Advertisement

Interstellar Cloud Chemistry Revisited

  • David R. Bates
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

My first encounter with interstellar cloud chemistry (Bates and Spitzer 1951) took place 35 years ago. The field then had a semblance of simplicity. Absorption lines in the spectra of a number of stars had revealed the existence of molecules in interstellar space. The only identified neutrals were CH and CN (Swings and Rosenfeld 1937, McKellar 1940, Adams 1941) and the only identified ion was CH+ (Douglas and Herzberg 1941).

Keywords

Rate Coefficient Proton Affinity Interstellar Cloud Dissociative Recombination Radiationless Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams N.G., Smith, D. and Clary, D.C., 1985, Rate coefficients for the reactions of ions with polar molecules at interstellar temperatures, Astrophys. J. (Letters), 296: L31.ADSGoogle Scholar
  2. Adams, W.S., 1941, Some results with the Coudé spectrograph of the Mount Wilson Observatory, Astrophys. J. 93: 11.Google Scholar
  3. Alge, E., Adams, N.G. and Smith, D., 1979, Measurements on the dissociative recombination coefficients of OZ NO+ and NH+ in the temperature range 200–600K, J.Phys.B.At.Mol.Phys., 16: 1433.Google Scholar
  4. Arthurs, A.M., Bond, R.A.B. and Hyslop, J., 1957, The oscillator strengths of the lso -2po, 2po -2sa and 2pa - 2pî transitions of HeH2+, Proc. Phys.Soc., 70A: 617.Google Scholar
  5. Ave, D.H., Webb, H.M. and Bowers, M.T., 1976, Quantitative proton affinities ionization potentials and hydrogen affinities of alkylamenes, J.Am.Chem.Soc., 98: 311.Google Scholar
  6. Babcock, L.M. and Streit, G.E., 1984, Third body effects in termolecular reactions. Halide ion addition to boron trifluoride and boron trichloride, J.Phys.Chem., 88: 5025.Google Scholar
  7. Bardsley, J.N., 1968, The theory of dissociative recombination, J.Phys.B. (Proc.Phys.Soc,), 1: 365.Google Scholar
  8. Barlow, S.E., Dunn, G.H. and Schauer, M., 1984, Radiative association of CH, and H2 at 13K, Phys.Rev.Lett., 52:902 and 53: 1610.Google Scholar
  9. Bates, 6.R., 1950, Dissociative recombination, Phys.Rev., 78: 492.ADSCrossRefGoogle Scholar
  10. Bates, D.R., 1982, Ion-polar molecule encounters, Proc.Roy.Soc.A., 384: 289.ADSGoogle Scholar
  11. Bates, D.R., 1985, Radiative association of CH3 and H2, Astrophys.J., 298: 382.ADSGoogle Scholar
  12. Bates, D.R., 1986a, Products of dissociative recombination of polyatomic ions, Astrophys.J.Lett., 30: L45.Google Scholar
  13. Bates, D.R., 1986b, Some ter-molecular association processes in collisions of CH3+ and its deuterated analogs with H2, HD and D2, J.Chem.Phys., 85: 2624.Google Scholar
  14. Bates, D.R., 1986c, Interpretation of measured rate of radiative association of CH3 and H2, Phys.Rev. A34: 1878.MathSciNetADSCrossRefGoogle Scholar
  15. Bates, D.R., 1987, Association energies of polyatomic ions, Int.J.Mass. Spectron. Ion Phys. (in preparation).Google Scholar
  16. Bates, D.R. and Massey, H.S.W., 1947, The basic reactions in the upper atmosphere, Proc.Roy.Soc.A, 192: 1.ADSCrossRefGoogle Scholar
  17. Bates, D.R. and Mendas, I., 1985, Hitting collisions between ions and linear molecules having a quadrupole moment, Proc.Roy.Soc.A., 402: 245.ADSGoogle Scholar
  18. Bates, D.R. and Morgan, W.L., 1987, Adiabatic invariance treatment of hitting collisions between ions and symmetrical top dipolar molecules, J.Chem. Phys.Google Scholar
  19. Bates, D.R. and Spitzer, L., 1951, The density of molecules in interstellar space, Astrophys. J., 113: 441.Google Scholar
  20. Benson, S.W., 1976, Thermochemical Kinetics, p.288, Wiley New York.Google Scholar
  21. Benson, S.W. and Buss, J.H., 1958, Additivity rules for the estimation of molecular properties: thermodynamic properties, J.Chem.Phys. 29: 546.ADSCrossRefGoogle Scholar
