Localization of Neuroactive Substances in the Hypothalamus with Special Reference to Coexistence of Messenger Molecules

  • T. Hokfelt
  • Y. Tsuruo
  • B. Meister
  • T. Melander
  • M. Schalling
  • B. Everitt
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 219)


Harris (1955) formed the concept that the hormone secretion from the anterior pituitary is controlled by the brain via chemical messengers released from the hypothalamus into the hypophysial portal vessels. At the anatomical level Szentagotai and collaborators (1962) demonstrated that the medio-basal hypothalamus was an important brain area in this function, and that tubero-infundibular neurons with cell bodies in the arcuate nucleus and fibers in the median eminence could represent a morphological correlate for this control. Dopamine (DA) was the first compound identified with histochemical techniques in the tubero-infundibular region and was found in fibers in the external layer of the median eminence (Fuxe, 1964), arising from cell bodies in the arcuate nucleus (Fuxe and Hokfelt, 1966). More recently an increasing number of compounds have been discovered in this brain region including amines, amino acids and peptides (Everitt et al., 1986).


Tyrosine Hydroxylase Vasoactive Intestinal Peptide Vasoactive Intestinal Polypeptide Corticotropin Release Factor Median Eminence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe H, Engler D, Molitch ME, Bollinger-Gruber J, Reinchlin S, 1985. Vasoactive intestinal peptide is a physiological mediator of prolactin release in the rat. Endocrinology 116:1383–1390PubMedCrossRefGoogle Scholar
  2. Allen YS, Adrian TE, Allen JM, Tatemoto K, Crow TJ, Bloom SR, Polak JM, 1983. Neuropeptide Y distribution in the rat brain. Science 221:877–879PubMedCrossRefGoogle Scholar
  3. Andersson K, Fuxe K, Agnati LF, 1985. Determinations of catecholamine half-lives and turnover rates in discrete catecholamine nerve terminal systems of the hypothalamus, the preoptic region and the forebrain by quantitative histofluorimetry. Acta Physiol Scand 123:411–426PubMedCrossRefGoogle Scholar
  4. Avrameas S, 1969. Coupling of enzymes to proteins with glutaraldehyde. Use of the conjugates for the detection of antigens and antibodies. Immunochemistry 6:43–47PubMedCrossRefGoogle Scholar
  5. Barry J, Hoffman GE, Wray S, 1985. LHRH-containing systems. In: Bjorklund A and Hokfelt T (eds.), Handbook of Chemical Neuroanatomy, Vol. 4: GABA and Neuropeptides in the CNS. Amsterdam: Elsevier, pp. 166–215Google Scholar
  6. Baumgarten HG, Björklund A, Lachenmayer L, Nobin A, Stenevi U, 1971. Long-lasting selective depletion of brain serotonin by 5,6-dihydroxy-tryptamine. Acta Physiol Scand Suppl 373:1–16Google Scholar
  7. Berkenbosch F, Linton EA, Tilders FJH, 1986. Colocalization of PHI- and CRF-immunoreactivity in neurons of the rat hypothalamus: a surprising artefact. Neuroendocrinology 44:338–346PubMedCrossRefGoogle Scholar
  8. Berod A, Chat M, Paut L, Tappaz M, 1984. Catecholaminergic and GABAergic anatomical relationship in the rat substantia nigra, locus coeruleus, and hypothalamic median eminence: Immunocytochemical visualization of biosynthetic enzymes on serial semithin plactic-embedded sections. J Histochem Cytoche 32:1331–1338CrossRefGoogle Scholar
  9. Björklund A, 1985. Fluorescence histochemistry of biogenic monoamines. In: Björklund A and Hökfelt T. (eds.), Handbook of Chemical Neuroanatomy. Vol. 1: Methods in Chemical Neuroanatomy, Amsterdam, Elsevier, pp 50–121Google Scholar
  10. Blackwell RE, Guillemin R, 1973. Hypothalamic control of adenohypophysial secretions. Ann Rev Physiol 35:357–390CrossRefGoogle Scholar
  11. Bloch B, Bugnon C, Fellmann D, Lenys D, 1978. Immunocytochemical evidence that the same neurons in the human infundibular nucleus are stained with anti-endorphins and antisera of other related peptides. Neurosci Lett 10:147–152PubMedCrossRefGoogle Scholar
  12. Bloch B, Bugnon C, Fellman D, Lenys D, Gouget A, 1979. Neurons of the rat hypothalamus reactive with antisera against endorphins, ACTH, MSH and B-LPH. Cell Tissue Res 204:1–15PubMedCrossRefGoogle Scholar
  13. Bloch B, Brazeau P, Bloom F, Ling N, 1983a. Topographical study of the neurons containing hpGRF immunoreactivity in monkey hypothalamus. Neurosci Lett 37:23–28PubMedCrossRefGoogle Scholar
  14. Bloch B, Brazeau P, Ling N, Bohlen P, Esch F, Wehrenberg WB, Benoit R, Bloom F, Guillemin R, 1983b. Immunohistochemical detection of growth hormone-releasing factor in brain. Nature (Lond.) 301:607–609CrossRefGoogle Scholar
  15. Bloch B, Ling N, Benoit R, Wehrenberg WB, Guillemin R, 1984. Specific depletion of immunoreactive growth hormone-releasing factor by mono-sodium glutamate in rat median eminence. Nature (Lond.) 307:272–274CrossRefGoogle Scholar
  16. Brar AK, Fink G, Maletti M, Rostene W, 1986. Vasoactive intestinal peptide in rat hypophysial portal blood: effects of electrical stimulation of various brain areas, the oestrous cycle and anaesthetics. J Endocrinol 106:275–280CrossRefGoogle Scholar
  17. Brown GM, Martin JB, 1974. Corticosterone, prolactin, and growth hormone responses to handling and new environment in the rat. Psychosom Med 36:241–247PubMedGoogle Scholar
  18. Bugnon C, Bloch B, Lenys D, Gouget A, Fellmann D, 1979. Comparative study of the neuronal populations containing £-endorphin, corticotrophin and dopamine in the arcuate nucleus of the rat hypothalamus. Neurosci Lett 14:43–48PubMedCrossRefGoogle Scholar
  19. Bugnon C, Gouget A, Fellmann D, Clavequin MC, 1983. Immunocytochemical demonstration of a novel peptidergic neurone system in the cat brain with an antigrowth hormone-releasing factor serum. Neurosci Lett 38:131–137PubMedCrossRefGoogle Scholar
  20. Card JP, Brecha N, Moore R, 1983. Immunohistochemical localization of avian pancreatic polypeptide-like immunoreactivity in the rat hypothalamus. J Comp Neurol 217:123–136PubMedCrossRefGoogle Scholar
  21. Carson KA, Nemeroff CB, Rone MS, Youngblood WW, Prange AJ, Hanker JS, Kizer JS, 1977. Biochemical and histochemical evidence for the existence of a tuberoinfundibular cholinergic pathway in the rat. Brain Res 129:169–173PubMedCrossRefGoogle Scholar
  22. Chan-Palay V, Zaborszky L, Köhler C, Goldstein M, Palay S, 1984. Distribution of tyrosine hydroxylase-immunoreactive neurons in the hypothalamus of rats. J Comp Neurol 227:467–496PubMedCrossRefGoogle Scholar
  23. Christofides ND, Yangori Y, Blank MA, Tatemoto K, Polak JM, Bloom SR, 1982. Are peptide histidine isoleucine and vasoactive intestinal peptide co-synthesized in the same prohormone? Lancet ii:1398CrossRefGoogle Scholar
  24. Chronwall BM, 1985. Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides 6:1–11PubMedCrossRefGoogle Scholar
  25. Chronwall BM, Chase TN, O’Donohue TL, 1984. Coexistence of neuropeptide Y and somatostatin in rat and human cortical and rat hypothalamic neurons. Neurosci Lett 52:213–217PubMedCrossRefGoogle Scholar
  26. Chronwall BM, Olschowka JA, O’Donohue TL, 1984. Histochemical localization of FMRFamide-like immunoreactivity in the rat brain. Peptides 5:569–584PubMedCrossRefGoogle Scholar
  27. Chronwall BM, DiMaggio DA, Massari VJ, Pickel VM, Ruggiero DA, OfDonohue TL, 1985. The anatomy of neuropeptide-Y containing neurons in rat brain. Neuroscience 15:1159–1181PubMedCrossRefGoogle Scholar
  28. Coons AH, 1958. Fluorescent antibody methods. In: Danielli JF (ed.), General Cytochemical Methods. New York: Academic Press, pp. 399–422Google Scholar
  29. Cuello AC (ed.), 1983. Immunohistochemistry, IBRO Handbook Series: Methods in the Neurosciences, Vol 3, Chichester: John Wiley & Sons.Google Scholar
  30. Dahlström A, 1971. Effects of vinblastine and colchicine on monoamine containing neurons of the rat with special regard to the axoplasmic transport of amine granules. Acta Neuropathol, Suppl 5:226–237Google Scholar
  31. Dahlström A, Fuxe K, 1964. Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62, Suppl 232:1–55Google Scholar
  32. De Quidt ME, Emson PC, 1986. Distribution of neuropeptide Y-like immunoreactivity in the rat central nervous system II. Immunohistochemical analysis. Neuroscience 18:545–618PubMedCrossRefGoogle Scholar
  33. DiMaggio DA, Chronwall BM, Buchanan K, O’Donohue TL, 1985. Pancreatic polypeptide immunoreactivity in rat brain is actually neuropeptide Y. Neuroscience 15:1149–1157PubMedCrossRefGoogle Scholar
  34. Doerr-Schott J, 1986. Multiple immunocytochemical labelling methods for the simultaneous ultrastructural localization of various hypophysial hormones. In: Yoshimura F and Gorbman A (eds.), Pars Distalis of the Pituitary Gland — Structure, Function and Regulation. Excerpta Medica Int Congr Ser 673, Amsterdam: Elsevier Science Publ, pp 95–106Google Scholar
  35. Eränkö O, 1955. Histochemistry of noradrenaline in the adrenal medulla of rats and mice. Endocrinology 57:363–368PubMedCrossRefGoogle Scholar
  36. Everitt BJ, Hökfelt T, Wu J-Y, Goldstein M, 1984. Coexistence of tyrosine hydroxylase-like and gamma-aminobutyric acid-like immunoreactivities in neurons of the arcuate nucleus. Neuroendocrinology 39:189–191PubMedCrossRefGoogle Scholar
