Skip to main content

Receptor-Mediated Action Without Receptor Occupancy: A Function for Cell-Cell Communication in Ovarian Follicles

  • Chapter
Book cover Regulation of Ovarian and Testicular Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 219))

Abstract

In 1959 Furshpan and Potter reported the presence of electrical transmission at the crayfish giant motor synapse. Soon thereafter a similar means of cell-cell communication was described for Mauthner neurons of the goldfish brain (Furshpan and Furakawa, 1962) and for mammalian smooth muscle (Dewey and Barr, 1962). In each instance contacting cells, when impaled with microelectrodes, were found to exchange ions, (perhaps K+, Na+, Cl-) through low resistance pathways connecting adjacent cytoplasms without using extracellular routes. This ionic (or electrotonic) coupling was bidirectional and occurred with an impedance 3–4 orders of magnitude less than that of the transmembrane potential. Since these observations were made in excitable tissues (nerve and muscle) their functional significance was easily reconciled (Bennett et al., 1963).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertini DF, Anderson E, 1974. The appearance and structure of intercellular connections during the ontogeny of the rabbit ovarian follicle with particular reference to gap junctions. J Cell Biol 63:234–250

    Article  PubMed  CAS  Google Scholar 

  • Albertini DF, Fawcett DW, Olds PJ, 1975. Morphological variations in gap junctions of ovarian granulosa cells. Tissue & Cell 7:389–405

    Article  CAS  Google Scholar 

  • Albertini DF, Anderson E, 1975. Structural modifications of lutein cell gap junctions during pregnancy in the rat and mouse. Anat Rec 181:171–194

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam A, Koch Y, Liberman ME, Lindner HR, 1975. Distribution of binding sites for human chorionic gonadotropin in the preovulatory follicle of the rat. J Cell Biol 67:894

    Article  PubMed  CAS  Google Scholar 

  • Amsterdam A, Knecht M, Catt KJ, 1981. Hormonal regulation of cytodifferentiation and intercellular communication in cultured granulosa cells. Proc Natl Acad Sci USA 78:3000–3004

    Article  PubMed  CAS  Google Scholar 

  • Anderson E, 1971. Intercellular junctions in the differentiating graafian follicle of the mouse. Anat Res 169:473 (abstract)

    Google Scholar 

  • Anderson E, Albertini DF, 1976. Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol 71:680–686

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MM, Menko AS, Johnson RG, Sheppard JR, Sheridan JD, 1981. Rapid and reversible reduction of junctional permeability in cells infected with a temperature-sensitive mutant of avian sarcoma virus. J Cell Biol 91:573–578

    Article  PubMed  CAS  Google Scholar 

  • Atkinson MM, Anderson SK, Sheridan JD, 1986. Modification of gap junctions in cells transformed by a temperature-sensitive mutant of rous sarcoma virus. J. Membrane Biol. 91:53–64

    Article  CAS  Google Scholar 

  • Ashby CD, Walsh CD, 1972. Characterization of the interaction of a protein inhibitor with adenosine 3′:5′-monophosphate-dependent protein kinases. J Biol Chem 247:6637–6642

    PubMed  CAS  Google Scholar 

  • Azarnia R, Larsen WJ, 1976. Intercellular communication and cancer. In: DeMello (ed.), Intercellular Communication. New York: Plenum Publishing, pp. 145–172

    Google Scholar 

  • Azarnia R, Dahl G, Loewenstein WR, 1981. Cell junction and cyclic AMP: III. Promotion of junctional membrane permeability and junctional membrane particles in a junction-deficient cell type. J Membrane Biol 63:133–146

    Article  CAS  Google Scholar 

  • Azarnia R, Loewenstein WR, 1984. Intercellular communication and the control of growth: X. Alteration of junctional permeability by the src gene. A study with temperature-sensitive mutant Rous sarcoma virus. J Membrane Biol 82:191–205

    Article  CAS  Google Scholar 

  • Baker TS, Caspar DLD, Hollingshead CJ, Goodenough DA, 1983. Gap junction structures. IV. Asymmetric features revealed by low-irradiation microscopy. J Cell Biol 96:204–216

