The Gravitational Properties of Antimatter

  • Richard J. Hughes
  • T. Goldman
  • Michael Martin Nieto
Part of the Ettore Majorana International Science Series book series (EMISS, volume 31)


In classical gravitational physics a particle couples to the local gravitational potential with a strength known as its “gravitational mass”(1 2). In principle, the gravitational mass is physically distinct from the inertial mass, which is a kinematic property of the particle. Together they determine the particle’s gravitational acceleration. There would be no violation of CPT-symmetry if a particle and its antiparticle should fall with different accelerations in the same gravitational potential. (By “gravity” we mean all forces other than the strong, electromagnetic and weak ones of macroscopic range and gravitational strength.) Specifically, CPT-symmetry equates the gravitational acceleration of a particle towards a particular source with that of its antiparticle towards an “anti-source”. That is, a proton falls towards the earth with the same acceleration that an antiproton has towards an “anti-earth”. CPT does not tell us how an antiproton falls towards our earth. However, a different behavior of an antiproton from a proton in the earth’s gravitational field would violate the weak equivalence (3) principle of classical physics.


Gravitational Acceleration Gravitational Interaction Gravitational Mass Symmetry Breaking Scale Gedanken Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Burniston Brown, Am. J. Phys. 28, 475 (1960).ADSCrossRefGoogle Scholar
  2. 2.
    M. Jammer, “Concepts of Mass”, Harvard, Cambridge (1961).Google Scholar
  3. 3.
    R. H. Dicke, “Proc. Int. School Phys. Enrico Fermi, Course 20, G. Polyani ed., Academic, New York (1962).Google Scholar
  4. 4.
    H. C. Ohanian, “Gravitation and Spacetime”, Norton, New York (1976).Google Scholar
  5. 5.
    T. Goldman and M. M. Nieto, Phys. Lett. 112B, 437 (1982).ADSGoogle Scholar
  6. 6.
    J. S. Bell (private communication).Google Scholar
  7. 7.
    D. Greenberger, Ann. Phys. 47, 116 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    R. Colella, A. W. Overhauser and S. A. Werner, Phys. Rev. Lett. 34, 1472 (1975).ADSCrossRefGoogle Scholar
  9. 9.
    E. P. Wigner, Rev. Mod. Phys. 29, 255 (1957);MathSciNetADSMATHCrossRefGoogle Scholar
  10. 9a.
    E. P. Wigner, Bull. Am. Phys. Soc. 24, 633 (1979).Google Scholar
  11. 10.
    T. Goldman, R. J. Hughes and M. M. Nieto, Phys. Lett. 171B, 217 (1968).ADSGoogle Scholar
  12. 11.
    C. K. Zachos, Phys. Lett. 76B, 329 (1978);ADSGoogle Scholar
  13. 11a.
    C. K. Zachos, Ph.D. Thesis, Caltech (1979).Google Scholar
  14. 12.
    T. Kaluza, Sitz. Preus. Acad. Wiss. K1, 966 (1921);Google Scholar
  15. 12a.
    O. Klein, Zeit. Phys. 37, 895 (1926).ADSMATHCrossRefGoogle Scholar
  16. 13.
    C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1981).MathSciNetADSCrossRefGoogle Scholar
  17. 14.
    R. W. Hellings and K. Nordvedt, Phys. Rev. D7, 3593 (1973).ADSGoogle Scholar
  18. 15.
    T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).ADSCrossRefGoogle Scholar
  19. 16.
    T. Goldman, R. J. Hughes, and M. M. Nieto, LA-UR-86–3617, Submitted to Phys. Rev. D.Google Scholar
  20. 17.
    G. Nordström, Ann. Phys. 42, 533 (1913),MATHCrossRefGoogle Scholar
  21. 17a.
    G. Nordström, Ann. Phys. 43, 1101 (1914);MATHCrossRefGoogle Scholar
  22. 17b.
    A. L. Harvey, Am. J. Phys. 33, 449 (1965).MathSciNetADSMATHCrossRefGoogle Scholar
  23. 18.
    J. Scherk, La Recherche 8, 878 (1977); Phys. Lett. 88B, 265 (1979); in “Unification of the Fundamental Particle Interactions” eds., S. Ferrara, J. Ellis and P. van Nieuwenhuizen, Plenum, NY (1981).Google Scholar
  24. 19.
    Y. Fujii, Nature Phys. Sci. 234, 5 (1971);ADSGoogle Scholar
  25. 19a.
    J. O’Hanlon, Phys. Rev. Lett. 29, 137 (1972);ADSCrossRefGoogle Scholar
  26. 19b.
