Penning Traps, Masses and Antiprotons

  • G. Gabrielse
Part of the Ettore Majorana International Science Series book series (EMISS, volume 31)


Penning traps are an important new tool for mass spectroscopy, aided by an invariance theorem which facilitates precise mass spectroscopy in an imperfect trap. The motions of particles in a Penning trap are discussed and the features which make it very attractive to do mass spectroscopy in a trap are illustrated. Careful attention is paid to the motivations and prospects for a measurement of the inertial mass of the antiproton. Prospects for such a measurement are now excellent since our TRAP Collaboration actually captured antiprotons in a Penning trap only 2 months ago. An overview of ways to cool particles within the trap is provided and brief speculations upon the possibility of producing antihydrogen in a trap are included.


Trapping Time Trap Electrode Invariance Theorem Resistor Cool Quadrupole Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Brown and G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  2. 2.
    D. J. Wineland, P. Ekstrom, H. G. Dehmelt, Phys. Rev. Lett. 31, 1279 (1973)ADSCrossRefGoogle Scholar
  3. 3.
    L.S. Brown and G. Gabrielse, Phys. Rev. A. 25, 2423 (1982)ADSCrossRefGoogle Scholar
  4. 4.
    R.J. Van Dyck, D.J. Wineland, P. Ekstrom and H. G. Dehmelt, Appl. Phys. Lett. 28, 446 (1976)ADSCrossRefGoogle Scholar
  5. 5.
    G. Gabrielse, Phys. Rev. A 27, 2277 (1983)ADSCrossRefGoogle Scholar
  6. 6.
    D.A. Laude Jr., C.L. Johlman, R.S. Brown, D.A. Weil and C.L. Wilkins, in Mass Spec. Rev. 5, 107 (Wiley, N.Y., 1986).Google Scholar
  7. 7.
    M.L. Gross, D.L. Rempel, Science 226, 261 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    M. Allemann, H.P. Kellerhals, K.P. Wanczek, Int’l. J. of Mass Spec and Ion Proc. 46. 139 (1983).CrossRefGoogle Scholar
  9. 9.
    L. Smith, Phys. Rev. C 4, 22 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    C. Thibault, paper contributed to this school.Google Scholar
  11. 11.
    G. Gabrielse, H. Dehmelt and W. Kells, Phys. Rev. Lett. 54, 537 (1985)ADSCrossRefGoogle Scholar
  12. 12.
    E.R. Cohen and B.N. Taylor, J. Chem. Ref. Data 2, 663 (1973)ADSCrossRefGoogle Scholar
  13. 13.
    G. Gartner and E. Klempt, Z. Phys. 287, 1(1978)ADSGoogle Scholar
  14. 14.
    G. Graff, H. Kalinowsky and J. Traut, Z. Phys. 297, 35,(1980)ADSGoogle Scholar
  15. 15.
    R. S. Van Dyck Jr. and P. B. Schwinberg, Phys. Rev. Lett. 47, 395 (1981)ADSCrossRefGoogle Scholar
  16. 16.
    R. S. Van Dyck Jr., F. Moore, D. Farnham and P. B. Schwinberg, Int. J. of Mass Spec. and Ion Proc. 66, 327 (1985)CrossRefGoogle Scholar
  17. 17.
    R. S. Van Dyck Jr., F. Moore, D. Farnham and P. B. Schwinberg, Bull. Am. Phys. Soc. 31 (1986)Google Scholar
  18. 18.
    D. J. Wineland, J.J. Bollinger, W.M. Itano, Phys. Rev. Lett. 50, 628 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    Schnatz,, Nucl. Inst. and Meth. (in press).Google Scholar