    Article  PubMed  CAS  Google Scholar 

  • Beebe SJ, Corbin JD, 1986. Cyclic Nucleotide-dependent protein kinases. In: The Enzymes, vol. 17, pp. 43–111

    Google Scholar 

  • Bennett MVL, Aljure E, Nakajima Y, Pappas GD, 1963. Electrotonic junctions between teleost spinal neurons: electrophysiology and ultrastructure. Science 141:262

    Article  PubMed  CAS  Google Scholar 

  • Bennett MVL, 1966. Physiology of electrotonic junctions. Ann NY Acad Sci 137:509–539

    Article  PubMed  CAS  Google Scholar 

  • Bennett MVL, Trinkaus JP, 1970. Electrical coupling between embryonic cells by way of extracellular space and specialized junctions. J Cell Biol 44:592–606

    Article  PubMed  CAS  Google Scholar 

  • Bennett MVL, 1973. Function of electrotonic junctions in embryonic and adult tissues. Fed Proc 32:65–75

    PubMed  CAS  Google Scholar 

  • Bennett MVL, Goodenough DA, 1978. Gap junctions, electrotonic coupling and intercellular communication. Neuro Res Prog Bull 16:373–486

    Google Scholar 

  • Bjersing L, Cajander S, 1974. Ovulation and the mechanism of follicle rupture. IV. Ultrastructure of membrana granulosa of rabbit graffian follicles prior to induced ovulation. Cell Tiss Res 153:1–14

    Article  CAS  Google Scholar 

  • Borek C, Higashino S, Loewenstein WR, 1969. Intercellular communication and tissue growth. IV. Conductance of membrane junctions of normal and cancerous cells in culture. J Membrane Biol 222:78–86

    Google Scholar 

  • Boynton AL, Whitfield JF, 1983. The role of cyclic AMP in cell proliferation: a critical assessment of the evidence. Adv Cyclic Nucleotide Res 15:193–294

    CAS  Google Scholar 

  • Browne CL, Lockwood AH, Su J-L, Beavo JA, Steiner AL, 1980. Immunofluorescent localization of cyclic nucleotide-dependent protein kinase on the mitotic apparatus of cultured cells. J Cell Biol 87:336–345

    Article  PubMed  CAS  Google Scholar 

  • Burghardt RC, Anderson E, 1979. Hormonal modulation of ovarian interstitial cells with particular reference to gap junctions. J Cell Biol 81:104–114

    Article  PubMed  CAS  Google Scholar 

  • Burghardt RC, Anderson E, 1981. Hormonal modulation of gap junctions in rat ovarian follicles. Cell Tiss Res 214:181–193

    Article  CAS  Google Scholar 

  • Burghardt RD, Matheson RL, 1982. Gap junction amplification in rat ovarian granulosa cells. Dev Biol 94:206–215

    Article  PubMed  CAS  Google Scholar 

  • Byus CV, Fletcher WH, 1982. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics. J Cell Biol’93:727–734

    Google Scholar 

  • Campbell KL, Albertini DF, 1981. Freeze-fracture analysis of gap junction disruption in rat ovarian granulosa cells. Tissue & Cell 13:651–668

    Article  CAS  Google Scholar 

  • Caspar DLD, Goodenough DA, Makowski L, Phillips WC, 1977. Gap junction structures. I. Correlated electron microscopy and X-ray diffraction. J Cell Biol 74:605–628

    Article  PubMed  CAS  Google Scholar 

  • Channing CP, Anderson LD, Hoover DJ, Kolena J, Osteen KG, Pomerantz SH, Tanabe K, 1982. The tole of nonsteroidal regulators in control of oocyte and follicular maturation. In: Recent Progress in Hormone Research, vol. 38. New York: Academic Press, pp. 331–408

    Google Scholar 

  • Chalcroft JP, Bullivant S, 1970. An interpretation of liver cell membrane and junction structure based on observations of freeze-fracture replicas of both sides of the fracture. J Cell Biol 47:49–60

    Article  PubMed  CAS  Google Scholar 

  • Cheng H-C, Kemp BE, Pearson RB, Smith AJ, Misconi L, Van Patten SM, Walsh DA, 1986. A potent synthetic peptide inhibitor of the cAMP-dependent protein kinase. J Biol Chem 261:989–992