  37. Everitt BJ, Meister B, Hökfelt T, Melander T, Terenius L Rökaeus Å, Theodorsson-Norheim E, Dockray G, Edwardson J, Cuello C, Eide R, Goldstein M, Hemmings H, Ouimet C, Walaas I, Greengard P, Vale W, Weber E, Wu J-Y, Chang K-J, 1986. The hypothalamic arcuate nucleus-median eminence complex: immunohistochemistry of transmitters, peptides and DARPP-32 with special reference to coexistence in dopamine neurons. Brain Res Rev 11:97–155CrossRefGoogle Scholar
  38. Fellmann D, Gouget A, Bugnon C, 1983. Miss en évidence d’un nouveau système neuronal peptidergique immunoreactif à un immun-serum anti-hpGRF 44 dans le cerveau du lerot (Eliomys quercinus) CR Acad Sci 296:487–492Google Scholar
  39. Ferland L, Fuxe K, Eneroth P, Gustafsson J-Å, Skett P, 1977. Effects of methionine-enkephalin on prolactin release and catecholamine levels and turnover in the median eminence. Eur J Pharmacol 43:89–90PubMedCrossRefGoogle Scholar
  40. Finley JCW, Lindström P, Petrusz P, 1981. Immunocytochemical localization of β-endorphin-containing neurons in the rat brain. Neuroendocrinology 33:28–42PubMedCrossRefGoogle Scholar
  41. Fontaine B, Klarsfeld A, Hökfelt T, Changeux J-P, 1986. Calcitonin gene-related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci Lett 71:59–65PubMedCrossRefGoogle Scholar
  42. Fuxe K, 1964. Cellular localization of monoamines in the median eminence and infundibular stem of some mammals. Z Zellforsch 61:710–724PubMedCrossRefGoogle Scholar
  43. Fuxe K, Hökfelt T, 1966. Further evidence for the existence of tubero-infundibular dopamine neurons. Acta Physiol Scand 66:245–246PubMedCrossRefGoogle Scholar
  44. Fuxe K, Hökfelt T, 1969. Catecholamines in the hypothalamus and the pituitary gland. In: Ganong WF and Martini L (eds.). Frontiers in Neuroendocrinology. New York: Oxford University Press, pp. 47–96Google Scholar
  45. Fuxe K, Hökfelt T, Said SI, Mutt V, 1977. Vasoactive intestinal polypeptide and the nervous system: immunohistochemical evidence for localization in central and peripheral neurons, particularly intra-cortical neurons of the cerebral cortex. Neurosci Lett 5:241–246PubMedCrossRefGoogle Scholar
  46. Ganong WF, 1963. The central nervous system and the synthesis and release of adrenocorticotropic hormone. In: Nalbandov AV (ed.), Advances in Neuroendocrinology, Urbana: Univ of Illinois Press, pp. 92–149Google Scholar
  47. Gerozissis K, Rougeot C, Dray F, 1986. Leukotriene C4 is a potent stimulator of LHRH secretion. European J Pharmacol 121:159–160CrossRefGoogle Scholar
  48. Gerozissis K, Vulliez-le-Normand B, Saavedra JM, Murphy R, Dray F, 1985. Lipoxygenase products of arachidonic acid stimulate LHRH release from rat median eminence. Neuroendocrinology 40:272–276PubMedCrossRefGoogle Scholar
  49. Gilbert RFT, Emson PC, Hunt SP, Bennett GW, Marsden CA, Sandberg BEB, Steinbusch H, Verhofstad AAJ, 1982. The effects of monoamine neurotoxins on peptides in the rat spinal cord. Neuroscience 7:69–88PubMedCrossRefGoogle Scholar
  50. Harms PG, Langlier P, McCann SM, 1975. Modification of stress-induced prolactin release by dexamethasone or adrenalectomy. Endocrinology 96:475–478PubMedCrossRefGoogle Scholar
  51. Harris GW, 1955. Neural Control of the Pituitary Gland. E. Arnold, LondonGoogle Scholar
  52. Hökfelt T, Fuxe K, 1972. On the morphology and the neuroendocrine role of the hypothalamic catecholamine neurons. Brain-Endocrine Interaction. Int Symp Munich, 1971. Median Eminence: Structure and Function. Basel: Karger, pp. 181–223Google Scholar
  53. Hökfelt T, Elde R, Johansson O, Terenius L, Stein L, 1977. The distribution of enkephalin immunoreactivity in the central nervous system. Neurosci Lett 5:25–31PubMedCrossRefGoogle Scholar
  54. Hökfelt T, Fahrenkrug J, Tatemoto K, Mutt V, Werner S, 1982a. PHI, a VIP-like peptide, is present in the rat median eminence. Acta Physiol Scand 116:469–471PubMedCrossRefGoogle Scholar
  55. Hökfelt T, Schultzberg M, Lundberg JM, Fuxe K, Mutt V, Fahrenkrug J, Said SI, 1982b. Distribution of vasoactive intestinal polypeptide in the central and peripheral nervous systems as revealed by immunocyto-chemistry. In: Said SI (ed.), Vasoactive Intestinal Peptide. New York: Raven Press, pp. 65–90Google Scholar
  56. Hökfelt T, Fahrenkrug J, Tatemoto K, Mutt V, Werner S, Hulting A-L, Terenius L, Chang KJ, 1983a. The PHI (PHI-27)/corticotropin-releasing factor/enkephalin-immunoreactive hypothalamic neurons: Possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion. Proc Natl Acad Sci USA 80:895–898PubMedCrossRefGoogle Scholar