    A. Zee, Phys. Rev. Lett. 42, 417 (1979).ADSCrossRefGoogle Scholar
  27. 20.
    P. Fayet, Phys. Lett. 171B, 261 (1986);MathSciNetADSGoogle Scholar
  28. 20a.
    L. B. Okun, Sov. Phys. JETP 56, 502 (1982).Google Scholar
  29. 21.
    K. I. Macrae and R. J. Riegert, Nucl. Phys. B244, 513 (1984).MathSciNetADSCrossRefGoogle Scholar
  30. 22.
    R. H. Dicke, Phys. Rev. 126, 1580 (1962);MathSciNetADSCrossRefGoogle Scholar
  31. 22a.
    L. B. Okun, Sov. J. Nucl. Phys. 10, 206 (1969).Google Scholar
  32. 23.
    P. Morrison, Am. J. Phys. 26, 358 (1956).ADSCrossRefGoogle Scholar
  33. 24.
    D. C. Peaslee, Science 124, 1292 (1956);ADSCrossRefGoogle Scholar
  34. 24a.
    K. Jagannathan and L. P. S. Singh, Phys. Rev. D33, 2475 (1986).ADSGoogle Scholar
  35. 25.
    I. Bars and M. Visser, Phys. Rev. Lett. 57, 25 (1986).ADSCrossRefGoogle Scholar
  36. 26.
    S. Raby, private communication.Google Scholar
  37. 27.
    D. R. Mikkelsen and M. J. Newman, Phys. Rev. D16, 919 (1977);ADSGoogle Scholar
  38. 27a.
    G. W. Gibbons and B. F. Whiting, Nature 291, 636 (1981);ADSCrossRefGoogle Scholar
  39. 27b.
    P. Hut, Phys. Lett. 99B, 174 (1981).ADSGoogle Scholar
  40. 28.
    J. G. Hills, A. J. 92, 986 (1986).ADSCrossRefGoogle Scholar
  41. 29.
    F. D. Stacey, G. J. Tuck, S. C. Holding, A. R. Maher, and D. Morris, Phys. Rev. D23, 1683 (1981);ADSGoogle Scholar
  42. 29a.
    F. D. Stacey and G. J. Tuck, Nature 292, 230 (1981);ADSCrossRefGoogle Scholar
  43. 29b.
    S. C. Holding and G. J. Tuck, Nature 307, 714 (1984);ADSCrossRefGoogle Scholar
  44. 29c.
    F. D. Stacey, p. 285 in Science Underground, M. M. Nieto, W. C. Haxton, C. M. Hoffman, E. W. Kolb, V. D. Sandberg, and J. W. Toevs, eds., (AIP, New York, 1983), AIP Conference Proceedings no. 96.20.Google Scholar
  45. 30.
    S. C. Holding, F. D. Stacey, and G. J. Tuck, Phys. Rev., D33, 3487 (1986).ADSGoogle Scholar
  46. 31.
    E. Fischbach, D. Sudarsky, A. Szafer, C. Talmadge, and S. H. Aronson, Phys. Rev. Lett. 56, 3 (1986).ADSCrossRefGoogle Scholar
  47. 32.
    R. V. Eötvös, D. Pekir, and E. Fekete, Ann. Phys. (Leipzig) 68, 11 1922).Google Scholar
  48. 33.
    P. G. Roll, R. Krotkov and R. H. Dicke, Ann. Phys. (NY) 26, 442 (1964);MathSciNetADSMATHCrossRefGoogle Scholar
  49. 33a.
    R. H. Dicke, Sci. Am. 205, 84 (December 1961);CrossRefGoogle Scholar
  50. 33b.
    V. V. Braginskii and V. I. Panov, Sov. Phys. JETP 34, 463 (1972).ADSGoogle Scholar
  51. 34.
    F. W. Dyson, A. S. Eddington, and C. Davidson, Phil. Tran. Roy. Soc. A220, 291 (1919).ADSGoogle Scholar
  52. 35.
    M. L. Good, Phys. Rev. 121, 311 (1961).MathSciNetADSCrossRefGoogle Scholar
  53. 36.
    M. Lusignoli and A. Pugliese, Phys. Lett. 171B, 468 (1986).ADSGoogle Scholar
  54. 37.
    T. Goldman, R. J. Hughes, and M. M. Nieto (in preparation).Google Scholar
  55. 38.
    N. Beverini et al., “A measurement of the gravitational acceleration of the antiproton”, LANL report LA-UR-86–260 (1986).Google Scholar
  56. 39.
    J. H. Billen, K. R. Crandall, and T. P. Wangler, in Physics with Antiprotons at LEAR in the ACOL Era, U. Gastaldi, R. Klapisch, J. M. Richard, and J. Tran Thanh Van, eds. (Editions Frontieres, Gif sur Yvette, France, 1985), p. 107; T. Goldman and M. M. Nieto, ibid, p. 639; M. V. Hynes, ibid, p. 657.Google Scholar
  57. 40.
    F. C. Witteborn and W. M. Fairbank, Phys. Rev. Lett. 19, 1049 (1967);ADSCrossRefGoogle Scholar
  58. 40a.
    F. C. Witteborn and W. M. Fairbank, Rev. Sci. Inst. 48, 1 (1977);Google Scholar
  59. 40b.
    F. C. Witteborn and W. M. Fairbank, Nature 220, 436 (1968).ADSCrossRefGoogle Scholar
  60. 41.
    L. I. Schiff, Proc. Nat. Acad. Sci. 45, 69 (1959);MathSciNetADSMATHCrossRefGoogle Scholar
  61. 41a.
    L. I. Schiff, Phys. Rev. Lett 1, 254 (1958).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Richard J. Hughes
    • 1
  • T. Goldman
    • 1
  • Michael Martin Nieto
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations