Advertisement

Possible Experiments with Antihydrogen

  • Reinhard Neumann
Part of the Ettore Majorana International Science Series book series (EMISS, volume 31)

Abstract

Antihydrogen is the antimatter counterpart of hydrogen and therefore consists of an antiproton and a positron. Till now, no antihydrogen has been produced and identified at any facility in the world. Thus, formation and detection of one antihydrogen atom would be the first artificial realization of atomic neutral antimatter.

Keywords

Lamb Shift Positron Beam Antihydrogen Atom Brightness Enhancement Fermi National Accelerator Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Begemann, M., Gräff, G., Herminghaus, H., Kalinowsky, H., and Ley, R., 1982, Slow positron beam production by a 14 MeV c.w. electron accelerator, Nucl. Instrum. Meth. 201, 287CrossRefGoogle Scholar
  2. Bell, M., Bell, J., 1982, Capture of cooling electrons by cool protons, Part. Accel. 12, 49Google Scholar
  3. Berger, J., Blatt, P., Habfast, C., Haseroth, H., Hauck, P., Hill, Ch., Neumann, R., Pilkuhn, H., Poth, H., zu Putlitz, G., Seligmann, B., Winnacker, A., and Wolf, A., 1985, Feasibility study for antihydrogen production at LEAR, Proposal to the CERN PSCC (P86, spokesman H. Poth), CERN/PSCC/85–45, GenevaGoogle Scholar
  4. Berger, J., Blatt, P., Hauck, P., Neumann, R., 1986, Storage of megawatt laser pulses in a 4.5 m long confocal Fabry-Perot resonator, Optics Commun. 59, 255ADSCrossRefGoogle Scholar
  5. Biraben, F., Grynberg, G., and Cagnac, C., 1974, Experimental evidence of two-photon transition without Doppler broadening, Phys. Rev. Lett. 32, 643ADSCrossRefGoogle Scholar
  6. Budker, G.I., and Skrinskii, A.N., 1978, Electron cooling and new possibilities in elementary particle physics, Sov. Phys. Usp. 21, 277ADSCrossRefGoogle Scholar
  7. Câmpeanu, R.I., and Beu, T., 1983, Hydrogen-antihydrogen interaction potential, Phys. Lett. 93A, 223ADSGoogle Scholar
  8. Cassenti, B.N., 1985, Antimatter propulsion for OTV applications, J. Propulsion 1, 143CrossRefGoogle Scholar
  9. Conti, R.S., and Rich, A., 1985, The status of high intensity, low energy positron sources for antihydrogen production, in: “Proceedings of the Workshop on the Design of a Low-Energy Antimatter Facility in the USA” (Madison, Wisconsin, October 3–5, 1985), in printGoogle Scholar
  10. Dehmelt, H., Van Dyck, Jr. R.S., Schwinberg, P.B., and Gabrielse, G., 1979, Single elementary particles at rest in space, Bull. of Am. Phys. Soc. 24, 757Google Scholar
  11. Deutch, B.L, Jensen, A.S., Miranda, A., and Oades, G.C., 1986, p capture in neutral beams in: “Proceedings of the First Workshop on Antimatter Physics at Low Energy”, B.E. Bonner, L.S. Pinsky, eds., Fermi National Accelerator Laboratory, p. 371Google Scholar
  12. Erickson, G.W., 1971, Improved Lamb-shift calculation for all values of Z, Phys. Rev. Lett. 27, 780ADSCrossRefGoogle Scholar
  13. Essen, L., Donaldson, R.W., Bangham, M.J., and Hope, E.G., 1971, Frequency of the hydrogen maser, Nature 229, 110ADSCrossRefGoogle Scholar
  14. Forward, R.L., Cassenti, B.N., and Miller, D., 1985, Cost comparison of chemical and antihydrogen propulsion systems for high AV missions, paper presented at: AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference, July 8–10, Monterey, CaliforniaGoogle Scholar
  15. Forward, R., Antiproton annihilation propulsion, J. Propulsion and Power 1, 370Google Scholar