  57. Hökfelt T, Skagerberg G, Skirboll L, Björklund A, 1983b. Combination of retrograde tracing and neurotransmitter histochemistry. In: Björklund A and Hökfelt T (eds.), Handbook of Chemical Neuroanatomy, Vol. 1, Amsterdam: Elsevier, pp. 228–285Google Scholar
  58. Hökfelt T, Everitt BJ, Theodorsson-Norheim E, Goldstein M, 1984a. Occurrence of neurotensin-like immunoreactivity in subpopulations of hypothalamic, mesencephalic and medullary catecholamine neurons. J Comp Neurol 222:543–549PubMedCrossRefGoogle Scholar
  59. Hökfelt T, Martensson R, Björklund A, Kleinau S, Goldstein M, 1984b. Distributional maps of tyrosine hydroxylase- immunoreactive neurons in the rat brain. In: Björklund A and Hökfelt T (eds.), Handbook of Chemical Neuroanatomy, Vol. 2: Classical Transmitters in the CNS, Part 1. Amsterdam: Elsevier, pp. 277–379Google Scholar
  60. Hökfelt T, Everitt B, Meister B, Melander T, Schalling M, Johansson O, Lundberg JM, Hulting A-L, Werner S, Cuello C, Hemmings H, Ouimet C, Walaas I, Greengard P, Goldstein M, 1986. Neurons with multiple messengers with special reference to neuroendocrine systems. Recent Progr Horm Res 42:1–70PubMedGoogle Scholar
  61. Hökfelt T, Fahrenkrug J, Ju G, Ceccatelli S, Tsuruo Y, Meister B, Mutt V, Rundgren M, Brodin E, Terenius L, Hulting A-L, Werner S, Björklund H, Vale W, 1987. Analysis of PHI/VIP—itmnunoreactive neurons in the central nervous system with special reference to their relation to CRF- and enkephalin-like immunoreactivities in the paraventricular hypothalamic nucleus. Neuroscience, in pressGoogle Scholar
  62. Hulting A-L, Lindgren J-Å, Hokfelt T. Heidvall K, Eneroth P, Werner S, Patrono C, Samuelsson B, 1984. Leukotriene C4 stimulates LH secretion from rat pituitary cells in vitro. Europ J Pharmacol 106:459–460CrossRefGoogle Scholar
  63. Hulting A-L, Lindgren J-Å, Hökfelt T, Eneroth P, Werner S, Samuelsson B, 1985. Leukortine C4 as a mediator of LH release from rat anterior pituitary cells. Proc Natl Acad Sci USA 52:3834–3838CrossRefGoogle Scholar
  64. Ibata Y, Watanabe K, Kinoshita H, Kubo S, Sano N, Yanaihara C, Yanaihara N, 1980. Dopamine and ß-endorphin are contained in different neurons of the arcuate nucleus of the hypothalamus as revealed by combined fluorescence histochemistry and immunohistochemistry. Neurosci Lett 17:185–189PubMedCrossRefGoogle Scholar
  65. Ibata Y, Fukui K, Okamura H, Kawakami T, Tanaka M, Obata HL, Tsuto T, Terubayashi H, Yanaihara C, Yanaihara N, 1983a. Coexistence of dopamine and neurotensin in hypothalamic arcuate and periventricular neurons. Brain Res 269:177–179PubMedCrossRefGoogle Scholar
  66. Ibata Y, Obata HL, Kubo S, Fukui K, Okamura H, Ishigami T, Imagawa K, Sin S, 1983b. Some cellular characteristics of somatostatin neurons and terminals in the periventricular nucleus of the rat hypothalamus and median eminence. Electron microscopic immunohistochemistry. Brain Res 258:291–295PubMedCrossRefGoogle Scholar
  67. Ibata Y, Kawakami F, Fukui K, Obata-Tsuto HL, Tanaka M, Kubo T, Okamura H, Morimoto N, Yanaihara C, Yanaihara N, 1984a. Light and electron microscopic immunocytochemistry of neurotensin-like immunoreactive neurons in the rat hypothalamus. Brain Res 302:221–230PubMedCrossRefGoogle Scholar
  68. Ibata Y, Kawakami F, Fukui K, Okamura H, Obata-Tsuto HL, Tsuto T, Terubayashi H, 1984b. Morphological survey of neurotensin-like immunoreactive neurons in the hypothalamus. Peptides 5, Suppl 1:109–120PubMedCrossRefGoogle Scholar
  69. Itoh N, Obata K, Yanaihara N, Okamoto H, 1983. Human prepro-vasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304:547–549PubMedCrossRefGoogle Scholar
  70. Jacobowitz DM, Schulte H, Chrousos GP, Loriaux DL, 1983. Localization of GRF-like immunoreactive neurons in the rat brain. Peptides 4:521–524PubMedCrossRefGoogle Scholar
  71. Jennes L, Stumpf WE, Kalivas PW, 1982. Neurotensin: topographical distribution in rat brain by immunohistochemistry. J Comp Neurol 210:211–224PubMedCrossRefGoogle Scholar
  72. Johansson O, Hökfelt T, Eide R, 1984. Immunohistochemical distribution of somatostatin-like immunoreactivity in the central nervous system of the adult rat. Neuroscience 13:265–339PubMedCrossRefGoogle Scholar
  73. Jonsson G, 1971. Quantitation of fluorescence of biogenic monoamines. Prog Histochem Cytochem 2:299–334CrossRefGoogle Scholar