    PubMed  CAS  Google Scholar 

  • Dekel N, Lawrence TS, Gilula NB, Beers WH, 1981. Modulation of cell-to-cell communication in the cumulus-oocyte complex and the regulation of oocyte maturation by LH. Dev Biol 86:356–362

    Article  PubMed  CAS  Google Scholar 

  • Dewey MM, Barr L, 1962. Intercellular connection between smooth muscle cells: The nexus. Science 137:670–672

    Article  PubMed  CAS  Google Scholar 

  • Dewey MM, Barr L, 1964. A study of the structure and distribution of the nexus. J Cell Biol 23:553–585

    Article  PubMed  CAS  Google Scholar 

  • Enomoto T, Yamasaki H, 1984. Lack of intercellular communication between chemically transformed and surrounding nontransformed BALBc/3T3 cells. Cancer Res 44:5200–5203

    PubMed  CAS  Google Scholar 

  • Epsey LL, Stutts RH, 1972. Exchange of cytoplasm between cells of the membrana granulosa in rabbit ovarian follicles. Biol Reprod 6:168–175

    Google Scholar 

  • Fletcher WH, 1973. Diversity of intercellular contacts in the rat ovary. J Cell Biol 59:101a

    Google Scholar 

  • Fletcher WH, Everett JW, 1973. Ultrastructural reorganization of rat granulosa cells on the day of proestrus. Anat Rec 175:320

    Google Scholar 

  • Fletcher WH, Anderson NC, Everett JW, 1975. Intercellular communication in the rat anterior pituitary gland. An in vivo and in vitro study. J Cell Biol 67:469–476

    Article  PubMed  CAS  Google Scholar 

  • Fletcher WH, 1979. Intercellular junctions in ovarian follicles: a possible functional role in follicle development. In: Midgley AR, Sadler WA (eds.), Ovarian Follicular Development and Function. New York: Raven Press, pp. 113–120

    Google Scholar 

  • Fletcher WH, Byus CV, 1982. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. I. Development and validation of fluoresceinated inhibitor. J Cell Biol 93:719–726

    Article  PubMed  CAS  Google Scholar 

  • Fletcher WH, Greenan JRT, 1985. Receptor mediated action without receptor occupancy. Endocrinology 116:1660–1662

    Article  PubMed  CAS  Google Scholar 

  • Fletcher WH, Van Patten SM, Cheng H-C, Walsh DA, 1986. Cytochemical identification of the regulatory subunit of the cAMP-dependent protein kinase by use of fluorescently labeled catalytic subunit. J Biol Chem 261:5504–5513

    PubMed  CAS  Google Scholar 

  • Funkenstein B, Nimrod A, Lindner HR, 1980. The development of steroidogenic capability and responsiveness to gonadotropins in cultured neonatal rat ovaries. Endocrinology 106:98

    Article  PubMed  CAS  Google Scholar 

  • Furshpan EJ, Potter DD, 1959. Transmission at the giant motor synapses of the crayfish. J Physiol (London) 145:289–325

    CAS  Google Scholar 

  • Furshpan EJ, Furakawa T, 1962. Intracellular and extracellular responses of several regions of the Mauthner cell of the goldfish. J Neurophysiol 25:732–771

    PubMed  CAS  Google Scholar 

  • Furshpan EJ, Potter DD, 1968. Low resistance junctions between cells in embryos and tissue culture. Curr Top Dev Biol 3:95–127

    Article  PubMed  CAS  Google Scholar 

  • Gilula NB, Reeves OR, Steinbach A, 1972. Metabolic coupling, ionic coupling and cell contacts. Nature (London) 235:262–265

    Article  CAS  Google Scholar 

  • Gilula NB, 1975. Junctional membrane structure. In: Tower DB (ed.), The Nervous System, vol. 1: The Basic Neurosciences. New York: Raven Press, pp. 1–11

    Google Scholar 

  • Gilula NB, Epstein ML, Beers WH, 1978. Cell-to-cell communication and ovulation. A study of the cummulus-oocyte complex. J Cell Biol 78:58–75

    Article  PubMed  CAS  Google Scholar 

  • Goshima K, 1969. Synchronized beating of and electrotonic transmission between myocardial cells mediated by heterotypic strain cells in monolayer culture. Exp Cell Res 58:420–426

