Development and Applications of Macroinvertebrate Instream Flow Models for Regulated Flow Management

  • James A. Gore


Since the classic papers of Dodds and Hisaw (1924; 1925) and Nielsen (1950) and standard references on the ecology of running water ecosystems (Hynes 1970), aquatic biologists and entomologists have agreed that benthic macroinvertebrates display a wide variety of morphological and behavioral adaptations to a flowing environment. In general, benthic invertebrates have operated to take advantage of flow for feeding (Wallace & Merritt 1980) and have evolved some variation of dorso-ventral flattening to either reduce shear stress, as proposed by Steinmann (1907), Thienemann (1926), and, most recently, Statzner and Holm (1982) or to occupy a less rigorous “boundary layer” (Ambühl 1959). Since adaptations to hydraulic forces seem to be common among a wide variety of benthic invertebrate groups, it should be expected that distributions and densities of these organisms could be predicted by assessing the heterogeneity of flow characteristics within a stream reach. It is interesting to note that many aquatic biologists proceed from this basic assumption to demonstrate that distribution, density, and diversity are primarily determined by biotic interactions rather than responses to the physical environment. Recently, with increasing demands for water for energy development in the arid and semi-arid environments of the western United States, aquatic biologists and stream managers have begun to examine the impacts of altered flow regimes upon the biota of rivers and streams.


Aquatic Insect Benthic Macroinvertebrates Stream Reach Instream Flow Stream Manager 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ambühl, H. 1959. Die Bedeutung der Strömung als ökologischer Faktor. Schweiz. Z. Hydrol. 21: 133–264.CrossRefGoogle Scholar
  2. Bovee, K. D. 1978. Probability-of-use criteria for the family Salmonidae. Instream Flow Info. Paper No. 4, U. S. Fish. Wildl. Serv., FWS/OBS-78/07.Google Scholar
  3. Bovee, K. D. 1982. A guide to stream habitat analysis using the instream flow incremental methodology. Instream Flow Info. Paper No. 12, U. S. Fish Wildl. Serv., FWS/OBS-82/26.Google Scholar
  4. Bovee, K. D. and Cochnauer, T. 1977. Development and evaluation of weighted criteria, probability-of-use curves for instream flow assessments: fisheries. Instream Flow Info Paper No. 3, U. S. Fish Wildl. Serv., FWS/OBS-77/63.Google Scholar
  5. Bovee, K. D., Gore, J. A. and Silverman, A. J. 1978. Field testing and adaptation of a methodology to measure “in-stream” values in the Tongue River, Northern Great Plains (NGP) region. U. S. Environ. Prot. Agency, EPA-908/4-78-004A.Google Scholar
  6. Bovee, K. D. and Milhous, R. 1978. Hydraulic simulation in instream flow studies: theory and techniques. Instream Flow Info Paper No. 5, U. S. Fish Wildl. Serv., FWS/OBS-78/33.Google Scholar
  7. Brusven, M. A., MacPhee, C. and Biggam, R. C. 1974. Effects of water fluctuations on benthic insects. In: Anatomy of a River. pp. 67–79. Pacific Northwest River Basins Rpt., Vancouver, Wash.Google Scholar
  8. Chow, V. T. (Ed.) 1964. Handbook of Applied Hydrology. McGraw-Hill, New York.Google Scholar
  9. Connor, E. F. and Simberloff, D. 1984. Neutral models of species co-occurrence patterns. In: Ecological Communities (Ed. by D. R. Strong, Jr., D. Simberloff, L. G. Abele and A. B. Thistle), pp. 316–337, Princeton Univ. Press, Princeton, N.J.Google Scholar
  10. Décamps, H., Larrowy, G. and Trivellato, D. 1975. Approche hydrodynamique de la microdistribution d’invertébrés en eau courante. Ann. Limnol. 11: 79–100.CrossRefGoogle Scholar
  11. Dodds, G. S. and Hisaw, F. L. 1924. Ecological studies of aquatic insects. I. Adaptations of mayfly nymphs to swift streams. Ecology 5: 137–148.CrossRefGoogle Scholar
  12. Dodds, G. S. and Hisaw, F. L. 1925. Ecological studies on aquatic insects. III. Adaptations of caddisfly larvae to swift streams. Ecology 6: 123–137.CrossRefGoogle Scholar