  16. Gabrielse, G., Helmerson, K., Tjoelker, R., Fei, X., Trainor, T., Keils, W., and Kalinowsky, H., 1986a, Prospects for experiments with trapped antiprotons, in: “Proceedings of the First Workshop on Antimatter Physics at Low Energy”, B.E. Bonner, L.S. Pinsky, eds., Fermi National Accelerator Laboratory, p.211Google Scholar
  17. Gabrielse, G., Fei, X., Helmerson, K., Rolston, S.L., Tjoelker, R., Trainor, T.A., Kalinowsky, H., Haas, J., and Keils, W., 1986b, First capture of antiprotons in a penning trap: a keV source, Phys. Rev. Lett. 57, 2504ADSCrossRefGoogle Scholar
  18. Gastaldi, U., and Möhl, D., 1984, Co-rotating beams of antiprotons and H” in LEAR and high resolution spectroscopy of pp̄ atoms in flight, in: “Physics with Low-Energy Cooled Antiprotons”, U. Gastaldi and R. Klapisch, eds., Plenum Press, New York and London, p.649Google Scholar
  19. Gräff, G., Ley, R., Osipowicz, A., and Werth, G., 1984, Intense source of slow positrons from pulsed electron accelerators, Appl. Phys. A33, 59ADSGoogle Scholar
  20. Gidley, D.W., and Rich, A., 1981, Tests of quantum electrodynamics using hydrogen, muonium, and positronium, in: “Atomic Physics 7, D. Kleppner and F.M. Pipkin, eds., Plenum Press, New York and London, p.313CrossRefGoogle Scholar
  21. Hänsch, T.W., Lee, S.A., Wallenstein, R., and Wieman, C., 1975, Doppler-free two-photon spectroscopy of hydrogen 1S-2S, Phys. Rev. Lett. 34, 307ADSCrossRefGoogle Scholar
  22. Heberle, J.W., Reich, H.A., and Kusch, P., 1956, Hyperfine structure of the metastable hydrogen atom, Phys. Rev. 101, 612ADSCrossRefGoogle Scholar
  23. Herr, H., Möhl, D., and Winnacker, A., 1984, Production of and experimentation with antihydrogen at LEAR, in: “Physics at LEAR with Low-Energy Cooled Antiprotons”, U. Gastaldi and R. Klapisch, eds., Plenum Press, New York and London, p.659Google Scholar
  24. Hildum, E.A., Boesl, U., McIntyre, D.H., Beausoleil, R.G., and Hänsch, T.W., 1986, Measurement of the 1S-2S frequency in atomic hydrogen, Phys. Rev. Lett. 56, 576ADSCrossRefGoogle Scholar
  25. Howell, R.H., Alvarez, R.A., and Stanek, M., 1982, Production of slow positron beams with an electron linac, Appl. Phys. Lett. 40, 751ADSCrossRefGoogle Scholar
  26. Hütten, L., Poth, H., Wolf, A., Haseroth, H., and Hill, Ch., 1984, The electron cooling device for LEAR, in: “Physics at LEAR with Low-Energy Cooled Antiprotons”, U. Gastaldi and R. Klapisch, eds., Plenum Press, New York and London, p. 605Google Scholar
  27. Hughes, V.W., 1960, in: “Quantum Electronics”, C.H. Townes, ed., Columbia University Press, New York, p.582Google Scholar
  28. Imai, K., 1985, Polarized antiprotons through antihydrogen formation, in: “Polarized Beams at SSC. Polarized Antiprotons”, AIP Conference Proceedings No. 145, A.D. Krisch, A.M.T. Lin, and O. Chamberlain, eds., New York, 1986, p.229Google Scholar
  29. Junker, B.R., and Bardsley, J.N., 1972, Hydrogen-antihydrogen interactions, Phys. Rev. Lett. 28, 1227ADSCrossRefGoogle Scholar
  30. Kolos, W., Morgan, Jr., D.L., Schrader, D.M., and Wolniewicz, L., 1975, Hydrogen-antihydrogen interactions, Phys. Rev. A11, 1792ADSGoogle Scholar
  31. Lefèvre, P., Möhl, D., and Plass, G., 1980, The CERN low energy antiproton ring (LEAR) project, in: “11th Int. Conf. on High-Energy Accelerators”, Birkhäuser Verlag, BaselGoogle Scholar
  32. Levenson, M.D., and Bloembergen, N., 1974, Observation of two-photon absorption without Doppler broadening on the 3S-5S transition in sodium vapour, Phys. Rev. Lett. 32, 645ADSCrossRefGoogle Scholar
  33. Loudon, R., 1973, “The Quantum Theory of Light”, Clarendon Press, OxfordGoogle Scholar