  74. Ju G, Hökfelt T, Fischer JA, Frey P, Rehfeld JF, Dockray GJ, 1986. Does cholecystokinin-like immunoreactivity in rat primary sensory neurons represent calcitonin gene related peptide? Neurosci Lett 68:305–310PubMedCrossRefGoogle Scholar
  75. Kahn D, Abrams G, Zimmerman EA, Carraway R, Leeman SE, 1981. Neurotensin neurons in the rat hypothalamus: an immunocytochemical study. Endocrinology 107:47–53CrossRefGoogle Scholar
  76. Kaji H, Chihara K, Abe H, Minamitani N, Kodama H, Kita T, Fujita T, Tatemoto K, 1984. Stimulatory effect of peptide histidine isoleucine amide 1–27 on prolactin release in the rat. Life Sci 35:641–647PubMedCrossRefGoogle Scholar
  77. Kato Y, Iwasaki Y, Iwasaki J, Abe H, Yanaihara N, Imura H, 1978. Prolactin release by vasoactive intestinal polypeptide in rats. Endocrinology 103:554–558PubMedCrossRefGoogle Scholar
  78. Khachaturian H, Lewis ME, Watson SJ, 1983. Enkephalin systems in diencephalon and brainstem of the rat. J Comp Neurol 220:310–320PubMedCrossRefGoogle Scholar
  79. Khachaturian H, Lewis ME, Tsou K, Watson SJ, 1985a. β-Endorphin, α-MSH, ACTH and related peptides. In: Björklund A and Hökfelt T (eds.), Handbook of Chemical Neuroanatomy, Vol. 4: GABA and Neuropeptides in the CNS. Amsterdam: Elsevier, pp. 216–272Google Scholar
  80. Kachaturian H, Lewis ME, Schäfer MK-H, Watson S, 1985b. Anatomy of the CNS opioid systems. TINS 8:111–119Google Scholar
  81. Kobayashi H, Matsui T, 1969. Fine structure of the median eminence and its functional significance. In: Ganong WF and Martini L (eds.), Frontiers in Neuroendocrinology, New York: Oxford University Press, pp. 3–46Google Scholar
  82. Krukoff TL, Calaresu FR, 1984. A group of neurons highly reactive for enkephalins in the rat hypothalamus. Peptides 5:931–936PubMedCrossRefGoogle Scholar
  83. Kuypers HEJM, Huisman AM, 1984. Fluorescent tracers. In: Fedoroff S (ed.), Advances in Cellular Neurobiology, Vol. 5, California: Academic Press, pp. 307–340Google Scholar
  84. Lechan RM, Nestler JL, Jacobson S, 1982. The tuberoinfundibular system of the rat as demonstrated by immunohistochemical localization of retro-gradely transported wheat germ agglutinin (WGA) from the median eminence. Brain Res 245:1–15PubMedCrossRefGoogle Scholar
  85. Lechan RM, Lin HD, Ling N, Jackson IM, Jacobsen IMD, Jacobson S, Reichlin S, 1984. Distribution of immunoreactive growth hormone-releasing factor (1–44)NH2 in the tuberoinfundibular system of the rhesus monkey. Brain Res 309:55–61PubMedCrossRefGoogle Scholar
  86. Lindgren J-Å, Hökfelt T, Dahlén S-E, Patrono C, Samuelsson B, 1984. Leukotrienes in the rat central nervous system. Proc Natl Acad Sci USA 81:6212–6216PubMedCrossRefGoogle Scholar
  87. Löfström A, Jonsson G, Fuxe K, 1976a. Microfluorimetric quantitation of catecholamine fluorescence in rat median emience. I. Aspects on the distribution of dopamine and noradrenaline nerve terminals. J Histochem Cytoehcm 24:415–429CrossRefGoogle Scholar
  88. Löfström A, Jonsson G, Wiesel FA, Fuxe K, 1976b. Microfluorimetric quantitation of catecholamine fluorescence in rat median eminence. II. Turnover changes in hormonal states. J Histochem Cytochem 24:430–442PubMedCrossRefGoogle Scholar
  89. Lorén IJ, Alumets R, Håkanson R, Sundler F, 1979. Immunoreactive pancreatic polypeptides (PP) occurs in the central and peripheral nervous system: preliminary immunocytochemical observations. Cell Tiss Res 200:179–186CrossRefGoogle Scholar
  90. Lorén I, Emson PC, Fahrenkrug J, Björklund A, Alumets J, Håkanson R, Sundler F, 1979. Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience 4:1953–1976PubMedCrossRefGoogle Scholar
  91. Lundberg JM, Fahrenkrug J, Hökfelt T, Martling C-R, Larsson O, Tatemoto K, Änggård A, 1984a. Co-existence of peptide HI (PHI) and VIP in nerves regulating blood flow and bronchial smooth muscle tone in various mammals including man. Peptides 5:593–605PubMedCrossRefGoogle Scholar
  92. Lundberg Jm, Terenius L, Hökfelt, T, Tatemoto K, 1984b. Comparative immunocytochemical and biochemical analysis of pancreatic poly-peptide-like peptides with special reference to presence of neuropeptide Y in central and peripheral neurons. J Neurosci 4:2376–2386PubMedGoogle Scholar
  93. MacLeod RM, Lehmeyer JE, 1974. Studies on the mechanism of dopamine-mediated inhibition of prolactin secretion. Endocrinology 94:1077–1085PubMedCrossRefGoogle Scholar
  94. McGinty JF, Bloom F, 1983. Double immunostaining reveals distinctions among opioid peptidergic neurons in the medial basal hypothalamus. Brain Res 278:145–153PubMedCrossRefGoogle Scholar
