The Muon Anomalous g-Value

  • Vernon W. Hughes
Part of the Ettore Majorana International Science Series book series (EMISS, volume 31)


The muon g-2 value has played a central role in establishing that the muon obeys quantum electrodynamics (QED) and behaves like a heavy electron.1,2 The experimental value for g-2 has been determined by three progressively more precise measurements at CERN,3,4,5 the latest one achieving a precision of 7.2 ppm. The theoretical value for g-2 has steadily become better known as higher order QED radiative contributions have been evaluated, and as knowledge of the virtual hadronic contributions to g-2 has been improved both by further measurements of the relevant quantity R = σ(e+e- → hadrons)/ σ(e+e- → μ+μ-) and by calculations. The theoretical value of g-2 is now known to 1.3 ppm, a factor of 6 better than the experimental value.7 The present agreement of theory and experiment establishes that QED applies for the muon up to Q2 = 1000 (GeV/c)2 and determines the hadronic contribution to the vacuum polarization to about 12%. Futhermore, one of the most sensitive limits on muon substructure (Λ > 800 GeV) is provided, as well as limits to various speculative modern theories.


Vacuum Polarization Lamb Shift Muon Spin Precession Frequency Radiative Contribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V.W. Hughes, and T. Kinoshita, in Muon Physics I, ed. by V.W. Hughes and CS. Wu, (Academic Press, New York, 1977) p. 11.Google Scholar
  2. 2.
    V.W. Hughes and T. Kinoshita, Comments Nucl. Part. Phys. 14, 341 (1985).Google Scholar
  3. 3.
    G. Charpak et al., Nuovo Cim. 37, 1241 (1965).CrossRefGoogle Scholar
  4. 4.
    J. Bailey et al., Il Nuovo Cimento 9A, 369 (1972).ADSGoogle Scholar
  5. 5.
    J. Bailey et al., Nucl. Phys. B150, 1 (1979).ADSCrossRefGoogle Scholar
  6. 6.
    T. Kinoshita, B. Nizic and Y. Okamoto, Phys. Rev. Lett. 52, 717 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    “A New Precision Measurement of the Muon g-2 Value at the Level of 0.35 ppm.”, AGS Proposal 821, September, 1985; revised September, 1986, V.W. Hughes, spokesman. E. Hazen, C. Heisey, B. Kerosky, F. Krienen, E.K. McIntyre, D. Magaud, J.P. Miller, B.L. Roberts, D. Stassinopoulos, L.R. Sulak, W. Worstell — Boston University; H.N. Brown,, E.D. Courant, G.T. Danby, C.R. Gardner, J.W. Jackson, M. May A. Prodell, R. Shutt, P.A. Thompson — Brookhaven National Laboratory M.S. Lubell — City College of New York; A.M. Sachs — Columbia University; T. Kinoshita — Cornell University; G. zu Putlitz -University of Heidelberg; W.P. Lysenko — Los Alamos National Laboratory; W.L. Williams — University of Michigan; J.J. Reidy -University of Mississippi; F. Combley — Sheffield University; K. Nagamine — University of Tokyo; S.K. Dhawan, A.A. Disco, F.J.M. Farley, V.W. Hughes, Y. Kuang, H. Venkataramania — Yale University.Google Scholar
  8. 8.
    P.B. Schwinberg, R.S. Van Dyck, Jr., and H.G. Dehmelt, Phys. Rev. Lett. 47, 1679 (1981); R.S. Van Dyck, Jr., P.B. Schwinberg and H.G. Dehmelt, in Atomic Physics 9, ed. by R.S. Van Dyck, Jr., and E.N. Fortson, (World Scientific Publ. Co., Singapore, 1984) p. 53.Google Scholar
  9. 9.
    T. Kinoshita and W.B. Lindquist, Phys. Rev. Lett. 47, 1573 (1981);ADSCrossRefGoogle Scholar
  10. 9a.
    9a. T. Kinoshita and W.B. Lindquist, Phys. Rev. D27, 853, 867, 877, 886 (1983);ADSGoogle Scholar
  11. 9b.
    9b. T. Kinoshita, “The Anomalous Magnetic Moment of the Electron and the QED Determination of the Fine Structure Constant.” IEEE Trans. Instrum. Meas. IM-36, to be published June, 1987.Google Scholar
  12. 10.
    B.N. Taylor, J. Res. Natl. Bur. Stand. 90, 91 (1985).Google Scholar
  13. 11.
    R. Jackiw and S. Weinberg, Phys. Rev. D5, 2396 (1972)ADSGoogle Scholar
  14. 11a.
    G. Altarelli, N. Cabibbo and L. Maiani, Phys. Lett. 40B, 415 (1972)ADSGoogle Scholar
  15. 11b.
    I. Bars and M. Yoshimura, Phys. Rev. D6, 374 (1972)ADSGoogle Scholar
  16. 11c.