  34. Lundeen, S.R., and Pipkin, F.M., 1981, Measurement of the Lamb shift in hydrogen, n=2, Phys. Rev. Lett. 46, 232ADSCrossRefGoogle Scholar
  35. Mills, A.P., Jr., 1980, Brightness enhancement of slow positron beams, Appl. Phys. 23, 189ADSCrossRefGoogle Scholar
  36. Mills, A.P., Jr., 1984, Techniques for studying systems containing many positrons, in: “Positron Scattering in Gases”, J.W. Humbertson and M.R.C. McDowell, eds., Plenum Press, New York and London, p. 121CrossRefGoogle Scholar
  37. Mohr, P.J., 1975, Lamb shift in a strong Coulomb potential, Phys. Rev. Lett. 34, 1050ADSCrossRefGoogle Scholar
  38. Morgan, L.D., and Hughes, V.W., 1970, Atomic processes involved in matter-antimatter annihilation, Phys. Rev. D2, 1389ADSGoogle Scholar
  39. Morgan, L.D., and Hughes, V.W., 1973, Atom-antiatom interactions, Phys. Rev. A7, 1811ADSGoogle Scholar
  40. Neumann, R., Poth, H., Winnacker, A., and Wolf, A., 1983, Laser-enhanced electron-ion capture and antihydrogen formation, Z. Phys. A — Atoms and Nuclei 313, 253ADSCrossRefGoogle Scholar
  41. Neumann, R., 1985, Laser induced electron capture and related physics, in: “Proceedings of the Workshop on Electron Cooling and Related Applications (ECOOL 1984)”, H. Poth, ed., Kernforschungszentrum Karlsruhe Report KfK 3846, July 1985, p. 387Google Scholar
  42. Poth, H., 1985, Electron cooling, Lecture given at the CERN Accelerator School, Oxford, September 1985, printed as report CERN-EP/86–65, 1986Google Scholar
  43. Poth, H., 1986a, Supplements to Proposal P86 (Berger et al., 1985) CERN/PSCC/86–21, CERN/PSCC/86–37Google Scholar
  44. Poth, H., 1986b, Physics with antihydrogen, in: AIP Conference Proceedings (2nd Conference on the Intersections between Particle and Nuclear Physics), D.F. Geesaman, New York, 1986, p.480Google Scholar
  45. Ramsey, N.F., 1956, “Molecular Beams”, Oxford University Press, LondonGoogle Scholar
  46. Rich, A., 1985, Private communicationGoogle Scholar
  47. Sokolov, Yu.L., Atomic interferometer method measurement of the Lamb shift in hydrogen (n=2), 1984, in: “Precision Measurement and Fundamental Constants II”, B.N. Taylor and W.D. Phillips, eds., Natl. Bur. Stand. (U.S.), Spec. Publ. 617, p. 135Google Scholar
  48. Torelli, G., 1980, A device for trapping and cooling to low temperature antiprotons, in: “Proc. 5th Antiproton Symposium, Bressanone, 1980 (CLEUP, Padua, 1980), p.43Google Scholar
  49. Vasilenko, L.S., Chebotaev, V.P., and Shishaev, A.V., 1970, Line shape of two-photon absorption in a standing-wave field in a gas, JETP Letters 12, 113ADSGoogle Scholar
  50. Wolf, A., Haseroth, H., Hill, C.E., Vallet, J.-L., Habfast, C., Poth, H., Seligmann, B., Blatt, P., Neumann, R., Winnacker, A., and zu Putlitz, G., 1985, Electron cooling of low-energy antiprotons and production of fast antihydrogen atoms, paper presented at Workshop on the Design of a Low-Energy Antimatter Facility in the USA, 3–5 October 1985, Madison, Wisconsin, in pressGoogle Scholar
  51. Wolf, A., 1986, Antihydrogen, Paper presented at the 8th European Symposium on Proton-Antiproton Interactions, Thessaloniki, Greece, 1–5 September 1986, Preprint CERN-EP/86–179Google Scholar
  52. Zelenskiy, A.N., Kokhanovskiy, S.A., Lobashev, V.M., Sobolevskiy, N.M., and Volferts, E.A., 1984, A method of polarizing relativistic proton beams by laser radiation, Nucl. Instrum. Meth. 227, 429ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Reinhard Neumann
    • 1
  1. 1.Physikalisches InstitutUniversität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations