The Role of Atomic and Molecular Processes in the Critical Ionization Velocity Theory

  • Edmond Murad
Part of the Physics of Atoms and Molecules book series (PAMO)


In formulating a theory for the structure of the solar system (meaning the formation of the planets with their individual satellites) Alfvén (1954; Alfvén and Arrhenius, 1975) postulated a simple intuitive concept, the Critical Ionization Velocity (CIV), to explain the condensation of matter in the early stages of the formation of the solar system. Since the original suggestion of CIV, it has been invoked to explain such diverse phenomena as cometary plasma (Formisano et al., 1982; Galeev et al.,1986) and the shuttle glow (Papadopoulos, 1984). Evidence, particularly from space experiments, has been reviewed recently by Newell (1985). Other reviews (e.g. Sherman, 1973) have emphasized the plasma (the collective) aspects of the theory. This review attempts to provide a transition from the collective aspects of the plasma treatments to the microscopic (collisional) implictions of the theory.


Solar System Critical Velocity Space Shuttle Space Experiment Strontium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe, T., 1984, Theory for the Critical Ionization Velocity Phenomenon, Planet. Space Sci., 32:903.ADSCrossRefGoogle Scholar
  2. Abe, T., and Machida, S., 1985, Production of High Energy Electrons Caused by Counterstreaming Ion Beams in an External Magnetic Field, Phys. Fluids, 28:1178.ADSCrossRefGoogle Scholar
  3. Alfvén. H., 1954, The Origin of the Solar System, Oxford U. P., Oxford.Google Scholar
  4. Alfvén, H., and Arrhenius, G., 1975, Structure and Evolutionary History of the Solar System, Reidel, Dordrecht.Google Scholar
  5. Alfvén, H., 1960, Collision Between a Nonionized Gas and a Magnetized Plasma, Revs. Mod. Phys., 32:710.ADSGoogle Scholar
  6. Axnäs, I., 1972, Experimental Investigation of an Ionizing Wave in a Coaxial Plasma Gun, TRITA-EPP-72–31, Report from the Royal Institute of Technology, Stockhom, Sweden.Google Scholar
  7. Axnäs, I., 1978a, Experimental Investigation on the Critical Ionization Velocity in Gas Mixtures, Astrophys. Space Sci., 55:139.ADSCrossRefGoogle Scholar
  8. Axnäs, I., 1978b, Experimental Comparison of the Critical Ionization Velocity in Atomic and Molecular Gases, Report from Royal Institute of Technology, Tritta-EPP-78–04.Google Scholar
  9. Axnäs, I., 1980, Some Necessary Conditions for a Critical Velocity Intaction Between the Ionospheric Plasma and a Xenon Cloud, Geophys. Res. Lett., 7:933.Google Scholar
  10. Baker, D. A., Hammel, J.E., and Ribe, F., 1961, Rotating Plasma Experiments. I. Hydromagnetics Properties, Phys. Fluids, 4:1534.ADSCrossRefGoogle Scholar
  11. Baker, D. A., and Hammel, J. E., 1961, Rotating Plasma Experiments. H. Energy Measurements and the Velocity Limiting Effect, Phys. Fluids, 4: 1549.ADSCrossRefGoogle Scholar
  12. Bates, D. R., 1979, Aspects of Recombination, in Advances in Atomic and Molecular Physics, Vol. 15, Edited by D. R. Bates, Academic Press, NY, 235–261.Google Scholar
  13. Bates, D. R., and Dalgarno, A., 1962, Electronic Recombination, in Atomic and Molecular Processes, Edited by D. R. Bates, Academic Press, NY, 245.Google Scholar
  14. Bates, D. R., Kingston, A. E., and McWhirter, R. W. P. ,1962a, Recombination Between Electrons and Atomic Ions. I. Optically Thin Plasmas, Proc. Roy. Soc. (London), A267:297.Google Scholar
  15. Bates, D. R., Kingston, A. E., and McWhirter, R. W. P., 1962b, Recombination Between Electrons and Atomic Ions. II. Optically Thick Plasmas, Proc. Roy. Soc. (London), A270:155.ADSGoogle Scholar