  22. Bhowmik, P.K. and Su, T., 1986, Trajectory calculations of ion-quadrupolar molecule collision rate coefficients, J.Chem.Phys., 84: 1432.ADSGoogle Scholar
  23. Biondi, M.A. and Brown, S.C., 1949, Measurement of electron ion recombination, Phys.Rev., 76: 1697.Google Scholar
  24. Black, J.H. and Dalgarno, A., 1973, The formation of CH in interstellar clouds, Ap. Letters, 15: 79.Google Scholar
  25. Cates, R.D. and Bowers, M.T., 1980, Energy transfer in ion-molecule association. Dependence of collisional stabilization efficiency on the collision gas, J.Amer.Chem.Soc., 102: 3994.Google Scholar
  26. Clary, D.C., 1985, Calculations of rate constants for ion-molecule reactions using a combined capture and centrifugal sudden approximation, Molecular Phys., 54: 605.ADSGoogle Scholar
  27. Clary, D.C., Smith, D. and Adams, N.G., 1985, Temperature dependence of rate coefficients for reactions of ions with dipolar molecules, Chem.Phys. Lett., 119: 320.CrossRefGoogle Scholar
  28. Cravath, A.M., 1930, The rate at which ions lose energy in elastic collisions, Phys.Rev., 36: 248.Google Scholar
  29. Dalgarno, A., 1976, The interstellar molecules CH and CH+ in Atomic Processes and Applications, P.G. Burke and B.L. Moiseiwitsch, eds, p. 11l, North Holland, Amsterdam.Google Scholar
  30. Dalgarno, A., 1986, Is interstellar chemistry useful?, Quart.J.Royal Astron. Soc., 27: 83.Google Scholar
  31. De Frees, D.J. and McLean, A.D., 1985, Molecular orbital predictions of the vibrational frequencies of molecular ions, J.Chem.Phys., 82: 333.Google Scholar
  32. Douglas, A.E. and Herzberg, G., 1941, CH+ in interstellar space and the laboratory, Astrophys.J., 94: 381.Google Scholar
  33. Duley, W.W. and Williams, D.A., 1984, Interstellar Chemistry, p. 169, Academic, London.Google Scholar
  34. Dyczmons, W., Staemmler, V. and Kutzelnigg, W., 1971, Near Hartree-Fock energy and equilibrium geometry of CH5, Chemical Phys.Lett., 5: 361.Google Scholar
  35. Eyring, H., Hirschfelder, J.O. and Taylor, H.S., 1936, The theoretical treatment of chemical reactions produced by ionization processes, J.Chem.Phys., 4: 479.ADSGoogle Scholar
  36. Gioumousis, G. and Stevenson, D.P., 1958, Reactions of gaseous molecular ions with gaseous molecules, J.Chem.Phys., 29: 294.ADSGoogle Scholar
  37. Green, S. and Herbst, E., 1979, Metastable isomers: a new class of interstellar molecules, Astrophys. J., 229: 121.Google Scholar
  38. Herbst, E., 1978, What are the products of polyatomic ion-electron dissociative recombination reactions?, Astrophys. J., 222: 508.ADSGoogle Scholar
  39. Herbst, E., 1985a, Radiative association rate coefficients under shocked conditions in interstellar clouds. The case of CH3 + H2, Astron. Astrophys., 153: 151.ADSGoogle Scholar
  40. Herbst, E., 1985b, An update and suggested increase in calculated radiative association rate coefficients, Astrophys. J., 291: 226.ADSGoogle Scholar
  41. Herbst, E., 1986a, An investigation of the effect of a centrifugal barrier on proposed large rate coefficients for ion-polar neutral reactions at low temperatures, Astrophys. J., 306: 667.ADSGoogle Scholar
  42. Herbst, E., 1987, Gas phase chemical processes in molecular clouds in Interstellar Processes, Reidel, Dordrecht.Google Scholar
  43. Herbst, E. and Klemperer, W., 1973, The formation and depletion of molecules in dense interstellar clouds, Astrophys. J., 185: 505.Google Scholar
  44. Herbst, E., Schubert, J.G. and Certain, P.R., 1977, The radiative association of CH, Astrophys. J., 213: 696.Google Scholar
  45. Herbst, E. and Leung Chun Ming, 1986, Effects of large rate coefficients for ion-polar neutral reactions on chemical models of dense interstellar clouds, Astrophys. J.Google Scholar
