Geometry Dependent Predictions of the Quantum Potential Model for the Anomalous Photoelectric Effect

  • A. Kyprianidis
Part of the NATO ASI Series book series (NSSB, volume 162)


In a set of older and recent experiments1–4 extremely high intensity laser beams are focused onto metals or gases and anomalous photoelectric emission and gas photo-ionization is observed. The anomalous character of the effect consists of the fact that outcoming photoelectrons are observed although the single photon energy is lower than the work function of the material. The first attempt to interpret this effect was based on a light intensity dependent approach, the multiphoton theory5. This theory makes a definite prediction for the photoelectron current i as a function of the light intensity I, namely i ∝ In where n is the integer part of W/h v + 1,W being the work function of the material. This was however disprooved by experiment6 since the latter showed a linear relation between the current and the light intensity thus discarding the multiphoton hypothesis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gy. Farkas, I. Kertesz, Zs. Naray and P. Varga, Phys.Lett.A 21: 475 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    A.J. Alcock and M.C. Richardson, Phys.Rev.Lett. 21: 667 (1968).ADSCrossRefGoogle Scholar
  3. 3.
    E.M. Logothetis and P.L. Hartman, Phys.Rev. 187: 460 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    E. Panarella, Found.Phys., 7: 405 (1977).ADSCrossRefGoogle Scholar
  5. 5.
    H.B. Bebb and A. Gold, Phys.Rev., 143: 1 (1966).ADSCrossRefGoogle Scholar
  6. 6.
    E. Panarella, Lett.Nuov.Cim., 3: 417 (1972).CrossRefGoogle Scholar
  7. 7.
    E. Panarella, Found.Phys., 4: 227 (1974).ADSCrossRefGoogle Scholar
  8. 8.
    E. Panarella, Ann.Found.L. de Broglie, 10: 1 (1985).Google Scholar
  9. 9.
    A.D. Allen, Found.Phys., 7: 609 (1977).ADSCrossRefGoogle Scholar
  10. 10.
    C. Dewdney, A. Garuccio, A. Kyprianidis and J.P. Vigier, Phys.Lett,A. 9 105: 15 (1984).ADSCrossRefGoogle Scholar
  11. 11.
    C. Dewdney, A. Kyprianidis, J.P. Vigier, and M.A. Dubois, Lett.Nuov. Cim. 41: 177 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    D. Bohm, Phys.Rev., 85: 166 (1952).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    L. de Broglie, “La mecanique ondulatoire du photon”, Hermann, Paris (1940).MATHGoogle Scholar
  14. 14.
    A. Einstein, Annalen der Physik (Leipzig), 17: 132 (1905); ibid. 18: 639 (1905).ADSMATHCrossRefGoogle Scholar
  15. A. Einstein, Zeitschr.Phys. 18: 121 (1917).Google Scholar
  16. 15.
    A. Panarella, P. Saric, V. Guty and J.N. Lancaster, Experimental Discri¬mination between the effective photon model of intensity dependent pho¬ton energy and the intensity independent models, preprint, subm. to Phys.Rev.Lett. (1986).Google Scholar
  17. 16.
    B. Held, G. Mairfray, G. Manus and J. Morellec, Proc. 10th Intern. Conf.Phen.Ionized Gases, Oxford, U.K. Sept. 1971, p. 45.Google Scholar
  18. 17.
    C. Philippidis, C. Dewdney and B.J. Hiley, Nuov.Cim. B, 52: 15 (1979).MathSciNetADSCrossRefGoogle Scholar
  19. 18.
    F. De Martini, A. Kyprianidis, D. Sardelis and J.P. Vigier, Quantum mechanical causal action-at-a-distance correlations in optical beam splitting devices and interference experiments: The Bohr-Einstein controversy, preprint, subm. to Nuov.Cim.B.Google Scholar
  20. 19.
    E. Panarella, Effective photon and quantum potential interpretations of the anomalous photoelectric effect, NRC preprint (1985).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. Kyprianidis
    • 1
  1. 1.Laboratoire de Physique ThéoriqueInstitut Henri PoincaréParisFrance

Personalised recommendations