Effective Photon Hypothesis vs. Quantum Potential Theory: Theoretical Predictions and Experimental Verification

  • E. Panarella
Part of the NATO ASI Series book series (NSSB, volume 162)


This paper will review the basic formulation of effective photon theory, the experimental results of photoemission from a laser-irradiated metal that led to the concept of effective photon, and the experiments of laser-induced gas ionization which can be interpreted with the effective photon hypothesis. Then, it will review alternate theories that infer the existence of effective photons from different premises. It will be shown that a distinct difference exists between the alternate theories, and in particular quantum potential theory, and effective photon theory. The first predict that higher-than-normal energy photons in a laser beam are a consequence of the geometrical manipulation of the beam. The latter postulates that the geometry has no effect, and that the intensity of light is the important parameter leading to the effective photons. Such difference brings testable effects and an experiment has been performed to discriminate between effective photon theory and the alternate theories. Although the results of the experiment do not rule out the alternate theories, they do, however, provide strong evidence that higher-than-normal energy photons are a light intensity rather than a beam geometry effect. Effective photon theory is then extended. Starting from some theoretical considerations based on an interacting photon model proposed by the present author in another paper in these Proceedings, the coefficients a and β v of the effective photon energy relation ε = hν/[1-βνIα] for λ = 10600 Å are derived. Finally, the validity of this relation in predicting the minimum intensities of light necessary to ionize the noble gases, at the foregoing wavelength, is demonstrated.