  46. Herbst, E., Smith, D. and Adams, N.G., 1984, Ion-molecule synthesis of C30, Astron. Astrophys., 138: L13.ADSGoogle Scholar
  47. Herzberg, G., 1950, Molecular Spectra and Molecular Structure I Spectra of Diatomic Molecules, p.343 and 383, Van Nostrand, Toronto.Google Scholar
  48. Herzberg, G., 1966, Molecular Structure and Molecular Spectra III Electronic Spectra and Electronic Structure of Polyatomic Molecules, p. 342, Van Nostrand, Toronto.Google Scholar
  49. Huber, K.P. and Herzberg, G., 1979, Molecular Spectra and Molecular Structure I V Constants of Diatomic Molecules, Van Nostrand Reinhold, New York.Google Scholar
  50. Huntress, W.T. and Mitchell, G.F., 1979, The synthesis of complex molecules in interstellar clouds, Astrophys. J., 231: 456.Google Scholar
  51. Jarrold, M.F., Kirchner, N.J., Liv, S. and Bowers, M.T., 1986, J.Phys.Chem., 90: 78.Google Scholar
  52. Landau, L.D. and Lifshitz, E.M., 1960, Mechanics, §49, Pergamon, Oxford.Google Scholar
  53. Lathan, W.A., Hehre, W.J., Curtiss, L.A. and Pople, J.A., 1971, Molecular orbital theory of the electronic structure of organic compounds, J.Amer.Chem.Soc., 92: 6377.Google Scholar
  54. Lepp, S., Dalgarno, A. and Sternberg, A., 1987, The cosmic ray ionization rate and the abundance of H3 ions in dense interstellar clouds, Astrophys. J.Google Scholar
  55. Lias, S., Liebman, J.F. and Levin, R.D., 1984, Gas phase basicities and proton affinities of molecules, J.Phys.Chem.Ref.Data, 13: 695.ADSCrossRefGoogle Scholar
  56. Mann, A.P.C. and Williams, D.A., 1980, A list of interstellar molecules, Nature, 283: 721.ADSCrossRefGoogle Scholar
  57. Marquette, J.B., Rowe, B.R., Dupeyrat, G., Poissant, G. and Rebrion, C., 1985, Ion polar molecule reactions: a CRESU study of HetC+, N+ + H20, NH3 at 27, 68 and 163K, Chem.Phys.Lett., 122: 431.Google Scholar
  58. Massey, H.S.W., 1950, Negative ions (2nd Ed) p. 50, University, Cambridge.Google Scholar
  59. Massey, H.S.W. and Gilbody, H.B., 1974, Electronic and Ionic Impact Phenomena, Vol.IV, Recombination and Fast Collisions of Heavy Particles, p. 2198, Clarendon, Oxford.Google Scholar
  60. Millar, T.I., Adams, N.G., Smith, D. and Clary, D.C., 1985, The HCS+/CS abundance ratio in interstellar clouds, Mon.Not.R.Astron.Soc., 216: 1025.Google Scholar
  61. Miller, T.M. and Bederson, B., 1977, Atomic and molecular polarizabilities - a review of recent advances, Adv.Atom.Molec.Phys., 13: 1.Google Scholar
  62. Mitchell, G.F., Huntress, W.T. and Prasad, S.S., 1979, Interstellar synthesis of the cyanopolyynes and related molecules, Astrophys.J., 233: 102.ADSGoogle Scholar
  63. Mitchell, J.B.A. and McGowan, J.W., 1983, Experimental studies of electronion recombination in Physics of Ion-Ion and Electron-Ion Collisions, eds. F. Brouillard and J.W. McGowan, p. 279, Plenum, New York.Google Scholar
  64. Morgan, W.L. and Bates, D.R., 1987, Ion-dipolar molecule rate coefficients, Astrophys. J., 817: 824.Google Scholar
  65. McDaniel, E.W. and Mason, E.A., 1973, The Mobility and Diffusion of Ions in Gases, Wiley, New York.Google Scholar
  66. McDaniel, E.W., Cermac, V., Dalgarno, A., Ferguson, E.E., Friedman, L., 1970, Ion Molecule Reactions p. 321, Wiley, New York.Google Scholar
  67. McGowan, J.W., Mul, P.M., D’Angelo, V.S., Mitchell, J.B.A., Defrance, P. and Froelich, H.R., 1979, Energy dependence of dissociative recombination below 0.08 eV measured with (Electron-ion) merged-beam technique, Phys.Rev.Lett., 42: 81.Google Scholar
  68. McKellar, A., 1940, Evidence for the molecular origin of some hitherto un: identified interstellar lines, Pub.Astron.Soc.Pacific, 52: 187.ADSCrossRefGoogle Scholar
  69. Pearson, P.K. and Schaefer, H.F., 1974, Some properties of H2CN+: A potentially important interstellar species, Astrophys. J., 192: 33.ADSGoogle Scholar
