Advertisement

Toward a Causal Interpretation of the Relativistic Quantum Mechanics of a Spinning Particle

  • Nicola Cufaro Petroni
Part of the NATO ASI Series book series (NSSB, volume 162)

Abstract

As a first step in the direction of a causal interpretation, we analyze the features of the second order wave equation for spin 12/ fields. It is shown that this equation allows a coherent statistical interpretation by means of a conserved density which is positive definite. On this basis we can also construct all the usual Hilbert space formalism of the relativistic quantum mechanics. The relations with the fields ruled by the first order Dirac equation are also discussed. Finally, the perspectives of the definition of a relativistic spin-dependent quantum potential, of the connection with stochastic processes and the extension to the case of two correlated particles are briefly discussed.

In this note we will briefly sketch an outline of a research1, still in progress, that will bring us to a complete deterministic interpretation of the non local quantum interactions of the E.P.R. type 2 for the Bohm- Aharonov 3 case of spinning correlated particles. We hope so also on the basis of the fact that an analogous previous work on spinless relativistic particles gives encouraging results4.

Keywords

Causal Interpretation Statistical Interpretation Spinning Particle Quantum Potential Relativistic Quantum Mechanic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Cufaro Petroni, Ph. Gueret, J.P. Vigier: N.Cim. 81B (1984) 243ADSCrossRefGoogle Scholar
  2. N.Cufaro Petroni Ph. Gueret, J.P. Vigier: Phys. Rev. D30 (1984) 495MathSciNetADSCrossRefGoogle Scholar
  3. N.Cufaro Petroni, Ph. Gueret, A. Kyprianidis, J.P.Vigier: Lett.N.Cim. 42 (1985) 362CrossRefGoogle Scholar
  4. N.Cufaro Petroni, Ph.Gueret, A.Kyprianidis, J.P. Vigier: Phys. Rev. D 31 (1985) 3157MathSciNetADSCrossRefGoogle Scholar
  5. N,Cufaro Petroni, Ph.Gueret, A.Kyprianidis, J.P. Vigier: Phys. Rev. D 33 (1986) 1674MathSciNetADSCrossRefGoogle Scholar
  6. 2.
    A.Einstein, B.Podolsky, N. Rosen: Phys. Rev. 47 (1935) 777ADSMATHCrossRefGoogle Scholar
  7. 3.
    D.Bohm, Y.Aharonov: Phys. Rev. 108 (1957) 1070MathSciNetADSCrossRefGoogle Scholar
  8. 4.
    N.Cufaro Petroni, Ph. Droz-Vincent, J.P. Vigier: Lett.N.Cim. 31 (1981) 415CrossRefGoogle Scholar
  9. N.Cufaro Petroni, J.P. Vigier: Phys. Lett. 93A (1983) 383MathSciNetCrossRefGoogle Scholar
  10. 5.
    H.Lamb, “Hydrodynamics”, (Cambridge Univ. Press, New York, 1953 )Google Scholar
  11. 6.
    Ph. Droz-Vincent: Phys. Scrip. 2 (1970) 129ADSMATHCrossRefGoogle Scholar
  12. Ph. Droz-Vincent: Ann. I.H. Poincaré 27/1977) 407ADSGoogle Scholar
  13. 7.
    L. De La Pena-Auerbach: J. Math. Phys. 12 (1971) 453ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Nicola Cufaro Petroni
    • 1
  1. 1.Dipartimento di Fisica dell’UniversitàIstituto Nazionale di Fisica NucleareBariItaly

Personalised recommendations