  20. 20.
    R. S. Van Dyck, et al. (unpublished)Google Scholar
  21. 21.
    G. Audi, R.L. Graham, J.S. Geiger, Z. Phys. A 321, 533 (1985).ADSCrossRefGoogle Scholar
  22. 22.
    E. Lippman,, Phys. Rev. Lett. 54 285 (1985).ADSCrossRefGoogle Scholar
  23. 23.
    G. Werth, et. al. (ununpublished).Google Scholar
  24. 24.
    A. Bamberger, et. al., Phys. Lett. 33B, 233 (1970).ADSGoogle Scholar
  25. 25.
    A Hu,, Nucl. Phys. A 254, 403 (1975).ADSGoogle Scholar
  26. 26.
    P.L. Roberson, et. al., Phys. Rev. C 16, 1945 (1977).ADSCrossRefGoogle Scholar
  27. 27.
    B.L. Roberts, Phys. Rev. D. 17, 358 (1978).ADSCrossRefGoogle Scholar
  28. 28.
    S. van der Meer, private communication.Google Scholar
  29. 29.
    Particle Data Group, Rev. Mod. Phys. 56, S1 (1984).ADSCrossRefGoogle Scholar
  30. 30.
    G. Gabrielse, X. Fei, K. Helmerson, S.L. Rolston, R. Tjoelker, T.A. Trainor, H. Kalinowsky, J. Haas, W. Kells, Phys. Rev. Lett. 57, 2504 (1986)ADSCrossRefGoogle Scholar
  31. 31.
    X.Fei, R.Davisson and G. Gabrielse, Rev. of Sci. Inst. (in press).Google Scholar
  32. 32.
    W. Kells, G. Gabrielse and K. Helmerson, Fermilab-Conf.-84/68 E (1984).Google Scholar
  33. 33.
    D.J. Larson, J.C. Berquist, J.J. Bollinger, W.M. Itano and D.J. Wineland, Phys. Rev. Lett. 57 70 (1986)Google Scholar
  34. 34.
    F.T. Cole and E.E. Mills, Ann. Rev. Nucl. Sci. 31, 295 (1981)ADSCrossRefGoogle Scholar
  35. 35.
    H. Dehmelt, R.S. Van Dyck Jr., P.B. Schwinberg and G. Gabrielse, Bull. Am. Phys. Soc. 24, 757 (1979).Google Scholar
  36. 36.
    G. Gabrielse, K. Helmerson, R. Tjoelker, X. Fei, T. Trainor, W. Kells, H. Kalinowsky, in Proceedings of the First Workshop on Antimatter Physics at Low Energy, edited by B.E. Bonner and L.S. Pinsky, April 1986, Fermilab.Google Scholar
  37. 37.
    H. Bethe, E. Saltpeter, Quantum Mechanics of One and Two Electron Atoms, in Handbuch fur Physik, 35, 88 (Springer, Springer, 1957).Google Scholar
  38. 38.
    R. Neumann, H. Poth, A. Winnacker, A. Wolf, Z. Phys.313, 253 (1983).ADSGoogle Scholar
  39. 39.
    K.J. Kugler, W. Paul and U. Trinks, Phys. Lett. 72B, 422 (1978).ADSGoogle Scholar
  40. 40.
    A.L. Migdall, J.V. Prodan, W.D. Phillips, T.H. Bergeman, H.J. Metcalf, Phys. Rev. Lett. 54, 2596 (1985).ADSCrossRefGoogle Scholar
  41. 41.
    S. Chu, J.E. Bjorkholm, A. Ashkin and A. Cable, Phys. Rev. Lett. 57, 314 (1986).ADSCrossRefGoogle Scholar
  42. 42.
    D. Holtkamp, paper contributed to this school.Google Scholar
  43. 43.
    B.I. Deuten, A.S. Jensen, A. Miranda and G.C. Oades, in Proceedings of the First Workshop on Antimatter Physics at Low Energy, edited by B.E. Bonner and L.S. Pinsky, April 1986, Fermilab.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • G. Gabrielse
    • 1
  1. 1.Department of Physics, FM-15University of WashingtonSeattleUSA

Personalised recommendations