  13. Fremling, S. 1973. Changes of the ice regime in Swedish rivers due to the development of the hydroelectric power. Comm. Int. des Grands Barrages, Madrid.Google Scholar
  14. Gilpin, M. E. and Diamond, J. M. 1984. Are species co-occurrences on islands non-random, and are null hypotheses useful in community ecology? In: Ecological Communities (Ed. by D. R. Strong, Jr., D. Simberloff, L. G. Abele, and A. B. Thistle), pp. 297–315, Princeton Univ. Press, Princeton, N.J.Google Scholar
  15. Gore, J. A. 1977. Reservoir manipulations and benthic macroinvertebrates in a prairie river. Hydrobiologia 55: 113–123.CrossRefGoogle Scholar
  16. Gore, J. A. 1978. A technique for predicting the in-stream flow requirements of benthic macroinvertebrates. Freshwat. Biol. 8: 141–151.CrossRefGoogle Scholar
  17. Gore, J. A. 1983. Considerations of size related flow preferences among macroinvertebrates used in instream flow studies. In: Developments in Ecology and Environmental Quality, Vol. II (Ed. by H. I. Shuval), pp. 389–397. Balaban Int. Press, Jerusalem.Google Scholar
  18. Gore, J. A. 1985. Mechanisms of colonization and habitat enhancement for benthic macroinvertebrates in restored river channels. In: The Restoration of Rivers and Streams (Ed. by J. A. Gore), pp. 81–101, Butterworths Publ., Boston.Google Scholar
  19. Gore, J. A. and Johnson, L. S. 1980. Establishment of biotic and hydrologic stability in a reclaimed coal strip-mined river channel. Inst. Energy and Environ., Univ. of Wyoming, Laramie.Google Scholar
  20. Gore, J. A. and Judy, Jr., R. D. 1981. Predictive models of benthic macroinvertebrate density for use in instream flow and regulated flow management. Can. J. Fish. Aquat. Sci. 38: 1363–1370.CrossRefGoogle Scholar
  21. Grenney, W. J. and Kraszewski, A. K. 1981. Description and application of the stream simulation and assessment mode: Version IV (SSAM IV), U.S.D.I., Fish Wildl. Serv., FWS/OBS-81/46.Google Scholar
  22. Hynes, H. B. N. 1970. The Ecology of Running Waters. Univ. Toronto Press, Toronto, Ont.Google Scholar
  23. Johnson, L. S. 1980. Tracking movement and identification of instream flow needs of brown trout (Salmo trutta) by use of radio-isotopes. M.S. Thesis, Univ. Wyoming, Laramie.Google Scholar
  24. Johnson, L. S., Wichers, D. L., Wesche, T. A. and Gore, J. A. 1982. Instream salmonid habitat exclusion by ice-cover. Water Res. Series No. 84, Wyoming WRRI, Univ. Wyoming, Laramie.Google Scholar
  25. Kovalak, W. P. 1978. Relationships between size of stream insects and current velocity. Can. J. Zool. 56: 178–186.CrossRefGoogle Scholar
  26. Logan, S. M. 1963. Winter observations on bottom organisms and trout in Bridger Creek, Montana. Trans. Am. Fish. Soc. 92: 140–145.CrossRefGoogle Scholar
  27. Mathur, D., Bason, W. H., Purdy, Jr., E. J. and Silver, C. A. 1985. A critique of the instream flow incremental methodology. Can. J. Fish. Aquat. Sci. 42: 825–831.CrossRefGoogle Scholar
  28. Michel, B. 1971. Winter regime of rivers and lakes. Cold Regions Res. Eng. Lab., Monogr. III-Bla. Hanover, New Hampshire.Google Scholar
  29. Minshall, G. W. 1984. Aquatic insect-substratum relationships. In: The Ecology of Aquatic Insects (Ed. by V. H. Resh and D. M. Rosenberg), pp. 358–400. Praeger, N.Y.Google Scholar
  30. Morin, A., Harper, P.-P., and Peters, R. H. 1986. Microhabitat preference curves of black fly larvae (Diptera: Simulidae): a comparison of three estimation methods. Can. J. Fish. Aquat. Sci. (in press).Google Scholar
  31. Newbury, R. W. 1984. Hydrologie determinants of aquatic insect habitats. In: The Ecology of Aquatic Insects (Ed. by V. H. Resh and D. M. Rosenberg), pp. 323–357, Praeger, N.Y.Google Scholar
  32. Nielsen, A. 1950. The torrential invertebrate fauna. Oikos 2: 176–196.CrossRefGoogle Scholar
  33. Olsson, T. I. 1981. Overwintering of benthic macroinvertebrates in ice and frozen sediment in a North Swedish River. Hol. Ecol. 4: 161–166.Google Scholar
  34. Olsson, T. I. 1983. Seasonal variation in the lateral distribution of mayfly nymphs in a boreal river. Hol. Ecol. 6: 333–339.Google Scholar
