 369: 379.ADSGoogle Scholar
  15. Dickinson, P.H.G., von Zahn, U., Baker, K.D., and Jenkins, D.B., 1985, Lower thermosphere densities of N2,O and Ar under high latitude winter conditions, J. Atmos. Terr. Phys., 47: 283.Google Scholar
  16. Fang, T.M., Wofsy, S.C., and Dalgarno, A., 1974, Opacity distribution functions and absorption in the Schumann-Runge bands of molecular oxygen, Planet. Space Sci., 22: 413.ADSGoogle Scholar
  17. Frederick, J.E., and Cicerone, R.J., 1985, Dissociation of metastable 02 as a potential source of atmospheric odd oxygen, J. Geophys. Res., 90: 10733.ADSGoogle Scholar
  18. Frederick, J.E. and Hudson, R.D., 1979, Predissociation linewidths and oscillator strengths for the (2–0) to (13-O) Schumann-Runge bands of O2, J. Molec. Spectrosc., 74: 247.Google Scholar
  19. Heath, D.F., 1981, A review of observational evidence for short and long term ultraviolet flux variability of the Sun, in Soleil et Climat, p. 447. Journées internationales du CNES, CNRS, DGRST, Toulouse 30 Spet; - 3 Oct. 1980.Google Scholar
  20. Howlett, L.C., Baker, K.D., Megill, L.R., Show, A.W., Pendleton W.R., and Ulwick, J.C., 1980, Measurement of a structured profil of atomic oxygen in the mesosphere and lower thermosphere, J. Geophys. Res., 45: 1291.ADSGoogle Scholar
  21. Jenouvrier, A., Coquart, A., and Merienne-Lafore, M.F., 1986, New measurements of the absorption cross sections in the Herzberg continuum of molecular oxygen in the region between 205 and 240 nm, Planet. Space Sci. 34: 253.ADSCrossRefGoogle Scholar
  22. Johnston, H.S., Paige, M., and Yao, F., 1984, Oxygen absorption cross section in the Herzberg continuum and between 206 and 327 K, J. Geophys. Res., 89: 11661.ADSGoogle Scholar
  23. Kockarts, G., 1976, Absorption and photodissociation in the Schumann-Runge bands of molecular oxygen in the terrestrial atmosphere, Planet. Space Sci., 24: 589.ADSGoogle Scholar
  24. Laurent, J., Brard, D., Girard, A., Camy-Peyret, C., Lippens, C., Muller, C., Vercheval, J., and Ackerman, M., 1986, Middle atmospheric water vapour observed by the Spacelab one grille spectrometer, Planet. Space Sci. 34: 1067.Google Scholar
  25. Lewis, B.R., Carver, J.H., Hobbs, T.I., McCoy, D.G., and Gies, H.P., 1978Google Scholar
  26. Experimentally determined oscillator strengths and line widths for the Schumann-Runge band system of molecular oxygen. I. The (6–0)-(14–0) bands. J. Quant. Spectrosc. Radiat. Transfer, 20: 191.Google Scholar
  27. Lewis, R.R., Carver, J.H., Hobbs, T.I., McCoy, D.G. and Gies, H.P., 1979, Experimentally determined oscillator strengths and line widths for the Schumann Runge band system for molecular oxygen. II. The (2–0)-(5–0) bands, J. Quant. Spectrosc. Radiat. Transfer, 22: 213.ADSCrossRefGoogle Scholar
  28. Lewis, B.R., Vardavas, J.M., and Carver, J.H., 1983, The aeronomic photodissociation of water vapour by H. Lyman radiation, J. Geophys. Res., 88: 4935.ADSCrossRefGoogle Scholar
  29. Mange, P., 1955, Diffusion processes in the thermosphere, Ann. Géophys., 11: 153.Google Scholar
  30. Mange, P., 1957, The theory of molecular diffusion in the atmosphere, J. Geophys. Res., 62: 279.Google Scholar
  31. Mange, P., 1961, Diffusion in the thermosphere, Ann. Géophys., 17:277. Meinel, A.B., 1950, OH emission bands in the spectrum of the night sky, Astrophys. J., 111: 555 and 112: 120.Google Scholar
  32. Mentall, J.E., Frederick, J.E., and Herman, J.R., 1981, The solar irradiance from 200 to 330 nm, J. Geophys. Res., 86: 9881.ADSGoogle Scholar
  33. Nicolet, M., 1954, The aeronomic problem of oxygen dissociation, J. Atmos. Terr. Phys., 5: 132.Google Scholar
  34. Nicolet, M., 1979, Etude des réactions chimiques de l’ozone dans la stratosphere, 536 pages, Edt. Institut Royal Météorologique de Belgique.Google Scholar
  35. Nicolet, M., 1981a, The photodissociation of water vapour in the mesosphere, J. Geophys. Res., 86: 5203.ADSGoogle Scholar
  36. Nicolet, M., 1981b, The solar irradiance and its action in the atmospheric photodissociation processes, Planet. Space Sci., 29: 951.ADSGoogle Scholar
  37. Nicolet, M., 1983, The influence of solar radiation on atmospheric chemistry, Annales Géophys., 1: 493.Google Scholar
  38. Nicolet, M., 1984a, On the photodissociation of water vapour in the mesosphere, Planet. Space Sci., 32: 871.Google Scholar
  39. Nicolet, M., 1984b, On the molecular scattering in the terrestrial atmosphere: an empirical formula for its calculation in the homosphere, Planet. Space Sci., 32: 1467.ADSGoogle Scholar
  40. Nicolet, M., 1985, Aeronomical aspects of mesospheric photodissociation: Processes resulting from the solar H Lyman-alpha line, Planet. Space Sci., 33: 69.ADSGoogle Scholar
  41. Nicolet, M., and Kennes, R., 1986, Aeronomic problems of the molecular oxygen photodissociation I. The O2 Herzberg continuum, Planet. Space Sci., 34: 1043.Google Scholar
  42. Nicolet, M., and Mange, P., 1954, The dissociation of oxygen in the high atmosphere, J. Geophys. Res., 59: 15.CrossRefGoogle Scholar
  43. Nicolet, M., and Peetermans, W., 1980, Atmospheric absorption in the O2 Schumann-Runge band spectral range and photodissociation rates in the stratosphere and mesosphere, Planet. Space Sci., 28: 85.Google Scholar
  44. Offerman, D., Friedrich, V., Ross, P. and von Zahn, U., 1981, Neutral gas composition measurements between 80–120 km, Planet. Space Sci., 29: 747.Google Scholar
  45. Saxon, R.P., and Slanger, T.G., 1986, Molecular oxygen absorption continua at 200–300 nm and O2 radiative lifetimes, J. Geophys. Res., 91: 9877.ADSGoogle Scholar
  46. Simonaitis, R., and Leu, M.T., 1986, An upper limit for the absorption cross section of the oxygen 3Au - alAg transition, Geophys. Res. Lett., 12: 829.Google Scholar
  47. Sharp, W.E., 1980, Absolute concentrations of 0(3P) in the lower thermosphere at night, Geophys. Res. Lett., 7:485.Google Scholar
  48. Yoshino, K., Freeman, D.E., Esmond, J.R., and Parkinson, W.H., 1983, High absorption cross section measurements and band oscillator strengths of the (1,0) - (12,0) Schumann-Runge bands of O2, Planet. Space Sci., 31: 339.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Marcel Nicolet
    • 1
  1. 1.Space Aeronomy InstituteBrusselsBelgium

Personalised recommendations