Critical Analysis of the Tests of Local Realism Versus Quantum Mechanics

  • Emilio Santos
Part of the NATO ASI Series book series (NSSB, volume 162)


P. A. M. Dirac [1] emphasized the fact that several dramatic advances in physics have come from the solution of a previous conflict between two well established theories (which is just an example of the usefulness of the dialectic method). For instance, the contradiction between Newton’s mechanics and Maxwell’s electromagnetism was solved by Einstein with the introduction of special relativity. Similarly, the conflict between special relativity and Newtonian gravitation gave rise to general relativity. A conflict similar to the latter is the one existing at present between local realism and quantum mechanics. In fact, in both cases the conflict arises because it is predicted a violation of the principle of local action: by gravitational forces at a distance in the first case, and by the influence of a measurement on another one performed at a distant place, in quantum mechanics. As the principle of local action (signals cannot travel faster than light) is at the roots of relativity theory, I guess that a dramatic advance in physics will soon take place, when this conflict is solved.


Bell Inequality Local Realism Coincidence Rate Accidental Coincidence Coincidence Counting Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. A. M. Dirac, Methods in theoretical physics, in: “From a life of physics,” A. Salam, Ed., Trieste Lectures, International. Energy Agency, Wien (1969).Google Scholar
  2. 2.
    J. S. Bell, Physics, New York, 1, 195 (1965).Google Scholar
  3. 3.
    K. Popper, Bell’s theorem: A note on locality, in: “Microphysical reality and quantum formalism,” G. Tarozzi, Ed., Reidel Publishing Co., Dordrecht (in press).Google Scholar
  4. 4.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev., 47, 111 (1935).CrossRefGoogle Scholar
  5. 5.
    F. Selleri, Found. Phys., 12, 645 (1982).MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    L. de la Pena, A. M. Cetto, and T. A. Brody, Lett. Nuovo Cimento, 5 177 (1972).Google Scholar
  7. 7.
    J. F. Clauser and A. Shimony, Rep. Progr. Phys., 41, 1881 (1978).ADSCrossRefGoogle Scholar
  8. 8.
    E. Santos, Phys. Lett. A, 115, 363 (1986).MathSciNetADSCrossRefGoogle Scholar
  9. 9.
    J. F. Clauser and M. A. Hortte, Phys. Rev., D10, 526 (1974).Google Scholar
  10. 10.
    T. W. Marshall, private communication.Google Scholar
  11. 11.
    A. Aspect, P. Grangier, and O. Roger, Phys. Rev. Lett., 47, 460 (1981); 49, 91 (1981)Google Scholar
  12. A. Aspect, J. Baliberd, and G. Roger, Phys. Rev. Lett., 49, 1804 (1982)MathSciNetADSCrossRefGoogle Scholar
  13. A. Aspect P. Grangier Lett. Nuovo Cimento 45 435(1985).Google Scholar
  14. 12.
    W. Perrie, A. J. Duncan, H. J. Beyer, and H. Kleinpoppen, Phys. Rev. Lett. 54, 1790 (1985).ADSCrossRefGoogle Scholar
  15. 13.
    T. W. Marshall, E. Santos, and F. Selleri, Phys. Lett., 98A, 4 (1983).Google Scholar
  16. 14.
    T. W. Marshall, Towards a realistic theory of measurement, in: “Micro- physical reality and quantum formalism,” G. Tarozzi, Ed., Reidel Pub¬lishing Co., Dordrecht (in press).Google Scholar
  17. 15.
    T. K. Lo and A. Shimony, Phys. Rev., A23, 3003 (1981).ADSCrossRefGoogle Scholar
  18. 16.
    E. Santos, Phys. Rev., A30, 2128 (1984); A. Shimony, Phys. Rev., A30, 2130 (1984).Google Scholar
  19. 17.
    E. Santos, Phys. Lett., 1Q1A, 379 (1984).Google Scholar
  20. 18.
    G. C. Scalera, Lett. Nuovo Cimento, 38, 16 (1983); 40, 353 (1984).MathSciNetCrossRefGoogle Scholar
  21. 19.
    S. Notarrigo, Nuovo Cimento, 83 B, 173 (1984).Google Scholar
  22. 20.
    S. Pascazio, Phys. Lett., 111A, 339 (1985).CrossRefGoogle Scholar
  23. 21.
    F. Selleri, Lett. Nuovo Cimento, 39, 252 (1984).CrossRefGoogle Scholar
  24. 22.
    S. Pascazio, Nuovo Cimento, 5, 23 (1985).MathSciNetCrossRefGoogle Scholar
  25. 23.
    E. Santos, Stochastic electrodynamics and the Bell inequalities, in: “Open questions in quantum physics,” G. Tarozzi and A. van der Merwe, Eds., Reidel Publishing Co., Dordrecht (1985).Google Scholar
  26. 24.
    S. Caser, Phys. Lett., 102A, 152 (1984).MathSciNetCrossRefGoogle Scholar
  27. 25.
    D. Home and T. W. Marshall, Phys. Lett., 113A, 182 (1985).MathSciNetGoogle Scholar
  28. 26.
    T. W. Marshall, Phys. Lett., 99A, 163 (1983);100A, 225 (1984).Google Scholar
  29. 27.
    R. A. Holt and F. M. Pipkin, Preprint Harvard University (1974).Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Emilio Santos
    • 1
  1. 1.Departmento de Fisica TeoricaUniversidad de SantanderSantanderSpain

Personalised recommendations