Laser Pulse Laser Beam Light Intensity Photon Energy Cathode Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Panarella, Lett. Nuovo Cim. 3, 417 (1972).CrossRefGoogle Scholar
  2. 2.
    V. Chalmeton and R. Papoular, Compt. Rend. 264B, 213 (1967).Google Scholar
  3. 3.
    D.C. Smith and A.F. Haught, Phys. Rev. Lett 16, 1085 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    P. Belland, C. DeMichelis, and M. Mattioli, Opt. Comm. 4, 50 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    A.F. Haught, R.G. Meyerand, and D.C. Smith, in “Physics of Quantum Electronics,” P.L. Kelley, B. Lax, and P.E. Tannenwald, (1966), p. 509.Google Scholar
  6. 6.
    R.W. Minck, and W.G. Rado, in “Physics of Quantum Electronics,” P.L. Kelley, B. Lax, and P.E. Tannenwald, (1966), p. 527.Google Scholar
  7. 7.
    T. Okuda, K. Kishi, and K. Sawada, Appl. Phys. Lett. 15, 181 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    K. Kishi, K. Sawada, T. Okuda, and Y. Matsuoka, J. Phys. Soc. Japan 29, 1053 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    K. Kishi, and T. Okuda, J. Phys. Soc. Japan 31, 1289 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    R. G. Tomlinson, E.K. Damon, and H.T. Buscher, in “Physics of Quantum Electronics,” P.L. Kelley, B. Lax, and P.E. Tannenwald, (1966), p. 520.Google Scholar
  11. 11.
    P. Agostini, G. Bariot, G. Mainfray, C. Manus, and J. Thebault, IEEE J. Quantum Electr. QE-6, 782 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    G.S. Voronov, G.A. Delone, and N.B. Delone, Soviet Phys. - JETP 24, 1122 (1967).ADSGoogle Scholar
  13. 13.
    M. Louis-Jacquet, Compt. Rend. 270B, 548 (1970).Google Scholar
  14. 14.
    V. Chalmeton, J. de Phys. 30, 687 (1969).CrossRefGoogle Scholar
  15. 15.
    B. Held, G. Mainfray, C. Manus, and J. Morellec, Phys. Lett. 35A, 257 (1971).Google Scholar
  16. 16.
    G.A. Delone and N.B. Delone, JETP Lett 10, 265 (1969).ADSGoogle Scholar
  17. 17.
    L.V. Keldish, Soviet Phys. JETP 20, 1307 (1965).Google Scholar
  18. 18.
    B.A. Tozer, Phys. Rev. 137A, 1665 (1965).ADSCrossRefGoogle Scholar
  19. 19.
    H.B. Bebb and A. Gold, Phys. Rev. 143, 1 (1966).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Gontier and M. Trahin, Phys. Rev. 172, 83 (1968).ADSCrossRefGoogle Scholar
  21. 21.
    H.R. Reiss, Phys. Rev. 1A, 803 (1970).ADSCrossRefGoogle Scholar
  22. 22.
    F. Morgan, L.R. Evans, and C. Grey Morgan, J. Phys. D: Appl. Phys. 4, 225 (1971).Google Scholar
  23. 23.
    E. Panarella, Found Phys. 4, 227 (1974).ADSCrossRefGoogle Scholar
  24. 24.
    E. Panarella, Can. j. Phys. 54, 1815 (1976).ADSCrossRefGoogle Scholar
  25. 25.
    E. Panarella, Phys. Rev. Lett. 33, 950 (1974).ADSCrossRefGoogle Scholar
  26. 26.
    N.S. Nogar, Spectr. Lett. 11, 243 (1978).ADSCrossRefGoogle Scholar
  27. 27.
    A.D. Allen, Found Phys. 7 609 (1977).ADSCrossRefGoogle Scholar
  28. 28.
    A.L. de Brito and A. Jabs, Can. J. Phys. 62, 661 (1984).ADSCrossRefGoogle Scholar
  29. 29.
    A.L. de Brito, Can. J. Phys. 62, 1010 (1984).Google Scholar
  30. 30.
    C. Dewdney, A. Garuccio, A. Kyprianidis, and J.P. Vigier, Phys. Lett. 105, 15 (1984).CrossRefGoogle Scholar
  31. 31.
    C. Dewdney, A. Kyprianidis, J.P. Vigier, and M.A. Dubois, Lett. Nuovo Cira. 41, 177 (1984).ADSCrossRefGoogle Scholar
  32. 32.
    P. Raychaudhuri, paper in these Proceedings.Google Scholar
  33. 33.
    E. Panarella, Ann. Fond. Louis de Broglie 6, 197 (1981).Google Scholar
  34. 34.
    E. Panarella, Ann. Fond. Louis de Broglie 10, 1 (1985).Google Scholar
  35. 35.
    E. Panarella, Phys. Rev. 16A, 672 (1977).ADSCrossRefGoogle Scholar
  36. 36.
    A.V. Phelps, in “Physics of Quantum Electronics,” P.L. Kelley, B. Lax, and P.E. Tannenwald, (1966), p. 538.Google Scholar
  37. 37.
    M. Moles and J.P. Vigier, Compt. Rend. 276, 697 (1973).ADSGoogle Scholar
  38. 38.
    A. Garuccio and J.P. Vigier, Lett. Nuovo Cimmento 30, 57 (1981).MathSciNetCrossRefGoogle Scholar
  39. 39.
    A.L. Donaldson, M.O. Hagler, M. Kristiansen, L.L. Hatfield, and R.M. Ness, J. Appl. Phys. 57, 4981 (1985).ADSCrossRefGoogle Scholar
  40. 40.
    M.V. Klein, “Optics” ( Wiley, New York 1970 ) p. 136.Google Scholar
  41. 41.
    I.S. Gradshteyn and I.M. Ryzhik, “Tables of Integrals, Series and Products,” (Academic Press, New York 1980) p. 692, No. 6.575(1).Google Scholar
  42. 42.
    I.S. Gradshteyn and I.M. Ryzhik, ibid. p. 684, No. 6.561(14).Google Scholar
  43. 43.
    E. Panarella, other paper in these Proceedings.Google Scholar
  44. 44.
    R. Hanbury-Brown and R.Q. Twiss, Proc. Royal Soc. A242, 300 (1957); ibid 291 (1958).Google Scholar
  45. 45.
    R. Loudon, “The Quantum Theory of Light” ( Clarendon Press, Oxford 1973 ) p. 227.Google Scholar
  46. 46.
    RCA Phototubes and Photocells - Technical Manual PT-60, 1963, Radio Corporation of America, p. 5.Google Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • E. Panarella
    • 1
  1. 1.National Research CouncilOttawaCanada

Personalised recommendations