    Article  PubMed  CAS  Google Scholar 

  • Goshima K, 1971. Synchronized beating of myocardial cells mediated by FL cells in monolayer culture and its inhibition by trypsin-treated FL cells. Exp Cell Res 65:161–169

    Article  PubMed  CAS  Google Scholar 

  • Goshima K, 1974. Initiation of beating in quiescent myocardial cells by norepinephrine, by contact with beating cells and by electrical stimulation of adjacent FL cells. Exp Cell Res 84:223–234

    Article  PubMed  CAS  Google Scholar 

  • Goshima K, 1976. Antagonistic influences of dibutyryl cyclic AMP and dibutyryl cyclic GMP on the beating rate of cultured mouse myocardial cells. J Mol Cell Cardiol 8:713–725

    Article  CAS  Google Scholar 

  • Heller DT, Cahill DM, Schultz RM, 1981. Biochemical studies of mammalian oogenesis: Metabolic cooperativity between granulosa cells and growing mouse oocytes. Dev Biol 84:455–464

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg EL, Gilula NB, 1979. Isolation and characterization of gap junctions from rat liver. J Biol Chem 254:2138–2147

    PubMed  CAS  Google Scholar 

  • Hertzberg EL, Lawrence TS, Gilula NB, 1981. Gap junctional communication. Ann Rev Physiol 43:479–491

    Article  CAS  Google Scholar 

  • Hertzberg EL, Anderson DJ, Friedlander M, Gilula NB, 1982. Comparative analysis of the major polypeptides from liver gap junctions and lens fiber junctions. J Cell Biol 92:53–59

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg EL, 1984. A detergent-independent procedure for the isolation of gap junctions from rat liver. J Biol Chem 259:9936–9943

    PubMed  CAS  Google Scholar 

  • Hertzberg EL, Skibbens RV, 1984. A protein homologous to the 27,000 dalton liver gap junction protein is present in a wide variety of species and tissues. Cell 39:61–69

    Article  PubMed  CAS  Google Scholar 

  • Hertzberg EL, Spray DC, Bennett MVL, 1985. Reduction of gap junctional conductance by microinjection of antibodies against the 27-kDa liver gap junction polypeptide. Proc Natl Acad Sci USA 82:2412–2416

    Article  PubMed  CAS  Google Scholar 

  • Hunzicker-Dunn M, Jungmann RA, 1978a. Rabbit ovarian protein kinases. I. Effect of an ovulatory dose of human chorionic gonadotropin or luteinizing hormone on the subcellular distribution of follicular and luteal protein kinases. Endocrinology 103:420–430

    Article  PubMed  CAS  Google Scholar 

  • Hunzicker-Dunn M, Jungmann RA, 1978b. Rabbit ovarian protein kinases. II. Effect of an ovulatory dose of human chorionic gonadotropin or luteinizing hormone on the multiplicity of follicular and luteal protein kinases. Endocrinology 103:431–440

    Article  PubMed  CAS  Google Scholar 

  • Hunzicker-Dunn M, Jungmann RA, 1978c. Rabbit ovarian protein kinases. III. Gonadotrophin-induced activation of soluble adenosine 3′,5′-monophosphate-dependent protein kinases. Endocrinology 103:441–450

    Article  PubMed  CAS  Google Scholar 

  • Hunzicker-Dunn M, 1982. Rat ovarian nuclear protein kinases. Biochim et Biophys 714:395–406

    Article  CAS  Google Scholar 

  • Hunzicker-Dunn M, 1986. Unique properties of the follicle-stimulating hormone- and cholera toxin-sensitive adenylyl cyclase of immature granulosa cells. Endocrinology 118:302–311

    Article  PubMed  CAS  Google Scholar 

  • Janssen-Timmen U, Traub O, Dermietzel R, Rabes HM, Willecke K, 1986. Reduced number of gap junctions in rat hepatocarcinomas detected by monoclonal antibody. Carcinogenesis 7:1475–1482

    Article  PubMed  CAS  Google Scholar 

  • Johnson RG, Hammer M, Sheridan JD, Revel JP, 1974. Gap junction formation between reaggregated Novikoff hepatoma cells. Proc Natl Acad Sci USA 71:4536–4540