  70. Pechukas, P. and Light, J.C., 1965, On detailed balance and statistical theories of chemical kinetics, J.Chem.Phys., 42: 3281.MathSciNetADSGoogle Scholar
  71. Pineau des Forets, G., Flower, D.R., Hartquist, T.W. and Dalgarno, A., 1986, Theoretical studies of interstellar shocks, Mon.Not.R.Astr.Soc., 220: 801.Google Scholar
  72. Pople, J.A., 1984, Private communication.Google Scholar
  73. Prasad, S.S. and Huntress, W.T., 1980, A model for gas phase chemistry in interstellar clouds, Astrophys. J. Supplement, 43: 1.Google Scholar
  74. Raghavachari, K., Whiteside, R.A., Pople, J.A. and Schleyer, P.R., 1981, Molecular orbital theory of the electronic structure of organic molecules, J.Am.Chem.Soc., 103: 5649.Google Scholar
  75. Rosenstock, H.M., Draxl, K., Steiner, B.W. and Herron, J.T., 1977, Energetics of gaseous ions, J.Phys.Chem.Ref.Data, 6, Suppl. 1.Google Scholar
  76. Sakimoto, K., 1980, Ion-polar molecule reaction rates in interstellar clouds, Inst. Space Aeronaut. Sci., Tokyo Univ. Research Note, 102.Google Scholar
  77. Sakimoto, K., 1981, Rotational excitation of symmetric top molecules by low energy ion impact, J.Phys.Soc. Japan, 50: 1668.ADSGoogle Scholar
  78. Sakimoto, K., 1984, Orbiting collisions between ions and polar molecules: semi-classical PRS approaches, Chemical Phys., 85: 273.ADSGoogle Scholar
  79. Smith, D., Adams, N.G. and Alge, E., 1982, Isotope exchange and collisional association in the reactions of CHI- and its deuterated analogs with H2, HD and D2, J.Chem.Phys., 77: 1261.Google Scholar
  80. Su, T. and Bowers, M.I., 1975, Theory of ion polar molecule collisions, p.163 in Interactions between Ions and Molecules, P. Ausloos ed. Plenum, New York.Google Scholar
  81. Su, T. and Bowers, M.I., 1979, Classical ion-molecule collision theory, p.84 in Gas Phase Ion Chemistry, M.T. Bowers ed. Academic, New York.Google Scholar
  82. Swings, P. and Rosenfeld, L., 1937, Considerations regarding interstellar molecules, Astrophys. J., 86: 483.MATHGoogle Scholar
  83. Taft, R.W., 1978, Proton transfer equilibria in the gas and solution phases, p.271 in Kinetics of Ion-Molecule Reactions, P. Ausloos ed. Plenum, New York.Google Scholar
  84. Takayanagi, K., 1978, Low energy ion-polar molecule collisions - the perturbed rotational state approach, J.Phys.Soc.Japan, 45: 976.ADSCrossRefGoogle Scholar
  85. Takayanagi, K., 1979, Low energy ion-polar molecule collisions, Inst.Space Aeronaut. Sci. Tokyo Univ. Research Note 77.Google Scholar
  86. Takayanagi, K., 1982a, Low velocity ion-molecule collisions with quadrupole interaction, Inst. Space Aeronaut. Sci., Tokyo Univ. Research Note 171.Google Scholar
  87. Takayanagi, K., 1982b, Low velocity ion-molecule collisions with quadrupole interaction, J.Phys.Soc. Japan, 51: 3337.Google Scholar
  88. Takayanagi, K., 1982c, Low energy ion-molecule collisions, p.343 in Physics of Electronic and Atomic Collisions, S. Datz, ed. North Holland, Amsterdam.Google Scholar
  89. Troe, J., 1977, Theory of thermal unimolecular reactions at low pressures, J.Chem.Phys., 66: 4758.ADSGoogle Scholar
  90. Watson, W.D., 1974, Ion-molecule reactions, molecule formation and hydrogen -isotope exchange in dense interstellar clouds, Astrophys. J., 188: 35.ADSGoogle Scholar
  91. Watson, W.F., 1976, Interstellar molecule reactions, Rev.Mod.Phys., 48: 513.Google Scholar
  92. Williams, D.A., 1972, Association reactions, Ap. Letters, 10: 17.Google Scholar
  93. Winans, J.G. and Stueckelberg, E.C.G., 1928, The origin of the continuous spectrum of the hydrogen molecule, Proc.Nat.Acad.Amer., 14: 867.ADSMATHGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • David R. Bates
    • 1
  1. 1.Department of Applied Mathematics & Theoretical PhysicsQueen’s University of BelfastBelfastUK

Personalised recommendations