    K. Fujikawa, B.W. Lee and A.I. Sanda, Phys. Rev. D6, 2923 (1972)ADSGoogle Scholar
  17. 11d.
    W.A. Bardeen, R. Gastmans and B.E. Lautrup, Nucl. Phys. B46, 319 (1972).ADSCrossRefGoogle Scholar
  18. 12.
    W. Marciano, “sin2θw and Radiative Corrections” in XXIII Int.Conf. on High Energy Physics, Berkeley, July, 1986. To be published.Google Scholar
  19. 13.
    T. Kinoshita, B. Nizic and Y. Okamoto, Phys. Rev. D31, 2108 (1985).ADSGoogle Scholar
  20. 14.
    L.M. Barkov et al., Nucl. Phys. B256, 365 (1985).ADSCrossRefGoogle Scholar
  21. 15.
    J.A. Casas et al., Phys. Rev. D32, 736 (1985).ADSGoogle Scholar
  22. 16.
    L.M. Barkov et al., Novosibirsk Institute of Nuclear Physics Preprint 85–118 CMD-2 Detector for VEPP-2M.Google Scholar
  23. 17.
    S.R. Amendolia et al., Phys. Lett. 138B, 454 (1984); 146B, 116 (1984).Google Scholar
  24. 18.
    R.W. Robinett and J.L. Rosner, Phys. Rev. D25, 3036 (1982).ADSGoogle Scholar
  25. 19.
    S.R. Moore, K. Whisnant, and B.-L. Young, Phys. Rev. D31, 105 (1985).ADSGoogle Scholar
  26. 20.
    G. Arnison et al. (UA1 Collaboration), Phys. Lett. 126B, 398 (1983)ADSGoogle Scholar
  27. 20a.
    P. Bagnaia et al. (UA2 Collaboration), Phys. Lett. 129B, 130 (1983).ADSGoogle Scholar
  28. 21.
    C. Rubbia; P. Langacker, 1985 Intl. Symp. on Lepton and Photon Interactions at High Energy, ed. by M. Konuma and K. Takahashi (Nissha Printing Co., Kyoto, Japan, 1986) p. 242; 186.Google Scholar
  29. 22.
    R.D. Peccei, Phys. Lett. 136B, 121 (1984)ADSGoogle Scholar
  30. 22a.
    N. Cabibbo, L. Maiani, and Y. Srivastava, Phys. Lett. 139B, 359 (1984)Google Scholar
  31. 22b.
    M.J. Duncan and M. Veltman, Phys. Lett. 139B, 310 (1984)ADSGoogle Scholar
  32. 22c.
    L. Bergstrom, Phys. Lett. 139B, 102 (1984)ADSGoogle Scholar
  33. 22d.
    F. M. Renard, Phys. Lett. 139B, 449 (1984)ADSGoogle Scholar
  34. 22e.
    M. Leurer, H. Harari, and R. Barbieri, Phys. Lett. 141B, 455 (1984)ADSGoogle Scholar
  35. 22f.
    M. Suzuki, Phys. Lett. 143B, 237 (1984)ADSGoogle Scholar
  36. 22g.
    S. D. Drell and S.J. Parke, Phys. Rev. Lett. 53, 1993 (1984).Google Scholar
  37. 23.
    P. Nath in Supersymmetry and Supergravity/Non-Perturbative QCD, ed. by P. Roy and V. Singh, (Springer-Verlag,Heidelberg, 1984) p. 113CrossRefGoogle Scholar
  38. 23a.
    T.-C. Yuan et al., Zeit. fur Physik C — Particles and Fields 26, 407 (1984)ADSCrossRefGoogle Scholar
  39. 23b.
    R. Arnowitt and P. Nath, Intersections Between Particle and Nuclear Physics, ed. by D.F. Geesaman, (AIP, New York, 1986) p. 582.Google Scholar
  40. 24.
    L. Lyons, Prog. Part. Nucl. Phys. 10, 227 (1983)ADSCrossRefGoogle Scholar
  41. 24a.
    M.E. Peshkin, in Proc. of Intl. Symp. on Lepton and Photon Interactions at High Energies, Bonn, 1981, ed. by W. Pfeil (Bonn, 1981) p. 880Google Scholar
  42. 24b.
    E.J. Eichten, K.D. Lane, and M.E. Peshkin, Phys. Rev. Lett. 50, 811 (1983)ADSCrossRefGoogle Scholar
  43. 24c.
    M. Suzuki, Phys. Lett. 153B, 289 (1985).ADSGoogle Scholar
  44. 25.
    M.E. Peshkin, 1985 Intl. Symp. on Lepton and Photon Interactions at High Energy, ed. by M. Konuma and K. Takahashi (Nissha Printing Co. Kyoto, Japan 1985) p.714Google Scholar
  45. 26.
    V. Bargmann, L. Michel and V.A. Telegdi, Phys. Rev. Lett. 2, 435 (1959)ADSCrossRefGoogle Scholar
  46. 26a.
    F.J.M. Farley, Cargese Lectures in Physics, (Gordon and Breach, 1968) Vol.2, p. 55Google Scholar
  47. 26b.
    J. Bailey and E. Picasso, Progr. in Nucl. Physics 12, 43 (1970).Google Scholar
  48. 27.
    F.G. Mariam et al., Phys. Rev. Lett. 49, 993 (1982).ADSCrossRefGoogle Scholar
  49. 28.
    E.R. Cohen and B.N. Taylor, “1986 Adjustment of the Fundamental Physical Constants, A Report of the CODATA Task Group of Fundamental Constants” CODATA Bull. 63, (Pergamon Press, Oxford, December 1986).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Vernon W. Hughes
    • 1
  1. 1.Gibbs Laboratory, Physics DepartmentYale UniversityNew HavenUSA

Personalised recommendations