    Article  PubMed  CAS  Google Scholar 

  • Johnson RG, Sheridan JD, 1971. Junctions between cancer cells in culture: ultrastructure and permeability. Science 174:717–719

    Article  PubMed  CAS  Google Scholar 

  • Kanno Y, Loewenstein WR, 1966. Cell-to-cell passage of large molecules. Nature (London) 212:629–631

    Article  CAS  Google Scholar 

  • Kogon M, Pappas GD, 1975. Atypical gap junctions in the ciliary epithelium of the albino rabbit eye. J Cell Biol 66:671–676

    Article  PubMed  CAS  Google Scholar 

  • Kuettel MR, Schwoch G, Jungmann RA, 1984. Localization of cyclic AMP-dependent protein kinase subunits in rat hepatocyte nuclei by immunogold electron microscopy. Cell Biology International Reports 8:949–957

    Article  PubMed  CAS  Google Scholar 

  • Kuettel MR, Squinto SP, Kwast-Welfeld J, Schwoch G, Schweppe JS, Jungmann RA, 1985. Localization of nuclear subunits of cyclic AMP-dependent protein kinase by the immuncolloidal gold method. J Cell Biol 101:965–975

    Article  PubMed  CAS  Google Scholar 

  • Kumar NM, Gilula NB, 1986. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol 103:767–776

    Article  PubMed  CAS  Google Scholar 

  • Larsen WJ, Tung HN, Polking C, 1981. Response of granulosa cell gap junctions to human chorionic gonadotropin (HCG) at ovulation. Biol Reprod 25:1119–1134

    Article  PubMed  CAS  Google Scholar 

  • Larsen WJ, Risinger MA, 1985. The dynamic life histories of intercellular membrane junctions. In: Satir B (ed.), Reviews in Cell Biology, vol. 4. New York: Alan R. Liss, pp. 151–216

    Google Scholar 

  • Lawrence TS, Beers WH, Gilula NB, 1978. Transmission of hormonal stimulation by cell-to-cell communication. Nature 272:501–506

    Article  PubMed  CAS  Google Scholar 

  • Lo CW, Gilula NB, 1979a. Gap junctional communication in the preimplantation mouse embryo. Cell 18:399–409

    Article  PubMed  CAS  Google Scholar 

  • Lo CW, Gilula NB, 1979b. Gap junctional communication in the post-implantation mouse embryo. Cell 18:411–422

    Article  PubMed  CAS  Google Scholar 

  • Loewenstein WR, Kanno Y, 1966. Intercellular communication and the control of tissue growth. Lack of communication between cancer cells. Nature (London) 209:1248–1250

    Article  CAS  Google Scholar 

  • Lowenstein WR, 1968. Communication through cell junctions. Implications in growth control and differentiation. Dev Biol 2:151

    Google Scholar 

  • Loewenstein WR, 1977. Permeability of membrane junctions. Ann NY Acad Sci 137:441–472

    Article  Google Scholar 

  • Loewenstein WR, 1979. Junctional intercellular communication and the control of growth. Biochim et Biophys Acta 560:1–65

    CAS  Google Scholar 

  • Loewenstein WR, 1981. Junctional intercellular communication: the cell-to-cell membrane channel. Phys Rev 61:829–913

    CAS  Google Scholar 

  • Lohmann SM, Walter U, 1984. Regulation of the cellular and subcellular concentrations and distribution of cyclic nucleotide-dependent protein kinases. In: Greengard P, Robison GA (eds.), Advances in Cyclic Nucleotide and Protein Phosphorylation Research vol. 18. New York: Raven Press, pp. 63–117

    Google Scholar 

  • Makowski L, Caspar DLD, Phillips WC, Goodenough DA, 1977. Gap junction structures. II. Analysis of the X-ray diffraction data. J Cell Biol 74:629–645

    Article  PubMed  CAS  Google Scholar 

  • Makowski L, 1985. Structural domains in gap junctions: implications for the control of intercellular communication. In: Bennett MVL, Spray DC (eds.), Gap Junctions. New York: Cold Spring Harbor Laboratory, pp. 5–12