  16. Bowers, M. T., Kemper, P. R., and Laudenslager, 1974, Reactions of Ions in Excited Electronic States: (N2+.)* + N2 ---> N3+ + N, J. Chem. Phys., 61:4394.ADSCrossRefGoogle Scholar
  17. Brenning, N., 1980, Electron Temperature Measurements in Low-Density Plasmas by Helium Spectroscopy, J. Quant. Spectrosc. Rad. Transfer, 24:293.ADSCrossRefGoogle Scholar
  18. Danielsson, L., 1970, Experiment on the Interaction Between a Plasma and a Neutral Gas, Phys. Fluids, 13:2288.ADSCrossRefGoogle Scholar
  19. Danielsson, L., 1973, Review of the Critical Velocity on Gas Plasma Interction.I.Experimental Observations, Astrophys. Space Sci., 24:459.ADSCrossRefGoogle Scholar
  20. Danielsson, L., and Brenning, N., 1975, Experiment on the Interaction Between a Plasma and a Neutral Gas. II., Phys. Fluids, 18:661.ADSCrossRefGoogle Scholar
  21. Deehr, C. S.,Wescott, E. M., Stenback-Nielsen, H., Romick, G. J., Hallinan, T. J., and Föppl, H., 1982, A Critical Velocity Interaction BetweenGoogle Scholar
  22. Fast Barium and Strontium Atoms and the Terrestrial Ionospheric Plasma, Geophys. Res. Lett., 9:195.Google Scholar
  23. Dunn, G. H., Belie, D. S., Morgan, T. J., Mueller, D. W., and Timmer, C., 1984, Dielectronic Recombination of Some Single-Charge Ions, in Electronic and Atomic Collisions, Edited by J. Eichler, I. V. Hertel, and N. Stollerhoft, Elsevier, Amsterdam, 809–817.Google Scholar
  24. Fahleson, U. V., 1961, Experiments with Plasma Moving Through Neutral Gas, Phys. Fluids, 4:123.ADSCrossRefGoogle Scholar
  25. Formisano, V., Galeev, A. A., and Sagdeev, R. Z., 1982, The Role of the Critical Ionization Velocity Phenomena in the Production of Inner Coma Cometary Plasma, Planet. Space Sci., 30:491.ADSCrossRefGoogle Scholar
  26. Galeev, A. A., Gringauz, K. I., Klimov, S. I., Remizov, A. P., Sagdeev, R. Z., Savin, S. P., Sokolov, A. Yu., and Verigin, M. I., 1986, Critical Ionization Velocity Effects in the Inner Coma of Comet Halley: Measurements by Vega-2, Geophys. Res. Lett., 13:845.Google Scholar
  27. Haerendel, G., 1982, Alfvén’s Critical Velocity Effect Tested in Space, Z. Naturforschung, A37:728.ADSGoogle Scholar
  28. Kieffer, L. J., and Dunn, G. H., 1966, Electron Impact Ionization Cross Section Data: Atoms, Atomic Ions, and Diatomic Molecules. I. Experimental Data, Revs. Mod. Phys., 38:1.Google Scholar
  29. Kelley, M.C., Pfaff, R. F., and Haerendel, G., 1986, Electric Field Measurements During the Condor Critical Velocity Experiment, J. Geophys.Res., A91:9939.ADSCrossRefGoogle Scholar
  30. Lai, S., McNeil, W. J., and Murad, E., Work in Progress.Google Scholar
  31. Machida, S., Abe, T., and Terasawa, T., 1985, Computer Simulation of Critical Velocity Ionization, Phys. Fluids, 27:1928.ADSCrossRefGoogle Scholar
  32. Machida, S., and Goertz, C. K., 1986, A Simulation Study of the Critical Ionization Velocity Process, J. Geophys. Res., A91:11965.ADSCrossRefGoogle Scholar
  33. Maier, II, W. B., 1971, Reactions Between N2+ and N2, J. Chem. Phys., 55: 2699.Google Scholar
  34. Maier, II, W. B., 1974, Reactions Between Isotopically Labeled N2+ and N2 for Primary Ion Energies Below 45 eV, J. Chem. Phys., 61:3459.ADSCrossRefGoogle Scholar
  35. Mattoo, S. K., and Venkataramani, N., 1980, On the Threshold Velocity in the Interaction Between a Magnetized Plasma and a Neutral Gas, Phys.Lett., 76A:257.ADSGoogle Scholar
  36. McBride, J. B., Ott, E., Boris, J. P., and Orens, J. H., 1972, Theory and Simulation of Turbulent Heating by Modified Two-Stream Instability, Phys. Fluids, 15:2367.ADSCrossRefGoogle Scholar
  37. McGowan, J. W., and Mitchell, J. B. A., Electron Molecular Positive Ion Recombination, in Electron-Molecule Interactions and Their Applications, Vol. 2, Edited by L.G. Christophorou, Academic Press, Orlando, FL, 65.Google Scholar