  95. Meister B, Hökfelt T, Vale WW, Goldstein M, 1985. Growth hormone-releasing factor (GRF) and dopamine coexist in hypothalamic arcuate neurons. Acta Physiol Scand 124:133–136PubMedCrossRefGoogle Scholar
  96. Meister B, Hökfelt T, Vale WW, Sawchenoko PE, Swanson LW, Goldstein M, 1986. Coexistence of tyrosine hydroxylase and growth hormone-releasing factor in a subpopulation of tuberoinfundibular neurons of the rat. Neuroendocrinology 42:237–247PubMedCrossRefGoogle Scholar
  97. Meites J, Nicoll CS, Talwalker PK, 1963. The central nervous system and the secretion and release of prolactin. In: Nalbandov AV (ed.), Advances in Neuroendocrinology. Urbana: Univ of Illinois Press, pp. 238–277Google Scholar
  98. Meites J, Bruni JF, Van Vugt DA, Smith AF, 1979. Relation of endogenous opioid peptides and morphine to neuroendocrine functions. Life Sci 24:1324–1336CrossRefGoogle Scholar
  99. Melander T, Hökfelt T, Rökaeus Å, 1986a. Distribution of galanin-like immunoreactivity in the rat central nervous system. J Comp Neurol 248:475–517PubMedCrossRefGoogle Scholar
  100. Melander T, Hökfelt T, Rökaeus Å, Cuello AC, Oertel WH, Verhofstad A, Goldstein M, 1986b. Coexistence of galanin-like immunoreactivity with catecholamines, 5-hydroxytryptamine, GABA and Neuropeptides in the Rat CNS. J Neurosci 6:3640–3654PubMedGoogle Scholar
  101. Melzack R, Wall PD, 1965. Pain mechsnisms: a new theory. Science (Wash.) 150:971–979CrossRefGoogle Scholar
  102. Merchenthaler I, Vigh S, Schally AV, Petrusz P, 1984. Immunocytochemical localization of growth hormone-releasing factor in the rat hypothalamus. Endocrinology 114:1082–1085PubMedCrossRefGoogle Scholar
  103. Merchentaler I, Maderdrut JL, Dockray GJ, Altschuler RA, Petrusz P, 1986. Immunocytochemical localization of proenkephalin-derived peptides in the central nervous system of the rat. Neuroscience 17:325–348CrossRefGoogle Scholar
  104. Mezey E, 1986. Vasoactive intestinal polypeptide immunopositive neurons in the paraventricular nucleus of homozygous Brattleboro rats. Neuroendocrinology 42:88–90PubMedCrossRefGoogle Scholar
  105. Mezey E, Kiss JZ, 1985. Vasoactive intestinal peptide-containing neurons in the paraventricular nucleus may participate in regulating prolactin secretion. Proc Natl Acad Sci USA 82:245–247PubMedCrossRefGoogle Scholar
  106. Mugnaini E, Oertel WH, 1985. An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohisto-chemistry. In: Björkllund A and Hökfelt T (eds.), Handbook of Chemical Neuroanatomy, Vol. 4: GABA and Neuropeptides in the CNS. Part 1. Amsterdam: Elsevier, pp. 436–608Google Scholar
  107. Nairn RC, 1969. Immunological tracing: general considerations. In: Nairn RC (ed.), Fluorescent Protein Tracing, 3rd edn. Edinburgh and London: Livingstone, pp. 111–151Google Scholar
  108. Nakane PK, 1968. Simultaneous localization of multiple tissue antigens using the peroxidase-labeled antibody method: a study in pituitary glands of the rat. J Histochem Cytochem 16:557–560PubMedCrossRefGoogle Scholar
  109. Nakane PK, Pierce GB, 1966. Enzyme-labeled antibodies: preparation and application for the localization of antigens. J Histochem Cytochem 14:929–931PubMedCrossRefGoogle Scholar
  110. Neill JD, 1980. Neuroendocrine regulation of prolactin secretion. In: Martini L and Ganong WF (eds.), Frontiers in Neuroendocrinology, Vol. 6. New York: Raven Press, pp. 129–155Google Scholar
  111. New HV, Mudge AW, 1986. Calcitonin gene-related peptide regulates muscle acetylcholine receptor synthesis. Nature 323:809–811PubMedCrossRefGoogle Scholar
  112. Nilsson J, von Euler AM, Dalsgaard C-J, 1985. Stimulation of connective tissue cell growth by substance P and substance K. Nature 325:61–63CrossRefGoogle Scholar
  113. Ohta H, Kato Y, Shimatsu A, Tojo K, Kabayama Y, Inoue T, Yanaihara N, Imura H, 1985a. Inhibition by antiserum to vasoactive intestinal polypeptide (VIP) of prolactin secretion induced by serotonin in the rat. Eur J Pharmacol 109:409–412PubMedCrossRefGoogle Scholar
  114. Ohta H, Kato Y, Tojo K, Shimatsu A, Inoue T, Kabayama Y, Imura H, 1985b. Further evidence that peptide histidine isoleucine (PHI) may function as a prolactin releasing factor in rats. Peptides 6:709–712PubMedCrossRefGoogle Scholar
  115. Ohtsuka M, Hisano S, Daikoku S, 1983. Electronmicroscopic study of somatostatin-containing neurons in rat arcuate nucleus with special reference to neuronal regulation. Brain Res 263:191–199PubMedCrossRefGoogle Scholar