    Google Scholar 

  • Mailer JH, Krebs EG, 1977. Progesterone-stimulated meiotic cell division in Xenopus oocytes: induction by regulatory subunit and inhibition by catalytic subunit of adenosine 3′:5′-monophosphate-dependent protein kinase. J Biol Chem 252:1712–1718

    Google Scholar 

  • May JV, McCarty K, Reichert LE, Schomberg DW, 1980. Follicle-stimulating hormone-mediated induction of functional luteinizing hormone/human chorionic gonadotropin receptors during monolayer culture of porcine granulosa cells. Endocrinology 107:1041–1049

    Article  PubMed  CAS  Google Scholar 

  • McNutt NS, Weinstein RS, 1970. The ultrastructure of the nexus. A correlated thin-section and freeze-cleave study. J Cell Biol 47:666–687

    Article  PubMed  CAS  Google Scholar 

  • Merk FB, 1971. In: Arceneaux CJ (ed.), Proceedings 29th Annual Meeting Electron Microscopy Society of America. Baton Rouge: Claitor’s Publishing Division, p. 554

    Google Scholar 

  • Merk FB, Botticelli CR, Albright JT, 1972. An intercellular response to estrogen by granulosa cells in the rat ovary; an electron microscope study. Endocrinology 90:992–1007.

    Article  PubMed  CAS  Google Scholar 

  • Merk FB, Albright JT, Botticelli CR, 1973. The fine structure of granulosa cell nexuses in rat ovarian follicles. Anat Rec 175:107–126

    Article  PubMed  CAS  Google Scholar 

  • Miller TM, Goodenough DA, 1986. Evidence for two physiologically distinct gap junctions expressed by the chick lens epithelial cell. J Cell Biol 102:194–199

    Article  PubMed  CAS  Google Scholar 

  • Murray SA, Fletcher WH, 1984. Hormone-induced intercellular signal transfer dissociates cyclic AMP-dependent protein kinase. J Cell Biol 98:1710

    Article  PubMed  CAS  Google Scholar 

  • Murray SA, Byus CV, Fletcher WH, 1985. Intracellular kinetics of free catalytic units dissociated from adenosine 3′,5′-monophosphate-dependent protein kinase in adrenocortical tumor cells (Y-1). Endocrinology 116:364–374

    Article  PubMed  CAS  Google Scholar 

  • Murray SA, Fletcher WH, 1986. Cyclic AMP-dependent protein kinase-mediated desensitisation of adrenal tumour cells. Mol Cell Endocrinol 47:153–161

    Article  PubMed  CAS  Google Scholar 

  • Murtaugh MP, Steiner AL, Davies PJA, 1982. Localization of the catalytic subunit of cyclic AMP-dependent protein kinase in cultured cells using a specific antibody. J Cell Biol 95:64–72

    Article  PubMed  CAS  Google Scholar 

  • Neyton J, Trautman A, 1985. Single-channel currents of an intercellular junction. Nature 317:331–335

    Article  PubMed  CAS  Google Scholar 

  • Paul DL, Goodenough DA, 1983. In vitro synthesis and membrane insertion of bovine MP26, an integral protein from lens fiber plasma membrane. J Cell Biol 96:633–638

    Article  PubMed  CAS  Google Scholar 

  • Paul DL, 1986. Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol 103:123–134

    Article  PubMed  CAS  Google Scholar 

  • Payer AF, 1975. Permeability of ovarian follicles and capillaries in mice. Am J Anat 142:295–318

    Article  PubMed  CAS  Google Scholar 

  • Peracchia C, 1973. Low resistance junctions in crayfish. J Cell Biol 57:66–76

    Article  PubMed  CAS  Google Scholar 

  • Peracchia C, Peracchia, LL, 1980a. Gap junction dynamics: reversible effects of divalent cations. J Cell Biol 87:708–718

    Article  PubMed  CAS  Google Scholar 

  • Peracchia C, Peracchia LL, 1980b. Gap junction dynamics: reversible effects of hydrogen ions. J Cell Biol 87:719–727

    Article  PubMed  CAS  Google Scholar 

  • Peracchia C, Girsch SJ, 1985a. Permeability and gating of lens gap junction channels incorporated into liposomes. Current Eye Res 4:431–439