  38. Möbius, E. Boswell, R. W., Piel, A., and Henry, D., 1979, A Spacelab Experi ment on the Critical Ionization Velocity, Geophys. Res. Lett., 6:29.Google Scholar
  39. Murad, E., Lai, S. T., and Stair, Jr., A. T., 1986, A Proposed Experiment to Study the Critical Ionization Velocity Theory in Space, J. Geophys. Res., A91:1O188.Google Scholar
  40. Murad, E., and Lai, S., 1986, Effect of Dissociative Electron-Ion Recombination on the Propagation of Critical Ionization Dishcarges, J. Geophys. Res., A91:13745.ADSCrossRefGoogle Scholar
  41. Newell, P. T., 1985, Review of the Critical Ionization Velocity Effect in Space, Revs. Geophys., 23:93.Google Scholar
  42. Newell, P. T., and Torbert, R. B., 1985, Competing Processes in Ba and Sr Injection Critical Ionization Velocity Experiments, Geophys. Res. Lett., 12:835.Google Scholar
  43. Papadopoulos, K., 1984, On the Shuttle Glow (the Plasma Alternative), Radio Science, 19:571.ADSCrossRefGoogle Scholar
  44. Rowe, B. R., Dupeyrat, G., Marquette, J. B., and Gaucherel, P., 1984, Study of the Reactions N2+ + 2 N2 ---> N4+ + N2 and O2+ + 2 O2 ----> O4+ + O2 from 20 to 160 K by the CRESU Technique, J. Chem. Phys., 80:4915.ADSCrossRefGoogle Scholar
  45. Sasaki, S., Kawashima, N., Kuriki, K., Yanagisawa, M., Obayashi, T., Roberts, W. T., Reasoner, D. L., Taylor, W. W. L., Williams, P. R., Banks, P. M., and Burch, J. L., 1986, Gas Ionization Induced by a High Speed Plasma Injection in Space, Geophys. Res. Lett., 13:434.Google Scholar
  46. Sherman, J. C., 1973, Review of the Critical Velocity of Gas-Plasma Interaction, Astrophys. Space Sci., 24:487.MathSciNetADSCrossRefGoogle Scholar
  47. Simpson, S. W., 1981, A Steady State Fluid Model of a Rotating Plasma, Phys. Fluids, 24:418.ADSMATHCrossRefGoogle Scholar
  48. Tanaka, M., and Papadopoulos, K., 1983, Creation of High Energy Tails by Means of the Modified Two-Stream Instability, Phys. Fluids, 26: 1697.ADSCrossRefGoogle Scholar
  49. Torbert, R. B., and Newell, P. T., 1986, A Magnetospheric Critical Velocity Experiment: Particle Results, J. Geophys. Res., A91:9947.ADSCrossRefGoogle Scholar
  50. Trajmar, S., and Cartwright, D. C., 1984, Excitation of Molecules by Electron Impact, in Electron-Molecule Interations and Their Applications, Vol. 1, Edited by L. G. Christophorou, Academic, Orlando, FL. 155.Google Scholar
  51. van Koppen, P. A. M., Jarrold, M. F., Bowers, M. T., Mass, L. M., and Jennings, K. R., 1984, Ion-Molecule Association Reactions: A Study of the Temperature Dependence of the Reaction N2+• + N2 + M -> N4+• + M for M = N2 and He: Experiment and Theory, J. Chem. Phys., 81:288.ADSCrossRefGoogle Scholar
  52. Venkataramani, N., and Mattoo, S. K., 1980, Plasma Retardation in Alfvén’s Critical Velocity Phenomenon, Phys. Lett., 79A:393.ADSGoogle Scholar
  53. Wescott, E. M., Stenbaek-Nielsen, H.C., Hallinan, T., Föppl, H. and Valenzuela, A., 1986a, Star of Lima: Overview and Optical Diagnostics of a Barium Alfvén Critical Velocity Experiment, J. Geophys. Res., A91:9923.ADSCrossRefGoogle Scholar
  54. Wescott, E. M., Stenbaek-Nielsen, H.C., Hallinan, T., Föppl, H. and Valenzuela, A., 1986b, Star of Condor: A Strontium Critical Velocity Experiment, Peru, 1983, J. Geophys. Res., A91:9933.ADSCrossRefGoogle Scholar
  55. Zipf, E. C., 1984, Dissociation of Molecules by Electron Impact, in Electron-Molecule Interactions and Their Applications, Vol. 1, Edited by L. G. Christophorou, Academic, Orlando, FL. 335.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Edmond Murad
    • 1
  1. 1.Space Physics DivisionAir Force Geophysics LaboratoryHanscom AFBUSA

Personalised recommendations