  35. Orth, D. J. and Maughan, O. E. 1983. Microhabitat preferences of benthic fauna in a woodland stream. Hydrobiologia 106: 157–168.CrossRefGoogle Scholar
  36. Patten, B. D. 1979. Summary report of module B-instream fishery ecosystems. Instream flow criteria and modeling workshop. Colorado State Univ., Exp. Station, IS No. 40.Google Scholar
  37. Rabeni, C. F. 1985. Resource partitioning by stream dwelling crayfish: the influence of body size. Amer. Midl. Nat. 113: 20–29.CrossRefGoogle Scholar
  38. Railsback, S. F., Herricks, E. E., and Alavian, V. 1981. Modeling aquatic insect habitat. Proc. Symp. Acquisition and Utilization of Aquatic Habitat Inventory Information, Portland, Oregon.Google Scholar
  39. Resh, V. H. and Price, D. G. 1984. Sequential sampling: a cost-effective approach for monitoring benthic macroinvertebrates in environmental impact assessments. Env. Mgmt. 8: 75–80.CrossRefGoogle Scholar
  40. Robinson, W. L. 1978. The Columbia: a river system under siege. Oregon Wildlife 33: 3–12.Google Scholar
  41. Sheldon, A. L. 1985. Cost and precision in a stream sampling program. Hydrobiologia (in press).Google Scholar
  42. Stalnaker, C. B. 1979. The use of habitat structure preferenda for establishing flow regimes for maintenance of fish habitat. In: The Ecology of Regulated Streams (Ed. by J. V. Ward and J. A. Stanford), pp. 321–337, Plenum Press, N.Y.Google Scholar
  43. Stalnaker, C. B. 1982. Instream flow assessments come of age in the decade of the 1970s. In: Research on Fish and Wildlife Habitat (Ed. by W. T. Mason Jr. and S. Iker), pp. 119-142, U.S. Environ. Prot. Agency, EPA-600/8-82-022.Google Scholar
  44. Stanford, J. A. and Ward, J. V. 1979. Stream regulation in North America. In: The Ecology of Regulated Streams (Ed. by J. V. Ward and J. A. Stanford), pp. 215–236, Plenum Press, N.Y.Google Scholar
  45. Statzner, B. 1979. Der Obere und Untere Schierenseebach (Schleswig-Holstein). Strukturen und Funktionen in zwei norddeutschen See-Auffluss-Systemen, unter besonderer Berücksichtigung der Makroinvertebraten. Thesis. Christian-Albrechts-Universitat, Kiel.Google Scholar
  46. Statzner, B. 1981a. The relation between “hydraulic stress” and microdistribution of benthic macroinvertebrates in a lowland running water system, the Schierenseebrooks (North Germany). Arch. Hydrobiol. 91: 192–218.Google Scholar
  47. Statzner, B. 1981b. A method to estimate the populations size of benthic macroinvertebrates in streams. Oecologia (Berl) 51: 157–161.CrossRefGoogle Scholar
  48. Statzner, B. and Holm, T. F. 1982. Morphological adaptations of benthic invertebrates to stream flow — an old question studied by means of a new technique (Laser Doppler Anemometry). Oecologia (Berl) 53: 290–292.CrossRefGoogle Scholar
  49. Steinmann, P. 1907. Die Tierwelt der Gebirgsbache. Annls. Biol. Lacustr. 2: 30–150.Google Scholar
  50. Sweetman, D. A. 1980. Protecting instream flows in Montana: Yellowstone River reservations case study. Instream Flow Info Paper No. 10, U. S. Fish Wildl. Serv., FWS/OBS-79/36.Google Scholar
  51. Thienemann, A. 1926. Die Binnengewasser Mitteleuropas, Die Binnengewasser 1, Schweizerbart, Stuttgart.Google Scholar
  52. Wallace, J. B. and Merritt, R. W. 1980. Filter-feeding ecology of aquatic insects. Ann. Rev. Ent. 25: 103–132.CrossRefGoogle Scholar
  53. Ward, J. V. and Stanford, J. A. 1984. The regulated stream as a testing ground for ecological theory. In: Regulated Rivers (Ed. by A. Tillehammer and S. J. Saltveit), pp. 23–38, Universitetsforlaget AS, Oslo.Google Scholar
  54. Waters, T. F. 1972. The drift of stream insects. Ann. Rev. Ent. 17: 253–272.CrossRefGoogle Scholar
  55. Winget, R. N. 1985. Methods for determining successful reclamation of stream ecosystems. In: The Restoration of Rivers and Streams (Ed. by J. A. Gore), pp. 165–192, Butterworths Publ., Boston.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • James A. Gore
    • 1
  1. 1.Faculty of Biological SciencesUniversity of TulsaTulsaUSA

Personalised recommendations