    Article  CAS  Google Scholar 

  • Peracchia C, Girsch SJ, 1985b. Functional modulation of cell coupling: evidence for a calmodulin-driven channel gate. Am J Physiol 248:765–782

    Google Scholar 

  • Peracchia C, Girsch SJ, 1985c. An in vitro approach to cell coupling: permeability and gating of gap junction channels incorporated into liposomes. In: Bennett MVL, Spray DC (eds.), Gap Junctions. New York: Cold Spring Harbor Laboratory, pp. 191–203

    Google Scholar 

  • Pitts JD, 1980. The role of junctional communication in animal tissues. In Vitro 16:1049–1056

    Google Scholar 

  • Pitts JD, Finbow ME, 1986. The gap junction. J Cell Sci Suppl 4:239–266

    PubMed  CAS  Google Scholar 

  • Presi J, Pospisil J, Figarova V, Krabed Z, 1974. Stage-dependent changes in binding of iodinated FSH during ovarian follicle maturation in rats. Endocrinol Exp (Bratisl) 8:2

    Google Scholar 

  • Revel JP, Karnovsky MJ, 1967. Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33:C7–C12

    Article  PubMed  CAS  Google Scholar 

  • Richards JS, Midgley AR, 1976. Protein hormone action: a key to understanding ovarian follicular and luteal cell development. Biol Reprod 14:82–94

    Article  PubMed  CAS  Google Scholar 

  • Robertson JD, 1963. The occurrence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brains. J Cell Biol 19:201–221

    Article  PubMed  CAS  Google Scholar 

  • Saez JC, Spray DC, Nairn AC, Hertzberg E, Greengard P, Bennett MVL, 1986. cAMP increases junctional conductance and stimulates phosphorylation of the 2kDa principal gap junction polypeptide. Proc Natl Acad Sci USA 83:2473–2477

    Article  PubMed  CAS  Google Scholar 

  • Schultz RM, Montgomery RR, Ward-Bailey PF, Eppig JJ, 1983a. Regulation of oocyte maturation in the mouse: possible roles of intercellular communication, cAMP, and testosterone. Dev Biol 95:294–304

    Article  PubMed  CAS  Google Scholar 

  • Schultz RM, Montgomery RR, Belanoff JR, 1983b. Regulation of mouse oocyte meiotic maturation: implication of a decrease in oocyte cAMP and protein dephosphorylation in commitment to resume meiosis. Dev Biol 97:264–273

    Article  PubMed  CAS  Google Scholar 

  • Schultz RM, 1985. Roles of cell-to-cell communication in development. Biol Reprod 32: 27–42

    Article  PubMed  CAS  Google Scholar 

  • Sheridan JD, 1968. Electrophysiological evidence for low-resistance intercellular junctions in the early chick embryo. J Cell biol 37:650–666

    Article  PubMed  CAS  Google Scholar 

  • Sheridan JD, 1970. Low-resistance junctions between cancer cells in various solid tumors. J Cell Biol 45:91–99

    Article  PubMed  CAS  Google Scholar 

  • Sheridan JD, Finbow ME, Pitts JD, 1979. Metabolic interactions between animal cells through permeable intercellular junctions. Exp Cell Res 123:111–117

    Article  PubMed  CAS  Google Scholar 

  • Sheridan JD, Atkinson MM, 1985. Physiological roles of permeable junctions: some possibilities. Ann Rev Physiol 47:337–353

    Article  CAS  Google Scholar 

  • Simpson J, Rose B, and Loewenstein WR, 1977. Size limit of molecules permeating the junctional membrane channels. Science 195:294–296

    Article  PubMed  CAS  Google Scholar 

  • Somer JR, Johnson EA, 1970. Comparative ultrastructure of cardiac cell membrane specializations. Amer J Cardiol 25:184–194

    Article  Google Scholar 

  • Steiner AL, Koide Y, Earp HS, Bechtel PJ, Beavo JA, 1978. Compartmentalization of cyclic nucleotides and cyclic AMP-dependent protein kinases in rat liver. Immunocytochemical demonstration. Adv Cyclic Nucleotide Res 9:691–705

