The Theoretical Nature of the Photon in a Lattice Vacuum

  • Harold Aspden
Part of the NATO ASI Series book series (NSSB, volume 162)


The empirical formulations of quantum theory do not afford an adequate insight into the physical processes which generate the photon. Experimentally confirmed photon correlations, unretarded by light speed propagation, are paradoxical from the viewpoint of relativity. Resolution of the resulting dilemma can only come from a better understanding of the physical nature of the photon. Just as quantum theory is, in the main, confirmed by the successful deciphering of quantitative data provided by optical spectra, photon theory, to be viable and complete, should account for the quantitative relationship between h, c and e, which collectively define α, the dimensionless fine-structure constant.


Standing Wave Energy Quantum Quantized Hall Effect Compton Wavelength Hall Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Aspden and D. M. Eagles, Aether Theory and the Fine-Structure Constant, Physics Letters, 41A: 423 (1972).CrossRefGoogle Scholar
  2. 2.
    B. W. Pet ley, “The Fundamental Constants and the Frontier of Measurement”,, Adam Hilger, Boston, p. 161 (1985).Google Scholar
  3. 3.
    H. Aspden, “The Theory of Gravitation”, Sabberton, Southampton (1960).Google Scholar
  4. 4.
    H. Aspden, “The Theory of Gravitation”, 2nd. Ed., Sabberton, Southampton (1966).Google Scholar
  5. 5.
    H. Aspden, “Physics without Einstein”, Sabberton, Southampton (1969).Google Scholar
  6. 6.
    A. Aspect, P. Grangier and G. Roger, Experimental Tests of Realistic Local Theories via Bell’s Theorem, Phys. Rev. Lett. 47: 460 (1981).ADSCrossRefGoogle Scholar
  7. 7.
    A. Aspect, P. Grangier and G. Roger, Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities, Phys. Rev. Lett., 49: 91 (1982).ADSCrossRefGoogle Scholar
  8. 8.
    A. Aspect, J. Dalibard and G. Roger, Experimental Test of Bell’s Inequalities using Time-Varying Analyzers, Phys. Rev. Lett., 49: 1804 (1982).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    H. Aspden, “The Chain Structure of the Atomic Nucleus”, Sabberton, Southampton (1974).Google Scholar
  10. 10.
    H. Aspden and D. M. Eagles, Calculation of Proton Mass in a Lattice Model of the Aether, Nuovo Cimento, 30A: 235 (1975).ADSGoogle Scholar
  11. 11.
    R. S. Van Dyck Jr., F. L. Moore, D. L. Farnham and P. B. Schwinberg, New Measurement of the Proton-Electron Mass Ratio, Int. Jour. Mass Spectrometry and Ion Proc., 66: 327 (1985).CrossRefGoogle Scholar
  12. 12.
    H. Aspden, The Theoretical Nature of the Neutron and the Deuteron, (to be published).Google Scholar
  13. 13.
    K. P. Sinha, E. C. G. Sudarshan and J. P. Vigier, Superfluid Vacuum Carrying Real Einstein-de Broglie Waves, Physics Letters, 114A: 298 (1986).CrossRefGoogle Scholar
  14. 14.
    J. A. Wheeler and R. P. Feynman, Interaction with the Absorber as the Mechanism of Radiation, Rev. Mod. Phys., 17: 157 (1945).ADSCrossRefGoogle Scholar
  15. 15.
    H. Aspden, Inertia of a Non-Radiating Particle, Int. Jou. Theor. Phys., 15: 631 (1976).CrossRefGoogle Scholar
  16. 16.
    H. Aspden, “Physics Unified”, Sabberton, Southampton, p. 80 (1980).Google Scholar
  17. 17.
    H. Aspden, Theoretical Resonances for Particle-Antiparticle Collisions Based on the Thomson Electron Model, Lett. Nuovo Cimento, 37: 307 (1983).Google Scholar
  18. 18.
    H. Aspden, Meson Lifetime Dilation as a Test for Special Relativity, Lett. Nuovo Cimento, 38: 206 (1983).Google Scholar
  19. 19.
    H. Aspden, Unification of Gravitational and Electrodynamic Potential Based on a Classical Action-at-a-Distance Theory, Lett. Nuovo Cimento, 44, 689 (1985).Google Scholar
  20. 20.
    H. Aspden, Crystal Symmetry and Ferromagnetism, Spec. Sc. Tech., 1: 281 (1978).Google Scholar
  21. 21.
    H. Aspden, Electromagnetic Reaction Paradox, Lett. Nuovo Cimento, 39: 247 (1984).CrossRefGoogle Scholar
  22. 22.
    R. Hazelett and D. Turner, “The Einstein Myth and the Ives Papers”, Devin-Adair, Old Greenwich, p. 249 (1979).Google Scholar
  23. 23.
    E. W. Silvertooth and S. F. Jacobs, Standing Wave Sensor, Appl. Optics, 22: 1274 (1983).ADSGoogle Scholar
  24. 24.
    Wiener, Ann. Phys., 40: 203 (1890).Google Scholar
  25. 25.
    E. W. Silvertooth, Experimental Detection of the Ether, (to be published).Google Scholar
  26. 26.
    A. A. Berezin, An Unexpected Result in Classical Electrostatics, Nature, 315: 104 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    W. T. Scott, “The Physics of Electricity and Magnetism”, Wiley, New York, p. 43 (1966).Google Scholar
  28. 28.
    H. Aspden, “Modern Aether Science”, Sabberton, Southampton, p. 87 (1972).Google Scholar
  29. 29.
    H. Aspden, Earnshaw’s Theorem, Nature, 319: 8 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    H. Aspden, The Nature of the Muon, Lett. Nuovo Cimento, 37: 210 (1983).Google Scholar
  31. 31.
    H. Aspden, The Mass of the Muon, Lett. Nuovo Cimento, 38: 342 (1983).Google Scholar
  32. 32.
    H. Aspden, The Muon g-Factor by Cavity Resonance Theory, Lett. Nuovo Cimento, 39: 271 (1984).Google Scholar
  33. 33.
    H. Aspden, Donft Forget Thomson, Physics Today, 37: 15 (Nov. 1984).ADSCrossRefGoogle Scholar
  34. 34.
    D. M. Eagles, A Comparison of Results of Various Theories for Four Fundamental Constants of Physics, Int. Jour. Theor. Phys., 15: 265 (1976).CrossRefGoogle Scholar
  35. 35.
    J. Beetem, M. Denneau and D. Weingarten, The GF11 Supercomputer, in: “The 12th Annual International Symposium on Computer Architecture”, Conference Proceedings, IEEE Computer Soc. No. 634, p. 108 (1985).Google Scholar
  36. 36.
    N. D. Mermin, Is the Moon there when Nobody Looks? Reality and the Quantum Theory, Physics Today, 38: 38 (April 1985).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Harold Aspden
    • 1
  1. 1.Department of Electrical EngineeringUniversity of SouthamptonSouthamptonEngland

Personalised recommendations