Compositeness of Photons and its Implications

  • Probhas Raychaudhuri
Part of the NATO ASI Series book series (NSSB, volume 162)


It is suggested that the photon may be taken as a composite state of a neutrino-antineutrino pair when the composite character is described by the vanishing of the wave-function renormalisation constant and the nonvanishing of a certain composite coupling constant. There must be two different kinds of neutrinos, one associated with left circular polarization and another with right circular polarization. In this formalism these polarizations would have to transform into one another under inversion and, therefore, correspond to the same representation of the Lorentz group. To construct a photon of spin 1, we shall need neutrinos of both helicities. The two neutrinos associated with a single photon are both either β-neutrinos (νL) or μ-neutrinos (νR); it is impossible to say which without reference to the vacuum state. The field representing neutrinos would have to be quantized in accordance with the parastatistics to allow the existence of neutrinos in the same dynamical state. The neutrinos (νL, νR) transform into one another under inversion and therefore correspond to the same representation of the full Lorentz group. In the above formalism neutrinos are of opposite spin and thus neutrinos are parafermions (satisfying parastatistics of order 2). Therefore, the neutrino theory of light can be reformulated without rotational invariance. In this formalism the photon may oscillate between a left-handed and a right-handed photon. It is expected that the system of photons interacts differently at very low, intermediate and very high photon densities. Thus it is expected that at very high photon densities the usual form E = hν may not be valid. Implications of the above photonic structure will be discussed in connection with the anomalous photoelectric effect, wave-particle duality, replication of photons, superluminal transmission etc. Considering the composite coupling constant of the photon we will discuss the possibility of a stochastic interpretation of quantum mechanics.


Gauge Transformation Majorana Neutrino Composite State Photon Mass Photon System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. de Broglie, Matter and Light, George Allen and Union Ltd., London (1939).Google Scholar
  2. 2.
    P. Jordan, Z. Physik 93, 464 (1935).ADSMATHCrossRefGoogle Scholar
  3. 3.
    R. D. L. Kronig, Physica. 3, 1120 (1936).CrossRefGoogle Scholar
  4. 4.
    M.H.L. Pryce, Proc. Roy. Soc. (London) 165, 247 (1938).ADSMATHCrossRefGoogle Scholar
  5. 5.
    I.M. Barbour, A. Bietti and B.F. Touschek, Nuovo Cimento 28, 453 (1963).MathSciNetGoogle Scholar
  6. 6.
    B. Ferretti, Nuovo Cimento 33, 265 (1964).Google Scholar
  7. 7.
    W.A. Perkins, Phys. Rev. B137, 1291 (1965).ADSCrossRefGoogle Scholar
  8. 8.
    W.A. Perkins, Phys. Rev. D5, 1375 (1972).ADSGoogle Scholar
  9. 9.
    P. Bandyopadhyay and P. Raychaudhuri, Phys. Rev. 3, 1378 (1971).ADSGoogle Scholar
  10. 10.
    H.S. Green, Progr. Theor. Phys. 47., 1400 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    M.M. Broido, Phys. Rev. 157, 1444 (1967).ADSCrossRefGoogle Scholar
  12. 12.
    P. Bandyopadhyay, Phys. Rev. 173, 1481 (1968).ADSCrossRefGoogle Scholar
  13. 13.
    C. Ryan and S. Okubo, Suppl. Nuovo Cimento 2, 234 (1964).MathSciNetGoogle Scholar
  14. 14.
    L.A. Radicati and B. Touschek, Nuovo Cimento 5, 1693 (1957).MATHCrossRefGoogle Scholar
  15. 15.
    W. Pauli, Nuovo Cimento 6204 (1957).MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Th. A.J. Maris, D. Dillenburg and S. Jacob, Nucl. Phys. B18, 366 (1980).MathSciNetADSGoogle Scholar
  17. 17.
    K. Kang and D.J. Land, Nuovo Cimento 63A, 1053 (1969).MathSciNetADSGoogle Scholar
  18. 18.
    P. Raychaudhuri, unpublished (1975).Google Scholar
  19. 19.
    E.M. Henley, A.H. Huffman and D.U.L. Yu, Phys. Rev. D7, 943 (1973).ADSGoogle Scholar
  20. 20.
    E.M. Henley, Phys. Rev. C7, 1344 (1973).ADSGoogle Scholar
  21. 21.
    P. Raychaudhuri, Canad. J. Phys. 48, 935 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    R.B. Stothers, Phys. Lett. 36A, 5 (1971).CrossRefGoogle Scholar
  23. 23.
    B. Kuchowicz. Rep. Progr. Phys. 39, 291 (1976).ADSCrossRefGoogle Scholar
  24. 24.
    Kenichi Ono, Scientific papers of the College of General Education, University of Tokyo 13, No. 1 (1963).Google Scholar
  25. 25.
    P. Raychaudhuri, Spec. Sci. and Tech. 167 (1982).Google Scholar
  26. 26.
    P. Raychaudhuri, Proc. 18th ICRC 7, 100 (1983). Spec. Sci. and Tech. 4, 267 (1981).Google Scholar
  27. 27.
    L. Bass and E. Schrodinger, Proc. Roy. Soc. (London) A232, 1 (1955).MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    J. Schwinger, Phys. Rev. 125, 397 (1962).MathSciNetADSMATHCrossRefGoogle Scholar
  29. 29.
    V.A. Lubimov, E.G. Novikov, V.Z. Nozik, E.F. Tretyakov and V.S. Kosik, Phys. Lett. 94B, 266 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • Probhas Raychaudhuri
    • 1
  1. 1.Department of Applied MathematicsCalcutta UniversityCalcuttaIndia

Personalised recommendations