    PubMed  CAS  Google Scholar 

  • Subak-Sharpe H, Burk RR, Pitts JC, 1969. Metabolic cooperation between biochemically marked mammalian cells in tissue culture. J Cell Sci 4:353–367

    PubMed  CAS  Google Scholar 

  • Trachtenberg MC, Pollen DA, 1970. Neuroglia: biophysical properties and physiological function. Science 167:1248–1252

    Article  PubMed  CAS  Google Scholar 

  • Traub O, Willecke K, 1982. Cross-reaction of antibodies against liver gap junction protein (26K) with lens fiber junction protein (MIP) suggests structural homology between these tissue specific gene products. Biochem Biophys Res Commun 109:895–901

    Article  PubMed  CAS  Google Scholar 

  • Unwin PMT, Zampighi G, 1980. Structure of the junction between communicating cells. Nature 283:545–549

    Article  PubMed  CAS  Google Scholar 

  • Unwin PMT, Ennis PD, 1984. Two configurations of a channel-forming membrane protein. Nature 307:609–613

    Article  PubMed  CAS  Google Scholar 

  • Van Patten SM, Fletcher WH, Walsh DA, 1986. The inhibitor protein of the cAMP-dependent protein kinase-catalytic subunit interaction. J Biol Chem 261:5514–5523

    PubMed  Google Scholar 

  • Veenstra RD, DeHaan RL, 1986. Measurement of single channel currents from cardiac gap junctions. Science 233:972–974

    Article  PubMed  CAS  Google Scholar 

  • Verselis V, White RL, Spray DC, Bennett MVL, 1986. Gap junctional conductance and permeability are linearly related. Science 234:461–464

    Article  PubMed  CAS  Google Scholar 

  • Walsh DA, Cooper RH, 1979. The physiological regulation and function of cAMP-dependent protein kinases. In: Biochemical Actions of Hormones, vol. 6. Academic Press, pp. 1–75

    Google Scholar 

  • Warner AE, Gurdon JB, 1987. Functional gap junctions are not required for muscle gene activation by inductionin Xenopus embryos. J Cell Biol 104:557–564

    Article  PubMed  CAS  Google Scholar 

  • Warner AE, Guthrie SC, Gilula NB, 1984. Antibodies to gap-junctional protein selectively disrupt junctional communication in the early amphibian embryo. Nature 311:127–131

    Article  PubMed  CAS  Google Scholar 

  • Yancey SB, Edens JE, Trosko JE, Chang C-C, Revel J-P, 1982. Decreased incidence of gap junctions between Chinese hamster V-79 cells upon exposure to the tumor promoter 12–0-tetradecanoyl phorbol-13-acetate. Exp Cell Res 139:329–340

    Article  PubMed  CAS  Google Scholar 

  • Yotti LP, Chang CC, Trosko JE, 1979. Elimination of metabolic cooperation in Chinese hamster cells by a tumor promoter. Science 206:1089–1091

    Article  PubMed  CAS  Google Scholar 

  • Zampighi G, Unwin PNT, 1979. Two forms of isolated gap junctions. J Mol Biol 135: 451–464

    Article  PubMed  CAS  Google Scholar 

  • Zampighi G, Corless JM, Robertson JD, 1980. On gap junction structure. J Cell Biol 86:190–198

    Article  PubMed  CAS  Google Scholar 

  • Zampighi GA, Hall JE, Kreman M, 1985. Purified lens junctional protein forms channels in planar lipid films. Proc Natl Acad Sci USA 82:8468–8472

    Article  PubMed  CAS  Google Scholar 

  • Zampighi GA, Simon SA, 1985. The structure of gap junctions as revealed by electron microscopy. In: Bennett MVL, Spray DC (eds.), Gap Junctions. New York: Cold Spring Harbor Laboratory, pp. 13–22

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Fletcher, W.H., Byus, C.V., Walsh, D.A. (1987). Receptor-Mediated Action Without Receptor Occupancy: A Function for Cell-Cell Communication in Ovarian Follicles. In: Mahesh, V.B., Dhindsa, D.S., Anderson, E., Kalra, S.P. (eds) Regulation of Ovarian and Testicular Function. Advances in Experimental Medicine and Biology, vol 219. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5395-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5395-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5397-3

  • Online ISBN: 978-1-4684-5395-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics