Beyond Quantum Mechanics using the Subvac

  • A. B. Datzeff
Part of the NATO ASI Series book series (NSSB, volume 162)


Quantum Mechanics (QM), despite its well known many successes, meets with difficulties, some of which are insurmountable. This requires that QM be reconsidered and rebuilt on a new physical basis. For this purpose we start from the hypothesis of a material carrier of the electromagnetic field, which we name Subvac. Owing to its fluctuations, a microparticle (an electron for instance) will need a probabilistic description by a function w>0. We find that the function F(x,y,z,t), with |F|2 = w, satisfies the Schrödinger equation. In this way all of the mathematical formalism of QM is retrieved. The analysis further shows that QM must be generalized as a nonlinear theory. Hence, we propose and discuss a generalized nonlinear Schrödinger equation, which is given here in the most general form for many-particle problems.


Schrodinger Equation Material Carrier Mathematical Apparatus Probabilistic Description Nonlinear Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Jammer — The Philosophy of Quantum Mechanics, Wiley, New York, 1974.Google Scholar
  2. 2.
    R.P. Feynmann — The Character of Physical Law, London, 1965.Google Scholar
  3. 3.
    A.B. Datzeff — Mécanique quantique et réalité physique, Ed. Bulg. Ac. Sci., Sofia, 1969.Google Scholar
  4. 4.
    A.B. Datzeff. Phys. Lett., 59A, No. 3, 185 (1976); Bulg. J. Phys., 3, 225; 4 394 (1979).Google Scholar
  5. 5.
    A.B. Datzeff — Nuovo Cimento, 29B, No. 1, 105 (1975); “Open Questions in Quantum Physics”, G. Tarozzi and A. van der Merwe, Reidel, (1985).Google Scholar
  6. 6.
    A.B. Datzeff — Phys. Lett., 80A, 6 (1980); Intern. J. Quantum Chem. 22, 81 (1983).CrossRefGoogle Scholar
  7. 7.
    A.B. Datzeff — Phys. Lett., 100A, 71 (1984).CrossRefGoogle Scholar
  8. 8.
    L. de Broglie. Une tentative d’interprétation causale et non-linéaire de la mécanique quantique, Gauthier-Villars, Paris, 1956.Google Scholar
  9. 9.
    L. de Broglie — La théorie de la mesure en mécanique ondulatoire, Gauthier-Villars, Paris, 1957.Google Scholar
  10. 10.
    Bialiniski-Birula and J. Mysialksi; Ann. Phys. (N.Y.) 100, 621 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • A. B. Datzeff
    • 1
  1. 1.Faculty of PhysicsUniversity of SofiaBulgaria

Personalised recommendations