  116. Okamura H, Murakami S, Chihara K, Nagatsu I, Ibata Y, 1985. Coexistence of growth hormone releasing factor-like and tyrosine hydroxylase-like immunoreactivities in neurons of the rat arcuate nucleus. Neuroendo-crinology 41:177–179CrossRefGoogle Scholar
  117. Olschowka JA, O’Donohue TL, Jacobowitz DM, 1981. The distribution of bovine pancreatic polypeptide-like immunoreactive neurons in rat brain. Peptides 2:309–331PubMedCrossRefGoogle Scholar
  118. Osborne NN, 1979. Is Dale’s principle valid? TINS 2:73–75Google Scholar
  119. Palmer MR, Mathews R, Murphy RC, Hoffer BJ, 1980. Leukotriene C elecits a prolonged excitation of cerebellar Purkinje neurons. Neurosci Lett 18:173–180PubMedCrossRefGoogle Scholar
  120. Palmer MR, Mathews WR, Hoffer BJ, Murphy RC, 1981. Electrophysiological response of cerebellar Purkinje neurons to leukotriene C4 and B4. J Pharmacol Exp Ther 219:91–96PubMedGoogle Scholar
  121. Pelletier G, Steinbusch HW, Verhofstad A, 1981. Immunoreactive substance P and serotonin present in the same dense core vesicles. Nature 293:71–72PubMedCrossRefGoogle Scholar
  122. Polak JM, Van Noorden S (eds.), 1983. Immunocytochemistry. Practical Applications in Pathology and Biology. Bristol: Wright — PSGGoogle Scholar
  123. Ruberg M, Rotsztejn W, Arancibia S, Besson J, Enalbert A, 1978. Stimulation of prolactin release by vasoactive intestinal peptide. Europ J Pharmacol 51:319–320CrossRefGoogle Scholar
  124. Said SI, Porter JC, 1979. Vasoactive intestinal polypeptide: release into hypophyseal portal blood. Life Sci 24:227–230PubMedCrossRefGoogle Scholar
  125. Samuelsson B, 1983. Leukotrienes: mediators of immediate hypersensitivity reactions and inflammation. Science 220:227–230CrossRefGoogle Scholar
  126. Samson WK, Lumpkin MD, McDonald JK, McCann SM, 1983. Prolactin-releasing activity of porcine intestinal peptide (PHI-27). Peptides 4:817–819PubMedCrossRefGoogle Scholar
  127. Sar M, Stumpf WE, Miller RJ, Chang K-J, Cuatrecasas P, 1978. Immunohisto-chemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182:17–38PubMedCrossRefGoogle Scholar
  128. Schalling M, Neil A, Terenius L, Hökfelt T, Lindgren J-A, Samuelsson B, 1985. Leukotriene C4 binding sites in the rat central nervous system. Europ J Pharmacol 122:251–257CrossRefGoogle Scholar
  129. Schally A, Arimura A, Kastin AJ, 1973. Hypothalamic regulatory hormones. Science 179:341–350PubMedCrossRefGoogle Scholar
  130. Shaar CJ, Clemens JA, Dininger NB, 1979. Effect of vasoactive intestinal polypeptide on prolactin release in vitro. Life Sci 25:2071–2074PubMedCrossRefGoogle Scholar
  131. Shimatsu A, Kato Y, Matsushita N, Katakami H, Yanaihara N, Imura H, 1981. Immunoreactive vasoactive intestinal polypeptide in rat hypophysial portal blood. Endocrinology 108:395–398PubMedCrossRefGoogle Scholar
  132. Shimatsu A, Kato Y, Inoue T, Christofides ND, Bloom SR, Imura H, 1983. Peptide histidine isoleucine- and vasoactive intestinal polypeptide-like immunoreactivity coexist in rat hypophysial portal blood. Neurosci Lett 43:259–262PubMedCrossRefGoogle Scholar
  133. Sims KB, Hoffman DL, Said SI, Zimmerman EA, 1980. Vasoactive intestinal polypeptide (VIP) in the mouse and rat brain: an immunocytochemical study. Brain Res 186:165–183PubMedCrossRefGoogle Scholar
  134. Shiosaka S, Takatsuki K, Sakanaka M, Inagaki S, Takagi H, Senba E, Kawai Y, Iida H, Minagawa H, Matsuzaki T, Tohyama M, 1982. Ontogeny of somatostatin-containing neuron system of rat: immunohistochemical analysis. II. Forebrain and diencephalon. J Comp Neurol 204:211–224PubMedCrossRefGoogle Scholar
  135. Skofitsch G, Jacobowitz DM, 1985. Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 6:509–546PubMedCrossRefGoogle Scholar
  136. Smith RM, Howe PRC, Oliver JR, Willoughby JE, 1984. Growth hormone releasing factor immunoreactivity in rat hypothalamus. Neuropeptides 4:109–115PubMedCrossRefGoogle Scholar
  137. Sofroniew MV, 1979. Immunoreactive β-endorphin and ACTH in the same neurons of the hypothalamic arcuate nucleus in the rat. Am J Anat 154:283–289PubMedCrossRefGoogle Scholar
  138. Staines WA, Meister B, Melander T, Nagy JI, Hökfelt T. Three-colour immunofluorescence allowing triple labelling within a single section. J Histochem Cytochem, in pressGoogle Scholar
  139. Sternberger LA (ed.), 1979. Immunocytochemistry, 2nd Ed. New York: John WileyGoogle Scholar
  140. Sternberger LA, Hardy PH, Cuculis JJ, Meyer HG, 1970. The unlabelled antibody-enzyme method of immunohistochemistry. Preparation and properties of soluble antigen-antibody complex (horserdsish peroxidase-antihorseradish peroxidase) and its use in identification of spirochetes. J Histochem Cytochem 18:315–333PubMedCrossRefGoogle Scholar
  141. Swanson LW, Sawchenko PE, Lind RW, 1986. Regulation of multiple peptides in CRF parvocellular neurosecretory neurons: implications for the stress response. In: Hökfelt T, Fuxe K and Pernow B (eds.). Progress in Brain Res, Vol 68. Amsterdam: Elsevier, pp. 169–190CrossRefGoogle Scholar
  142. Szentágothai J, Flerkó B, Mess B, Halász B, 1962. Hypothalamic control of the anterior pituitary. Akadémiai KiadóGoogle Scholar
  143. Tappaz ML, Wassef M, Oertel WH, Paut L, Pujol JF, 1983. Light- and electron-microscopic immunocytochemistry of glutamic acid decarboxylase (GAD) in the basal hypothalamus: morphological evidence for neuroendocrine gamma aminobutyrate (GABA). Neuroscience 9:271–287PubMedCrossRefGoogle Scholar
  144. Tatemoto K, Mutt V, 1981. Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon-secretion family. Proc Natl Acad Sci USA 78:6603–6607PubMedCrossRefGoogle Scholar
  145. Thoenen H, Tranzer JP, 1968. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6-hydroxydopamine. Arch Pharmak Exp Path 261:271–288Google Scholar
  146. Tramu G, Pillez A, Leonardelli J, 1978. An efficient method of antibody elution for the successive or simultaneous location of two antigens by immunocytochemistry. J Histochem Cytochem 26:322–324PubMedCrossRefGoogle Scholar
  147. Uhl GR, Goodman RR, Snyder SH, 1979. Neurotensin-containing cell bodies, fibers and nerve terminals in the brainstem of the rat: immunohistochemical mapping. Brain Res 167:77–91PubMedCrossRefGoogle Scholar
  148. Van den Pool AN, Herbst RS, Powell JF, 1985. Tyrosine hydroxylase-immunoreactive neurons of the hypothalamus: a light and electron microscopic study. Neuroscience 13:1117–1156Google Scholar
  149. Vijayan E, Samson WK, Said SI, McCann SM, 1979. Vasoactive intestinal peptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone and prolactin in conscious ovariectomized rats. Endocrinology 104:53–57PubMedCrossRefGoogle Scholar
  150. Vincent SR, Hökfelt T, Christensson I, Terenius L, 1982a. Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci Lett 33:185–190PubMedCrossRefGoogle Scholar
  151. Vincent SR, Hökfelt T, Wu J-Y, 1982b. GABA neuron systems in hypothalamus and the pituitary gland. Neuroendocrinology 34:117–125PubMedCrossRefGoogle Scholar
  152. Vincent SR, Mcintosh CHS, Buchan AMJ, Brown JC, 1985. Central somatostatin systems revealed with monoclonal antibodies. J Comp Neurol 238:169–186PubMedCrossRefGoogle Scholar
  153. Wamsley JK III, Young WS, Kuhar MJ, 1980. Immunohistochemical localization of enkephalin in rat forebrain. Brain Res 190:153–174PubMedCrossRefGoogle Scholar
  154. Watson SJ, Barchas JD, Li CH, 1977. β-lipoprotein. Localization of cells and axons in rat brain by immunohistochemistry. Proc Natl Acad Sci USA 74:5155–5158PubMedCrossRefGoogle Scholar
  155. Watson SJ, Akil H, Fischli W, Goldstein A, Zimmerman E, Nilaver G, van Wimersma Greidanus TJB, 1982. Dynorphin and vasopressin: common localization in magnocellular neurons. Science 216:85–87PubMedCrossRefGoogle Scholar
  156. Watson SJ, Khachaturian H, Taylor L, Fischli W. Goldstein A, Akil H, 1983. Pro-dynorphin peptides are found in the same neurons throughout the rat brain: immunocytochemical study. Proc Natl Acad Sci USA 80:891–894PubMedCrossRefGoogle Scholar
  157. Weber E, Roth KA, Barchas JD, 1982. Immunohistochemical distribution of α-neoendorphin/dynorhin neuronal systems in rat brain: evidence for colocalization. Proc Natl Acad Sci USA 79:3062–3066PubMedCrossRefGoogle Scholar
  158. Werner S, Hulting AL, Hökfelt T, Eneroth P, Tatemoto K, Mutt V, Maroder L, Wünsch E, 1983. Effect of the peptide PHI-27 on prolactin release in vitro. Neuroendocrinology 37:476–478PubMedCrossRefGoogle Scholar
  159. Wessendorf MW, Elde RP, 1985. Characterization of an immunofluorscence technique for the demonstration of coexisting neurotransmitters within nerve fibers and terminals. J Histochem Cytochem 33:984–994PubMedCrossRefGoogle Scholar
  160. Williams RG, Dockray GJ, 1983. Distribution of enkephlin-related peptides in rat brain: immunohistochemical studies using antisera to Met-enkephalin and Met-enkephalin Arg Phe. Neuroscience 9:563–586PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • T. Hokfelt
    • 1
  • Y. Tsuruo
    • 1
  • B. Meister
    • 1
  • T. Melander
    • 1
  • M. Schalling
    • 1
  • B. Everitt
    • 1
  1. 1.Department of HistologyKarolinska InstitutetStockholmSweden

Personalised recommendations